岳曉鳳,闕亞偉,王政逸
(浙江大學(xué)農(nóng)業(yè)與生物技術(shù)學(xué)院水稻生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,杭州 310058)
基于RNA-Seq的稻瘟病菌Δznf1突變體的表達(dá)譜分析
岳曉鳳,闕亞偉,王政逸
(浙江大學(xué)農(nóng)業(yè)與生物技術(shù)學(xué)院水稻生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,杭州 310058)
【目的】稻瘟病菌(Magnaporthe oryzae)引起的水稻稻瘟病是威脅全球水稻生產(chǎn)的重要病害之一,而該菌附著胞介導(dǎo)的侵染又是病害循環(huán)的重要環(huán)節(jié)。在前期的研究中發(fā)現(xiàn)一個(gè)編碼C2H2鋅指結(jié)構(gòu)的轉(zhuǎn)錄因子基因ZNF1,參與稻瘟病菌附著胞形成、穿透和致病過程,論文旨在從轉(zhuǎn)錄水平上了解受Znf1調(diào)控的基因及其調(diào)控機(jī)理,為深入研究稻瘟病菌致病分子機(jī)理提供基礎(chǔ)數(shù)據(jù)?!痉椒ā坷肦NA-Seq技術(shù)對(duì)稻瘟病菌野生型菌株Guy11和突變體Δznf1的營(yíng)養(yǎng)菌絲體進(jìn)行表達(dá)譜測(cè)序,采用FPKM法計(jì)算基因表達(dá)量,以FDR≤0.001且log2ratio (Δznf1/Guy11)≥1為篩選標(biāo)準(zhǔn),獲得Δznf1中差異表達(dá)基因(differentially expressed genes, DEGs);通過與Gene Ontology(GO)數(shù)據(jù)庫和KEGG Pathway數(shù)據(jù)庫比對(duì),獲得差異基因可能的生物學(xué)功能和參與的分子調(diào)控途徑。為了更詳細(xì)地研究受Znf1調(diào)控的基因,在同樣的條件下,利用RNA-Seq技術(shù)對(duì)稻瘟病菌絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)編碼基因PMK1的缺失突變體進(jìn)行表達(dá)譜分析,通過對(duì)Δznf1和Δpmk1中的差異表達(dá)基因進(jìn)行比較,篩選受Znf1和Pmk1共同調(diào)控的基因,并與前人的研究數(shù)據(jù)比較,分析獲得在稻瘟病菌附著胞發(fā)育階段上調(diào)表達(dá)但在Δznf1和Δpmk1中同時(shí)下調(diào)表達(dá)的基因?!窘Y(jié)果】與野生型Guy11相比,Δznf1中共有709個(gè)差異表達(dá)基因,其中上調(diào)表達(dá)的有299個(gè),下調(diào)表達(dá)的有410個(gè);GO功能富集分析顯示差異表達(dá)基因歸類到生物學(xué)過程、細(xì)胞組分和分子功能上的基因數(shù)目分別有118、299和308個(gè);KEGG Pathway富集分析顯示,這些差異表達(dá)基因主要參與代謝途徑、次生代謝物質(zhì)生物合成、甘油磷脂代謝等。一些已知的稻瘟病菌致病相關(guān)基因,如LPP3、HOX7、PBS2、MPG1等,在Δznf1中表達(dá)水平下調(diào)。與Δpmk1中差異表達(dá)基因比較發(fā)現(xiàn),Δznf1中約56%的差異表達(dá)基因同時(shí)也受Pmk1調(diào)控。其中,編碼isotrichodermin C-15 羥化酶的3個(gè)基因MGG_03825、MGG_02329和MGG_08498,在Δznf1和Δpmk1中的表達(dá)水平均顯著下調(diào)。此外,在附著胞階段上調(diào)表達(dá)的48個(gè)基因,在Δznf1和Δpmk1中同時(shí)下調(diào)表達(dá),表明這些與附著胞形成可能相關(guān)的基因直接或間接受Znf1和Pmk1調(diào)控。采用qRT-PCR方法隨機(jī)檢測(cè)10個(gè)基因的表達(dá)情況,結(jié)果與RNA-Seq數(shù)據(jù)基本一致,說明本試驗(yàn)RNA-Seq數(shù)據(jù)的可靠性?!窘Y(jié)論】RNA-Seq分析獲得了受Znf1調(diào)控的基因信息和可能的生物學(xué)功能。一些與稻瘟病菌致病相關(guān)的基因受Znf1調(diào)控。此外,與Pmk1類似,一些在附著胞階段上調(diào)表達(dá)的基因也同時(shí)受Znf1調(diào)控。結(jié)果可為進(jìn)一步研究Znf1下游基因調(diào)控網(wǎng)絡(luò)提供信息。
水稻;稻瘟病菌;附著胞;Δznf1; RNA-Seq; 差異表達(dá)基因
【研究意義】稻瘟病菌(Magnaporthe oryzae)侵染水稻引起的稻瘟病是水稻上的重要病害,每年可造成10%—30%的稻谷產(chǎn)量損失,嚴(yán)重威脅世界各水稻產(chǎn)區(qū)糧食生產(chǎn)安全[1]。由于經(jīng)濟(jì)的重要性和分子遺傳的可操作性,稻瘟病菌-水稻互作機(jī)制已成為研究病原菌-寄主植物互作的模式系統(tǒng)[1-3]。對(duì)稻瘟病菌致病分子機(jī)理的深入了解不僅有助于新的稻瘟病防治策略的研發(fā),有效控制病害流行,而且對(duì)其他植物病原真菌的研究及其病害防治具有重要的指導(dǎo)意義?!厩叭搜芯窟M(jìn)展】稻瘟病菌通過形成一種特異性的侵染結(jié)構(gòu)——附著胞侵入寄主細(xì)胞[4]。當(dāng)分生孢子著落在稻株表面后,在適宜的水分條件下萌發(fā)產(chǎn)生芽管,芽管頂端迅速膨大并逐漸分化形成附著胞。成熟的附著胞黑色素化并通過甘油等溶質(zhì)的積累而產(chǎn)生強(qiáng)大膨壓(高達(dá)8 MPa)。在膨壓的作用下,附著胞產(chǎn)生足夠的機(jī)械壓力驅(qū)動(dòng)稻瘟病菌成功穿透寄主表皮進(jìn)行侵染,隨后鱗莖狀的侵染菌絲在細(xì)胞內(nèi)和細(xì)胞間擴(kuò)展。侵染3—5 d后水稻葉片表面形成可見的壞死病斑[1,5-6]。研究表明,cAMP-PKA信號(hào)途徑調(diào)控早期表面信號(hào)識(shí)別和附著胞分化,外源添加cAMP能誘導(dǎo)分生孢子在親水表面形成附著胞[7-12]。Pmk1-MAPK信號(hào)途徑調(diào)控附著胞成熟、穿透及擴(kuò)展[11-14]。PMK1缺失突變體不能形成附著胞,不能穿透寄主表皮,對(duì)寄主致病性完全喪失[13]。Mst12是位于Pmk1下游的轉(zhuǎn)錄因子,參與調(diào)控侵染釘形成和穿透。Δmst12能形成成熟的附著胞,但不能穿透寄主表皮而完全喪失對(duì)寄主的致病性[15-17]。由于MST12不是附著胞發(fā)育與成熟所必需,因此研究者們認(rèn)為還存在其他受Pmk1調(diào)控的轉(zhuǎn)錄因子參與附著胞的形成。近期,筆者實(shí)驗(yàn)室研究發(fā)現(xiàn)了一個(gè)C2H2型鋅指結(jié)構(gòu)轉(zhuǎn)錄因子Znf1,其可能位于cAMP-PKA和Pmk1-MAPK信號(hào)途徑下游,在附著胞介導(dǎo)的稻瘟病菌侵染過程中有重要作用[18]。Δznf1在營(yíng)養(yǎng)生長(zhǎng)、色素沉積以及有性生殖等方面與野生型菌株沒有明顯的差異,但Δznf1芽管頂端不能分化形成成熟的附著胞,不能穿透寄主表皮,即使是在劃傷或針刺的大麥和水稻葉片表面都不能產(chǎn)生病斑。在稻瘟病菌附著胞發(fā)育階段,Znf1受Pmk1調(diào)控,并且同Δpmk1能響應(yīng)外源cAMP刺激類似,外源cAMP或IBMX能誘導(dǎo)Δznf1芽管頂端分化形成囊泡狀的膨大結(jié)構(gòu)。但酵母雙雜交實(shí)驗(yàn)表明Znf1與Pmk1沒有直接的互作[18]。【本研究切入點(diǎn)】Znf1下游調(diào)控的基因尚不明確,Znf1對(duì)附著胞相關(guān)基因的調(diào)控以及與Pmk1的關(guān)系有待挖掘,而且對(duì)Znf1作用機(jī)制的深入研究能夠加深對(duì)稻瘟病菌附著胞調(diào)控機(jī)理的認(rèn)識(shí)。本研究通過高通量測(cè)序技術(shù),從轉(zhuǎn)錄水平上解析Znf1的調(diào)控機(jī)制。【擬解決的關(guān)鍵問題】利用RNA-Seq(RNA-sequencing)技術(shù)對(duì)稻瘟病菌野生菌株Guy11和Δznf1突變體進(jìn)行表達(dá)譜分析和差異表達(dá)基因篩選,以期為進(jìn)一步鑒定和研究受Znf1調(diào)控的基因提供基礎(chǔ)數(shù)據(jù)。此外,通過比較Δznf1和Δpmk1中的差異表達(dá)基因,篩選受Znf1和Pmk1共同調(diào)控的基因,深入了解Znf1與Pmk1的關(guān)系以及鑒定新的與稻瘟病菌附著胞形成相關(guān)基因,從而為完善稻瘟病菌致病分子機(jī)理提供數(shù)據(jù)。
1.1 供試材料
RNA-Seq所用的稻瘟病菌野生型Guy11、Δznf1和Δpmk1突變體均為筆者實(shí)驗(yàn)室保存或研究獲得的菌株。供試菌株在CM液體培養(yǎng)基中振蕩培養(yǎng)48 h(28℃,180 r/min)后,2層紗布過濾收集菌絲,經(jīng)無菌水沖洗數(shù)遍后,將水分壓干,液氮速凍后儲(chǔ)存于-80℃保存?zhèn)溆?。每個(gè)菌株3個(gè)重復(fù)。CM培養(yǎng)基配方:10 g·L-1glucose, 2 g·L-1peptone,1 g·L-1yeast extract,1 g·L-1casamino acids,0.1%(v/v)trace elements,0.1%(v/v)vitamin supplement,6 g·L-1NaNO3,0.5 g·L-1KCl,0.5 g·L-1MgSO4,1.5 g·L-1KH2PO4,pH 6.5。
1.2 RNA提取及質(zhì)量檢測(cè)
2015年9月樣品組織送至深圳華大基因科技服務(wù)中心,RNA-Seq測(cè)序在該中心進(jìn)行。采用Trizol法分別提取各菌株的菌絲樣品總RNA,并使用DnaseI去除樣品中的DNA雜質(zhì)。通過1%瓊脂糖凝膠電泳,以及NanoDrop ND-2000和Agilent 2100對(duì)RNA樣品進(jìn)行濃度、純度和完整性等檢測(cè)。OD值標(biāo)準(zhǔn):OD260/280≥1.8,OD260/230≥1.8;RIN(RNA完整系數(shù))≥8,28S/18S≥1。為了提高試驗(yàn)的準(zhǔn)確性,將3個(gè)生物學(xué)重復(fù)樣品分別提取RNA,然后等量混合作為一個(gè)樣本用于RNA-Seq。
1.3 文庫構(gòu)建及RNA-Seq測(cè)序
用帶有Oligo(dT)的磁珠富集mRNA,向得到的mRNA中加入適量打斷試劑高溫條件下使其片斷化,再以片斷化后的mRNA為模板,合成cDNA,經(jīng)過磁珠純化、末端修復(fù)、3′末端加堿基A、加測(cè)序接頭后,進(jìn)行PCR擴(kuò)增,從而完成整個(gè)文庫制備工作。構(gòu)建好的文庫用Agilent 2100 Bioanalyzer和ABI StepOne Plus Real-Time PCR System進(jìn)行質(zhì)量和產(chǎn)量檢測(cè),文庫質(zhì)控合格后進(jìn)行Illumina HiSeqTM2000測(cè)序分析,測(cè)序反應(yīng)進(jìn)行一次。
1.4 基因定量分析及差異基因篩選
基因表達(dá)量用FPKM(Fragments Per Kilobase of exon per Million fragments mapped)法計(jì)算[19]。根據(jù)野生菌株Guy11和突變體Δznf1或Δpmk1中基因的FPKM值來比較不同樣品間的基因差異表達(dá)。在本試驗(yàn)分析中,差異基因篩選標(biāo)準(zhǔn)為錯(cuò)誤發(fā)現(xiàn)率(false discovery rate,F(xiàn)DR)≤0.001且差異倍數(shù)在2倍以上即∣log2(樣品間基因表達(dá)量的比值)∣≥1。
1.5 差異基因GO功能注釋及KEGG Pathway富集分析
將所有差異表達(dá)基因向Gene Ontology(GO)數(shù)據(jù)庫(http://www.geneontology.org/)的各個(gè)term映射,計(jì)算每個(gè)term的基因數(shù)目,然后應(yīng)用超幾何檢驗(yàn),找出與整個(gè)稻瘟病菌基因組相比,在差異表達(dá)基因中顯著富集的GO條目。得到差異基因的GO注釋后,利用WEGO軟件對(duì)差異基因進(jìn)行GO功能分類統(tǒng)計(jì)[20]。Pathway顯著性富集分析以KEGG Pathway為單位[21],應(yīng)用GO富集原理可以得出差異表達(dá)基因中顯著性富集的Pathway。
1.6 實(shí)時(shí)熒光定量PCR(qRT-PCR)
為了驗(yàn)證RNA-Seq結(jié)果的可靠性,隨機(jī)選擇10個(gè)差異表達(dá)基因進(jìn)行qRT-PCR檢測(cè),引物見表1。通過Trizol法提取CM液體培養(yǎng)基振蕩培養(yǎng)48 h的菌絲總RNA,用反轉(zhuǎn)錄試劑盒PrimeScript?RT Reagent Kit With gDNA Eraser(TaKaRa)合成cDNA。采用GoTag?qPCR Master Mix(Promega)試劑,一個(gè)反應(yīng)體系為20 μL,3個(gè)重復(fù)。qRT-PCR反應(yīng)在BIO-RAD CFX96TMReal-Time System儀上運(yùn)行。反應(yīng)程序?yàn)椋?5℃ 30 s,95℃5 s,56℃ 15 s,72℃ 20 s,39個(gè)循環(huán)。以稻瘟病菌β-tubulin(MGG_00604)為內(nèi)參基因,通過2-△△CT法計(jì)算基因相對(duì)表達(dá)水平[22]。通過3次獨(dú)立重復(fù)試驗(yàn)計(jì)算基因相對(duì)表達(dá)的平均值和標(biāo)準(zhǔn)差。
表1 本研究qRT-PCR引物Table 1 qRT-PCR primers used in the study
2.1 表達(dá)譜測(cè)序及測(cè)序質(zhì)量評(píng)估
為了深入了解稻瘟病菌中受轉(zhuǎn)錄因子ZNF1調(diào)控的基因,對(duì)稻瘟病菌野生型菌株Guy11以及ZNF1基因缺失突變體菌株Δznf1進(jìn)行表達(dá)譜分析。收集菌株Guy11和Δznf1在液體CM培養(yǎng)基中培養(yǎng)2 d的菌絲,并分別進(jìn)行樣品Total RNA抽提。NanoDrop ND-2000及Agilent 2100對(duì)Total RNA的質(zhì)檢結(jié)果表明,樣品RNA的濃度、純度及完整性等各項(xiàng)指標(biāo)達(dá)到建庫測(cè)序要求。進(jìn)而構(gòu)建測(cè)序文庫,文庫質(zhì)控合格后利用Illumina HiSeqTM2000進(jìn)行測(cè)序。
測(cè)序得到的原始圖像數(shù)據(jù)經(jīng)base calling轉(zhuǎn)化的序列數(shù)據(jù)稱為raw reads。將低質(zhì)量序列以及接頭序列等雜質(zhì)raw reads過濾后得到可用于數(shù)據(jù)分析的clean reads。菌株Guy11和Δznf1分別獲得22 100 589和 22 074 094個(gè)clean reads,分別占原始數(shù)據(jù)的98.85%和98.72%。對(duì)數(shù)據(jù)質(zhì)量評(píng)估合格后(Q20>95%),將clean reads比對(duì)到水稻稻瘟病菌基因組序列(http://www. broadinstitute.org/annotation/genome/magnaporthe_grise a/MultiHome.html)。比對(duì)結(jié)果顯示,Guy11和Δznf1分別有92.63%和92.37%的clean reads能有效的比對(duì)到參考基因組上,并且具有唯一比對(duì)位點(diǎn)的reads數(shù)分別占比對(duì)到基因組上總reads數(shù)的89.20%和87.88%(表2),表明樣品測(cè)序質(zhì)量較高。
表2 樣品RNA-Seq序列與參考基因組的比對(duì)統(tǒng)計(jì)Table 2 Statistical analysis of RNA-Seq reads mapping to the reference genome
測(cè)序飽和度在一定程度上可以評(píng)估測(cè)序數(shù)據(jù)量是否達(dá)到要求。由圖1所示,在測(cè)序量(reads數(shù)量)較小時(shí),樣品檢測(cè)到的基因數(shù)均隨著測(cè)序量的增加而隨之上升,當(dāng)測(cè)序量達(dá)到5 M左右后,其增長(zhǎng)速度趨于平緩,說明檢測(cè)到的基因數(shù)趨于飽和。菌株Guy11和Δznf1均產(chǎn)生不低于20 M的clean reads,因此可以認(rèn)為測(cè)序檢測(cè)到的基因數(shù)能夠基本覆蓋細(xì)胞表達(dá)的全部基因,測(cè)序量已達(dá)到要求。
圖1 RNA-Seq測(cè)序飽和度分析Fig. 1 Analysis of sequencing saturation
2.2 Δznf1差異表達(dá)基因的篩選
為鑒定受Znf1調(diào)控相關(guān)基因,對(duì)野生型Guy11和Δznf1表達(dá)譜進(jìn)行比較,獲得差異表達(dá)基因(differentially expressed genes,DEGs)。根據(jù)基因的表達(dá)量(FPKM值)計(jì)算該基因在兩個(gè)樣品間的差異表達(dá)倍數(shù),通過控制錯(cuò)誤發(fā)現(xiàn)率FDR來決定P-value的域值。以∣log2ratio (Δznf1/Guy11)∣≥1(即倍數(shù)差異在2倍以上),并且FDR≤0.001為篩選標(biāo)準(zhǔn),共獲得709個(gè)差異表達(dá)基因,其中上調(diào)表達(dá)基因299個(gè),∣log2ratio∣值>5(即上調(diào)倍數(shù)大于32)的有22個(gè),下調(diào)表達(dá)基因410個(gè),∣log2ratio∣值>5的有12個(gè)(圖2-A、2-B;附表1)。
為分析DEGs與哪些生物學(xué)功能顯著相關(guān),利用GO注釋及GO功能富集分析,對(duì)差異表達(dá)基因進(jìn)行功能分類(圖2-C)。結(jié)果顯示,在細(xì)胞組分(cellular component)、分子功能(molecular function)和生物過程(biological process)3類功能注釋的DEGs分別有118、299和308個(gè)。此外,細(xì)胞組分、分子功能和生物過程分別包含8、11和16個(gè)功能分類(圖2-C)。其中,在細(xì)胞組分分組中,DEGs在細(xì)胞(cell; GO:0005623)和細(xì)胞區(qū)域(cell part;GO:0044464)類所占比例最高,大分子復(fù)合物(macromolecular complex;GO:0032991)類所占比例最低;在分子功能分組中,催化活性(catalytic activity;GO:0003824)和結(jié)合(binding;GO:0005488)類,DEGs所占比例最高,在結(jié)構(gòu)分子活性(structural molecule activity;GO:0005198)和營(yíng)養(yǎng)庫活性類(nutrient reservoir activity;GO:0045735)所占比例最低;在生物過程分組中,DEGs在代謝過程(metabolic process;GO:0008152)和細(xì)胞過程(cellular process;GO:0009987)類所占比例最高,而在生物過程負(fù)調(diào)控(negative regulation of biological process;GO:0048519)類所占比例最低。
通過Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway富集分析確定了DEGs參與的最主要生化代謝途徑和信號(hào)轉(zhuǎn)導(dǎo)途徑[23],發(fā)現(xiàn)共有143個(gè)DEGs具有KEGG注釋。結(jié)合注釋結(jié)果,進(jìn)行pathway富集分析,發(fā)現(xiàn)這些DEGs位于65個(gè)pathway中(附表2)。其中,DEGs位于代謝途徑(metabolic pathways;pathway ID:ko04146)的數(shù)目最多(41個(gè)),其次位于次生代謝物質(zhì)生物合成(biosynthesis of secondary metabolites;pathway ID:ko01110)(24個(gè)),甘油磷脂代謝(glycerophospholipid metabolism;pathway ID: ko00564)(6個(gè)),酵母MAPK信號(hào)通路(MAPK signaling pathway-yeast;pathway ID:ko04011)(5個(gè)),內(nèi)質(zhì)網(wǎng)對(duì)蛋白質(zhì)的加工(protein processing in endoplasmic reticulum;pathway ID:ko04141)(5個(gè)),酵母細(xì)胞周期(cell cycle-yeast;pathway ID:ko04111)(5個(gè))等途徑中(附表2)。
2.3 稻瘟病菌部分已知致病相關(guān)基因受Znf1調(diào)控
對(duì)Δznf1 RNA-Seq數(shù)據(jù)分析發(fā)現(xiàn)大約有20個(gè)已知的參與稻瘟病菌形態(tài)分化與致病性的基因受Znf1調(diào)控(表3)。其中,轉(zhuǎn)錄因子編碼基因HOX7、FLBC以及脂質(zhì)磷酸磷酸酶基因LPP2和LPP3在Δznf1中顯著下調(diào)表達(dá)。此外,參與細(xì)胞滲透調(diào)節(jié)的MAPK(mitogen-activated protein kinase)基因OSM1和MAPKK基因PBS2,以及細(xì)胞壁形成相關(guān)基因CHS3和AGS1的表達(dá)也明顯下調(diào)。然而,與一氧化氮合成和致病相關(guān)基因NOL3,參與黑色素合成相關(guān)基因ALB1、BUF1和RSY1以及編碼熱激蛋白40的MHF21的表達(dá)水平明顯上調(diào),說明在營(yíng)養(yǎng)生長(zhǎng)階段Znf1對(duì)這些基因的轉(zhuǎn)錄可能起負(fù)調(diào)控作用。數(shù)據(jù)結(jié)果表明,這些與稻瘟病菌侵染相關(guān)形態(tài)分化、致病過程以及代謝相關(guān)基因可能直接或間接受Znf1調(diào)控。
圖2 Δznf1差異表達(dá)基因分析Fig. 2 Analysis of differentially expressed genes in Δznf1
表3 稻瘟病菌部分致病相關(guān)基因在Δznf1表達(dá)譜數(shù)據(jù)中的分析Table 3 Analysis of Δznf1 RNA-Seq data for several pathogenicity-related genes in M. oryzae
2.4 受Znf1和Pmk1共同調(diào)控基因的分析
篩選Znf1和Pmk1共調(diào)控基因可為進(jìn)一步有效鑒定Znf1下游調(diào)控基因以及明確Znf1與Pmk1的關(guān)系提供數(shù)據(jù)支持。因此,在同等條件下對(duì)Δpmk1進(jìn)行了表達(dá)譜分析。將Δznf1與Δpmk1中的DEGs比較分析發(fā)現(xiàn),Δznf1的410個(gè)下調(diào)表達(dá)基因中,有201個(gè)(約50%)基因在Δpmk1中的表達(dá)同樣為下調(diào);而Δznf1的299個(gè)上調(diào)基因中,有116個(gè)(約40%)基因在Δpmk1中也上調(diào)(圖3,附表3)。比如,與在野生菌株Guy11中相比,LPP3以及HOX7都在Δznf1和Δpmk1中有相似的下調(diào)表達(dá)倍數(shù),疏水蛋白基因MPG1在Δpmk1中顯著下調(diào)表達(dá)(log2ratio為-7.4),但在Δznf1 中MPG1僅下調(diào)表達(dá)2.5倍(log2ratio為-1.4)。功能未知基因MGG_14997和MGG_03044在Δznf1和Δpmk1中均顯著下調(diào),log2ratio(Δznf1/Guy11)和log2ratio(Δpmk1/Guy11)分別為-12.1、-12.1、-4.3、-3.6,說明這兩個(gè)基因受Znf1和Pmk1共同調(diào)控,且調(diào)控水平相似(附表3)。試驗(yàn)結(jié)果表明,Znf1可能作為Pmk1 MAPK信號(hào)途徑下游的轉(zhuǎn)錄因子與Pmk1共同調(diào)控許多基因的轉(zhuǎn)錄過程。
2.5 qRT-PCR驗(yàn)證
為了驗(yàn)證RNA-seq數(shù)據(jù)的準(zhǔn)確性,隨機(jī)選擇了10個(gè)DEGs進(jìn)行qRT-PCR驗(yàn)證(表4)。結(jié)果顯示,與RNA-Seq數(shù)據(jù)一致,與在野生菌株Guy11中相比,MGG_01391、MGG_03825、MGG_09000等基因表達(dá)水平在Δznf1 和Δpmk1中顯著下調(diào),而MGG_08944、MGG_11084在Δznf1 中表達(dá)水平顯著升高。MGG_02246在Δznf1中下調(diào)表達(dá),但在Δpmk1中上調(diào)表達(dá)26倍(圖4)。
圖3 Δznf1和Δpmk1中共同差異表達(dá)基因統(tǒng)計(jì)Fig. 3 Statistical analysis of differentially expressed genes in Δznf1 and Δpmk1
表4 用于qRT-PCR驗(yàn)證的基因及其RNA-Seq測(cè)序結(jié)果Table 4 The RNA-Seq result of genes selected for qRT-PCR analysis
圖4 10個(gè)差異表達(dá)基因的qRT-PCR分析Fig. 4 qRT-PCR analysis on 10 DEGs
RNA-Seq是用來研究某一生物對(duì)象在特定生物過程中基因表達(dá)差異的技術(shù)[39-40]。該技術(shù)結(jié)合了轉(zhuǎn)錄組建庫實(shí)驗(yàn)方法與數(shù)字基因表達(dá)譜的信息分析手段,可廣泛應(yīng)用于生理調(diào)控、農(nóng)業(yè)性狀、環(huán)境改造等領(lǐng)域。該技術(shù)主要用來研究基因表達(dá)的情況,在基因表達(dá)量分析、基因表達(dá)差異分析以及差異基因模式和功能聚類等方面應(yīng)用廣泛[41]。近年來,基于RNA-Seq的全基因表達(dá)譜分析技術(shù)已廣泛應(yīng)用于稻瘟病菌,為稻瘟病菌基因功能和結(jié)構(gòu)的研究提供了許多有參考價(jià)值的數(shù)據(jù)。SOANES等[42]通過RNA-Seq和HT-SuperSAGE技術(shù)研究了稻瘟病菌在不同營(yíng)養(yǎng)生長(zhǎng)條件以及附著胞形成各階段中基因的差異表達(dá)情況,鑒定到了一組在附著胞形成階段特異高表達(dá)的基因;LI等[43]利用RNA-Seq初步明確了稻瘟病菌產(chǎn)孢相關(guān)轉(zhuǎn)錄因子Cos1的調(diào)控基因;PHAM等[44]將Chip-Seq和RNA-Seq數(shù)據(jù)結(jié)合分析了組蛋白H3K4甲基轉(zhuǎn)移酶MoSET1在營(yíng)養(yǎng)生長(zhǎng)階段和附著胞發(fā)育階段的調(diào)控網(wǎng)絡(luò)。稻瘟病菌Znf1是與附著胞形成、侵染、致病過程相關(guān)的轉(zhuǎn)錄因子[18],利用RNA-Seq技術(shù),可為進(jìn)一步鑒定Znf1下游調(diào)控基因,明確Znf1的調(diào)控網(wǎng)絡(luò)提供參考數(shù)據(jù)。因此,本研究中,筆者對(duì)稻瘟病菌野生菌株Guy11和突變體Δznf1 進(jìn)行RNA-Seq分析,獲得了Δznf1在營(yíng)養(yǎng)生長(zhǎng)階段的差異表達(dá)基因。同時(shí),對(duì)稻瘟病菌附著胞形成調(diào)控因子PMK1的缺失突變體也進(jìn)行了RNA-Seq測(cè)序,并篩選出了Δznf1和Δpmk1中共同的差異表達(dá)基因。測(cè)序質(zhì)量評(píng)估分析顯示測(cè)序質(zhì)量較高,qRT-PCR驗(yàn)證表明測(cè)序結(jié)果可靠,測(cè)序所得數(shù)據(jù)可為后續(xù)研究提供依據(jù)。
Δznf1表達(dá)譜分析共篩選到709個(gè)差異表達(dá)基因,其中上調(diào)表達(dá)基因299個(gè),下調(diào)表達(dá)基因410個(gè)(附表1)。本試驗(yàn)差異表達(dá)基因的篩選標(biāo)準(zhǔn)為∣log2ratio (Δznf1/Guy11)∣≥1,且FDR≤0.001,因此可能還有部分受Znf1調(diào)控的基因,但不符合標(biāo)準(zhǔn)而未被篩選到。一些與稻瘟病菌致病相關(guān)的基因表達(dá)與Znf1有關(guān)。例如,HOX7表達(dá)水平在Δznf1 中有一定程度的下調(diào)(表3),且Δhox7與Δznf1 的表型類似,均不能形成成熟的附著胞,僅在芽管或菌絲尖端形成無黑色素化的膨大結(jié)構(gòu)[16],因此,HOX7可能直接或間接受Znf1調(diào)控。之前的研究發(fā)現(xiàn),與野生菌株Guy11相比,Δznf1對(duì)胞壁降解酶Glucanex敏感性升高,同等條件下Δznf1原生質(zhì)體釋放量增加[18]。用等量的Glucanex對(duì)Guy11和Δznf1菌絲處理2.5 h,計(jì)數(shù)顯示,Guy11原生質(zhì)體釋放量為(15.2±1.17)×107個(gè),而Δznf1原生質(zhì)體釋放量為(27.2±0.71)×107個(gè)。本試驗(yàn)RNA-Seq數(shù)據(jù)顯示幾丁質(zhì)合成相關(guān)基因CHS3以及α-1,3-葡聚糖編碼基因AGS1在Δznf1中有一定程度的下調(diào)表達(dá)(表3)。因此,筆者推測(cè)Znf1可能通過調(diào)控CHS3和AGS1的表達(dá)水平從而影響稻瘟病菌細(xì)胞壁結(jié)構(gòu)的完整性。在Δznf1差異表達(dá)基因中,有近60%的基因編碼預(yù)測(cè)蛋白(hypothetical protein)或保守的假定蛋白(conserved hypothetical protein)。MGG_08944編碼一個(gè)假定蛋白,在其他絲狀真菌中不能找到其同源蛋白。測(cè)序數(shù)據(jù)顯示log2ratio(Δznf1/Guy11)為6.1,qRT-PCR進(jìn)一步證明其在Δznf1中上調(diào)表達(dá)30倍。MGG_11005、MGG_14426等在Δznf1中顯著下調(diào)(附表1)。在今后的研究中,可以通過基因敲除技術(shù)進(jìn)一步明確這些受Znf1調(diào)控的假定蛋白基因的功能。最近,有研究以稻瘟病菌70-15菌株為背景,對(duì)47個(gè)C2H2轉(zhuǎn)錄因子基因進(jìn)行了敲除,其中MGG_14931(本文的ZNF1)命名為VRF1,并對(duì)Δvrf1在饑餓誘導(dǎo)下的菌絲進(jìn)行了表達(dá)譜分析[25]。本研究以Δznf1營(yíng)養(yǎng)菌絲為材料進(jìn)行表達(dá)譜測(cè)序,結(jié)果與Δvrf1數(shù)據(jù)有一定的差異,可能是由于菌株的不同以及對(duì)菌絲樣品的處理不同。
Pmk1是稻瘟病菌附著胞形成相關(guān)基因的重要調(diào)控因子[42]。Δznf1和Δpmk1表型類似,都不能形成附著胞,對(duì)寄主致病性完全喪失,都能響應(yīng)外源cAMP的誘導(dǎo)[13,18]。在附著胞發(fā)育階段,ZNF1表達(dá)水平在Δpmk1中顯著下調(diào)[18]。將Δznf1和Δpmk1中差異表達(dá)基因比較發(fā)現(xiàn),Δznf1里709個(gè)差異表達(dá)基因中,有397個(gè)(約56%)基因同時(shí)也受Pmk1調(diào)控,其中,317個(gè)基因在Δznf1和Δpmk1 中上調(diào)/下調(diào)趨勢(shì)相同(圖3,附表3)。該結(jié)果可以進(jìn)一步證明Znf1可能是位于Pmk1下游,參與調(diào)控附著胞的形成[18]。3個(gè)在Δznf1和Δpmk1中均顯著下調(diào)的基因,MGG_03825、MGG_02329和MGG_08498,都編碼isotrichodermin C-15羥化酶,它們都含有細(xì)胞色素P450超家族的保守結(jié)構(gòu)域,其中MGG_03825的表達(dá)經(jīng)qRT-PCR驗(yàn)證(圖4,附表3)。擬分枝鐮孢(Fusarium sporotrichioides)和小麥赤霉病菌(Fusarium graminearum)中TRI11與這3個(gè)基因同源,其編碼一個(gè)細(xì)胞色素P450單加氧酶。研究表明TRI11與單端孢霉烯毒素合成相關(guān),主要負(fù)責(zé)C-15的羥基化反應(yīng)[45-46]。這3個(gè)基因是否與稻瘟病菌生長(zhǎng)、產(chǎn)孢、附著胞形成、致病等過程相關(guān)尚不明確,有待進(jìn)一步研究。此外,Δznf1和Δpmk1中的共同差異基因數(shù)僅占Δpmk1中差異基因數(shù)目(3 169個(gè))的12.6%,表明Znf1和Pmk1在調(diào)控機(jī)制上存在很大差異,Pmk1下游還存在其他轉(zhuǎn)錄因子負(fù)責(zé)這些差異表達(dá)基因的轉(zhuǎn)錄。而且,有一些基因在Δznf1和Δpmk1中上調(diào)/下調(diào)趨勢(shì)雖然相同,但上調(diào)/下調(diào)倍數(shù)有很大差異。疏水蛋白基因MPG1在Δpmk1中下調(diào)倍數(shù)達(dá)130倍,但在Δznf1中僅有輕微的下調(diào)表達(dá)。菌落疏水性測(cè)定表明Δpmk1 菌落疏水性喪失,但Δznf1菌落疏水性沒有明顯的改變(數(shù)據(jù)未顯示)。可見,在這些基因的調(diào)控上,Znf1與Pmk1有很大的不同。
SOANES等[42]通過RNA-Seq和HT-SuperSAGE技術(shù)對(duì)稻瘟病菌菌株Guy11在營(yíng)養(yǎng)生長(zhǎng)(CM培養(yǎng)基)階段和附著胞形成階段(分生孢子分別誘導(dǎo)4、6、8、14和 16 h)分別進(jìn)行了表達(dá)譜分析,發(fā)現(xiàn)與在營(yíng)養(yǎng)生長(zhǎng)階段相比,共有1 838個(gè)基因的表達(dá)水平在附著胞形成階段顯著上調(diào)。結(jié)合本試驗(yàn)數(shù)據(jù)分析發(fā)現(xiàn),這些在附著胞發(fā)育階段上調(diào)表達(dá)的基因中有48個(gè)基因在Δznf1 和Δpmk1中均顯著下調(diào)表達(dá)(附表4)。比如,MGG_09000編碼CMGC/CDK蛋白激酶,其log2ratio(Δznf1/Guy11)及l(fā)og2ratio(Δpmk1/Guy11)分別為-2.23和-11.72,而在CM及附著胞形成階段(T4、T6、T8、T14、T16)表達(dá)量分別為1.96、40.35、25.67、32.17、33.44、49.80[42](附表4)。HOX7(MGG_12865)編碼一個(gè)含Homeobox結(jié)構(gòu)域的轉(zhuǎn)錄因子,參與稻瘟病菌附著胞形成、侵染和致病過程[16],其在稻瘟病菌附著胞形成階段,特別是在分生孢子誘導(dǎo)4 h后表達(dá)水平顯著升高(附表4)。然而,在突變體Δznf1和Δpmk1中,HOX7表達(dá)水平降低。這些與附著胞形成相關(guān)的基因同時(shí)受Znf1和Pmk1調(diào)控,表明與Pmk1類似,Znf1也參與這些附著胞相關(guān)基因的調(diào)控。
本研究獲得的Δznf1在菌絲生長(zhǎng)階段的差異表達(dá)基因數(shù)目相對(duì)較少,而且表達(dá)差異倍數(shù)在10倍以上的基因不多,可能是由于Δznf1營(yíng)養(yǎng)生長(zhǎng)與野生型Guy11相比沒有明顯的差異。與野生型菌株相比,Δznf1產(chǎn)孢量略微增多,不能形成附著胞,不能穿透寄主表皮和進(jìn)行侵染生長(zhǎng),說明病菌的這些發(fā)育階段受Znf1調(diào)控,但調(diào)控的基因可能未被篩選到。此外,有小部分基因無論是在Guy11還是Δznf1或Δpmk1中表達(dá)豐度都較低,這可能與這些基因呈階段特異性表達(dá)有關(guān)。因此,在后續(xù)的研究中可對(duì)Δznf1在分生孢子、附著胞形成的不同階段、侵染階段的樣品進(jìn)行RNA-Seq測(cè)序,獲得差異表達(dá)基因,并與本試驗(yàn)的數(shù)據(jù)比較分析,獲得階段性受Znf1調(diào)控的基因,為更系統(tǒng)深入的研究稻瘟病菌致病分子機(jī)理提供參考數(shù)據(jù)。
利用RNA-Seq技術(shù)獲得了Δznf1在營(yíng)養(yǎng)生長(zhǎng)階段709個(gè)差異表達(dá)基因的信息,其中一些稻瘟病菌致病相關(guān)基因以及附著胞階段表達(dá)水平升高的基因受Znf1調(diào)控;397個(gè)基因受Znf1和Pmk1共同調(diào)控。研究結(jié)果為進(jìn)一步明確稻瘟病菌Znf1轉(zhuǎn)錄調(diào)控機(jī)制以及挖掘新的稻瘟病菌致病相關(guān)基因提供了數(shù)據(jù)資源。
[1] TALBOT N J. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annual Review of Microbiology, 2003, 57: 177-202.
[2] EBBOLE D J. Magnaporthe as a model for understanding host-pathogen interactions. Annual Review of Phytopathology, 2007, 45: 437-456.
[3] WILSON R A, TALBOT N J. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nature Reviews Microbiology, 2009, 7: 185-195.
[4] TUCKER S L, TALBOT N J. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology, 2001, 39: 385-417.
[5] DE JONG J C, MCCORMACK B J, SMIRNOFF N, TALBOT N J. Glycerol generates turgor in rice blast. Nature, 1997, 389: 244-245.
[6] 李楊, 王耀雯, 王育榮, 于潔. 水稻稻瘟病菌研究進(jìn)展. 廣西農(nóng)業(yè)科學(xué), 2010, 41(8): 789-792. LI Y, WANG Y W, WANG Y R, YU J. Research progress on rice blast fungus. Guangxi Agricultural Sciences, 2010, 41(8): 789-792. (in Chinese)
[7] LEE Y H, DEAN R A. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. The Plant Cell, 1993, 5(6): 693-700.
[8] MITCHELL T K, DEAN R A. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. The Plant Cell, 1995, 7(11): 1869-1878.
[9] XU J R, URBAN M, SWEIGARD J A, HAMER J E. The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Molecular Plant-Microbe Interactions, 1997, 10(2): 187-194.
[10] CHOI W, DEAN R A. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. The Plant Cell, 1997, 9(11):1973-1983.
[11] 李德葆, 金慶超, 董海濤. 稻瘟病菌附著胞發(fā)育相關(guān)信號(hào)傳遞研究進(jìn)展. 浙江大學(xué)學(xué)報(bào) (農(nóng)業(yè)與生命科學(xué)版), 2006, 32(3): 257-264. LI D B, JIN Q C, DONG H T. Research advances of cell signaling involved in appressorium development of Magnaporthe grisea. Journal of Zhejiang University (Agricultural & Life Science), 2006, 32(3): 257-264. (in Chinese)
[12] 賀春萍, 鄭服叢. 稻瘟菌附著胞分化相關(guān)基因研究進(jìn)展. 熱帶農(nóng)業(yè)科學(xué), 2006, 26(1): 47-59. HE C P, ZHENG F C. Research progress on the related genes in appressorium differentiation of Magnaporthe grisea. Chinese Journal of Tropical Agriculture, 2006, 26(1): 47-59. (in Chinese)
[13] XU J R, HAMER J E. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes & Development, 1996, 10(21): 2696-2706.
[14] ZHAO X, KIM Y, PARK G, XU J R. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. The Plant Cell, 2005, 17(4): 1317-1329.
[15] PARK G, XUE C, ZHENG L, LAM S, XU J R. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2002, 15(3): 183-192.
[16] KIM S, PARK S Y, KIM K S, RHO H S, CHI M-H, CHOI J, PARK J, KONG S, PARK J, GOH J, LEE Y H. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLoS Genetics, 2009, 5(12): e1000757.
[17] PARK G, KENNETH S B, CHRISTOPHER J S, TALBOT N J, XU J R. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus. Molecular Microbiology, 2004, 53(6): 1695-1707.
[18] YUE X F, QUE Y W, XU L, DENG S Z, PENG Y L, TALBOT N J, WANG Z Y. ZNF1 encodes a putative C2H2zinc-finger protein essential for appressorium differentiation by the rice blast fungus Magnaporthe oryzae. Molecular Plant-Microbe Interactions, 2016, 29(1): 22-35.
[19] MORTAZAVI A, WILLIAMS B A, MCCUEK, SCHAEFFER L, WOLD B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628.
[20] YE J, FANG L, ZHENG H K, ZHANG Y, CHEN J, ZHANG Z, WANG J, LI S, LI R, BOLUND L, WANG J. WEGO: a web tool for plotting GO annotations. Nucleic Acids Research, 2006, 34(Web Server issue): W293-W297.
[21] KANEHISA M, ARAKI M, GOTO S, HATTORI M, HIRAKAWA M, ITOH M, KATAYAMA T, KAWASHIMA S, OKUDA S, TOKIMATSUAND T, YAMANISHI Y. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2008, 36(Database issue): D480-D484.
[22] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods, 2001, 25(4): 402-408.
[23] XIE C, MAO X, HUANG J, DING Y, WU J, DONG S, KONG L, GAO G, LI C, WEI L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 2011, 39(Web Server issue): W316-W322.
[24] SADAT M A, JEON J, MIR A A, CHOI J Y, LEE Y H. Regulation of cellular diacylglycerol through lipid phosphate phosphatases is required for pathogenesis of the rice blast fungus, Magnaporthe oryzae. PLoS ONE, 2014, 9(6): e100726.
[25] CAO H J, HUANG P Y, ZHANG L L, SHI Y K, SUN D D, YAN Y X, LIU X H, DONG B, CHEN G Q, SNYDER J H, LIN F C, LU J P. Characterization of 47 Cys2-His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytologist, 2016, 211(3): 1035-1051.
[26] XU J R, STAIGER C J, HAMER J E. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(21): 12713-12718.
[27] SHI Z, LEUNG H. Genetic analysis and rapid mapping of a sporulation mutation in Magnaporthe grisea. Molecular Plant-Microbe Interactions, 1994, 7(1): 113-120.
[28] TALBOT N J, EBBOLE D J, HAMER J E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. The Plant Cell, 1993, 5(11): 1575-1590.
[29] DEZWAAN T M, CARROLL A M, VALENT B, SWEIGARD J A. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. The Plant Cell, 1999, 11(10): 2013-2030.
[30] KONG L A, YANG J, LI G T, QI L L, ZHANG Y J, WANG C F, ZHAO W S, XU J R, PENG Y L. Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathogens, 2012, 8(2): e1002526.
[31] DIXON K P, XU J R, SMIRNOFF N, TALBOT N J. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. The Plant Cell, 1999, 11: 2045-2058.
[32] FUJIKAWA T, KUGA Y, YANO S, YOSHIMI A, TACHIKI T, ABE K, NISHIMURA M. Dynamics of cell wall components of Magnaporthe grisea during infectious structure development. Molecular Microbiology, 2009, 73(4): 553-570.
[33] YANG J, KONG L A, CHEN X L, WANG D W, QI L L, ZHAO W S, ZHANG Y, LIU X Z, PENG Y L. A carnitine-acylcarnitine carrier protein, MoCrc1, is essential for pathogenicity in Magnaporthe oryzae. Current Genetics, 2012, 58(3): 139-148.
[34] SAMALOVA M, JOHNSON J, ILLES M, KELLY S, FRICKER M, GURR S. Nitric oxide generated by the rice blast fungus Magnaporthe oryzae drives plant infection. New Phytologist, 2013, 197(1): 207-222.
[35] CHUMLEY F G, VALENT B. Genetic analysis of melanin-deficient, nonpathogenic mutants of Magnaporthe grisea. Molecular Plant-Microbe Interactions, 1990, 3(3): 135-143.
[36] HOWARD R J, VALENT B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annual Review of Microbiology, 1996, 50: 491-512.
[37] YI M, LEE Y H. Identification of genes encoding heat shock protein 40 family and the functional characterization of two Hsp40s, MHF16 and MHF21, in Magnaporthe oryzae. Journal of Plant Pathology, 2008, 24(2): 131-142.
[38] KONG S, PARK S Y, LEE Y H. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae. Environment Microbiology, 2015, 17(4): 1425-1443.
[39] MORTAZAVI A, WILLIAMS B A, MCCUE K, SCHAEFFER L, WOLD B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628.
[40] WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009, 10(1): 57-63.
[41] 張春蘭, 秦孜娟, 王桂芝, 紀(jì)志賓, 王建民. 轉(zhuǎn)錄組與RNA-Seq技術(shù). 生物技術(shù)通報(bào), 2012(12): 51-56. ZHANG C L, QIN Z J, WANG G Z, JI Z B, WANG J M. Transcriptome and RNA-Seq technology. Biotechnology Bulletin, 2012(12): 51-56. (in Chinese)
[42] SOANES D M, CHAKRABARTI A, PASZKIEWICZ K H, DAWE A L, TALBOT N J. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathogens, 2012, 8(2): e1002514.
[43] LI X Y, HAN X X, LIU Z Q, HE C Z. The function and properties of the transcriptional regulator COS1 in Magnaporthe oryzae. Fungal Biology, 2013, 117(4): 239-249.
[44] PHAM K T, INOUE Y, VU B V, NGUYEN H H, NAKAYASHIKI T, IKEDA K, NAKAYASHIKI H. MoSET1 (Histone H3K4 methyltransferase in Magnaporthe oryzae) regulates global gene expression during infection-related morphogenesis. PLoS Genetics, 2015, 11(7): e1005385.
[45] BROWN D W, DYER R B, MCCORMICK S P, KENDRA D F, PLATTNER R D. Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genetics and Biology, 2004, 41(4): 454-462.
[46] ALEXANDER N J, HOHN T M, MCCORMICK S P. The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Applied and Environmental Microbiology, 1998, 64(1): 221-225.
(責(zé)任編輯 岳梅)
Analysis of RNA-Seq-Based Expression Profiles of Δznf1 Mutants in Magnaporthe oryzae
YUE Xiao-feng, QUE Ya-wei, WANG Zheng-yi
(State Key Laboratory for Rice Biology, Institute of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058)
【Objective】Magnaporthe oryzae is the causal agent of rice blast, which is one of the most important disease threatening the production of cultivated rice worldwide. Appressorium-mediated penetration is a key step in the disease cycle of thefungus. Previously, it was reported that a C2H2zinc finger transcription factor encoded by ZNF1 is essential for appressorium development, penetration and pathogenicity in the rice blast fungus. The objective of this study is to understand the regulatory mechanism of Znf1 and reveal the genes transcriptionally regulated by Znf1, thus providing new clues for further investigating molecular mechanism of pathogenicity in this fungus. 【Method】The transcriptome profiles of vegetative mycelia of the wild-type strain Guy11 and a Δznf1 mutant were assayed with the RNA-Seq technique. The gene expression levels were calculated using the FPKM method. The criteria of false discovery rate (FDR)≤0.001 and absolute value of log2ratio≥1 were used to identify differentially expressed genes (DEGs). The sequences of the DEGs were subjected to BLAST queries against the gene ontology (GO) database and KEGG pathway database to predict their biological function and pathways. In order to define in more detail about the sub-set of genes regulated by Znf1, transcriptome profiles of a mutant lacking the PMK1 MAP kinase-encoding gene was also analyzed based on the RNA-Seq technique. To identify the genes regulated by both Znf1 and Pmk1, the DEGs between Δznf1 and Δpmk1 were compared. In addition, the genes highly expressed during appressorium formation but down-regulated in either Δznf1 or Δpmk1 were obtained by comparison with the previous transcriptional profile data. 【Result】 Totally, 709 DEGs in the Δznf1 mutant, including 299 up-regulated and 410 down-regulated genes, were identified by comparison with the wild-type strain Guy11. Gene ontology enrichment analysis showed that 118, 299 and 308 DEGs were classified into cellular component, molecular function and biological process, respectively. KEGG pathway enrichment analysis revealed that the DEGs were mainly involved in metabolic pathways, biosynthesis of secondary metabolites and glycerophospholipid metabolism. Several known pathogenicity-related genes, including LPP3, HOX7, PBS2 and MPG1, were found down-regulated in Δznf1. The comparison of DEGs showed that about 56% DEGs in Δznf1 shared identical to those in Δpmk1. Three isotrichodermin C-15 hydroxylase encoding genes, MGG_03825, MGG_02329 and MGG_08498, were significantly down-regulated in both Δznf1 and Δpmk1. In addition, 48 genes up-regulated during appressorium formation were down-regulated in the two mutants, indicating that these putative appressorium-associated genes were regulated directly or indirectly by Znf1 and Pmk1. To confirm the reliability of the RNA-Seq data, 10 DEGs were randomly selected for qRT-PCR. The results showed that the expression patterns in qRT-PCR were consistent with those in RNA-Seq.【Conclusion】 The expression profiling data and predicted molecular function of Znf1-dependent DEGs were obtained by RNA-Seq technique. Several pathogenicity-associated genes were regulated by Znf1. Additionally, several genes highly expressed during appressoria formation were also regulated by Znf1 as well as Pmk1. This study provided valuable information for further research on Znf1 downstream gene regulatory network.
rice; Magnaporthe oryzae; appressorium; Δznf1; RNA-Seq; differentially expressed genes
2016-06-08;接受日期:2016-07-11
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(“973”計(jì)劃)(2012CB114002)、國(guó)家自然科學(xué)基金(31370172)
聯(lián)系方式:岳曉鳳,Tel:13515713893;E-mail:xiaofengl19870207@163.com。通信作者王政逸,Tel:0571-88982042;E-mail:zhywang@zju.edu.cn