陳二影,楊延兵,秦 嶺,張華文,劉 賓,王海蓮,陳桂玲,于淑婷,管延安
(山東省農(nóng)業(yè)科學院作物研究所,濟南 250100)
谷子苗期氮高效品種篩選及相關特性分析
陳二影,楊延兵,秦 嶺,張華文,劉 賓,王海蓮,陳桂玲,于淑婷,管延安
(山東省農(nóng)業(yè)科學院作物研究所,濟南 250100)
【目的】評價不同基因型谷子苗期氮素吸收利用差異性,篩選谷子氮高效利用基因型材料,為谷子氮高效利用品種選育和機理研究提供理論依據(jù)。【方法】采用沙培盆栽試驗,以具有代表性生態(tài)類型的79個谷子品種為材料,分析其在低氮(0.2 mmol·L-1)和高氮(6 mmol·L-1)處理下莖葉干物重、含氮量、氮素吸收量、氮素吸收與利用效率的差異及相關性,并劃分不同生態(tài)類型品種的氮效率類型。【結果】供試谷子品種在2個氮素水平條件下的莖葉干物重(CVN0.235.39%和CVN650.83%)、氮素含量(CVN0.211.52%和CVN611.22%)、氮素吸收量(CVN0.232.82%和CVN648.46%)、氮素吸收效率(CVN0.232.82%和CVN648.45%)、氮素利用效率(CVN0.211.53%和CVN611.27%)和氮效率(CVN0.235.35%和CVN650.61%)均存在較大差異。不同生態(tài)類型谷子品種的氮素吸收和利用效率差異顯著,西北春谷類型氮素吸收效率的變化(CVN0.239.99%和CVN654.38%)顯著高于華北夏谷類型(CVN0.229.31%和CVN645.68%)和東北春谷類型(CVN0.229.49%和CVN640.30%),而氮素利用效率以華北夏谷類型品種間差異最大(CVN0.212.03%和CVN612.70%)。莖葉干物重與氮素吸收和氮素利用效率呈極顯著正相關(P<0.01),相關系數(shù)分別為R2N0.2=0.1827??和R2
N6=0.1027??及R2N0.2=0.8985??和R2
N6=0.9442??;氮效率與氮素吸收量極顯著正相關,與氮含量極顯著負相關,相關系數(shù)分別為R2N0.2=0.8985??和R2
N6=0.9442??及R2N0.2=0.1962??和R2
N6=0.0998??;氮素利用效率與氮含量極顯著負相關,相關系數(shù)分別為R2N0.2=0.9924??和R2
N6=0.9910??。氮素吸收效率與氮素含量和氮素利用效率間無顯著相關性。以兩氮素水平條件下莖葉干物重和氮效率的平均值為標準,將3種生態(tài)類型的谷子品種劃分為4種氮效率類型,雙高效型、雙低效型、高氮高效型和低氮高效型。其中,東北春谷雙高效型和高氮高效型品種所占比重最高(P東北52.9%>P西北36.0%>P華北29.7%和P東北23.5%>P華北18.9%> P西北4.0%),雙低效型比重最低(P東北17.6%<P華北32.4%<P西北36.0%),而低氮高效型在西北春谷類型中所占比重最高(P西北24.0%>P華北18.9%>P東北5.9%)?!窘Y論】不同谷子品種苗期氮效率差異顯著,且西北春谷類型品種間氮素吸收效率差異最大,華北夏谷類型品種間氮素利用效率差異最大;氮素吸收效率和利用效率之間無顯著相關性,應作為2個獨立的氮效率指標進行評價和改良。
谷子;氮素吸收效率;氮素利用效率;生態(tài)類型
【研究意義】氮是作物生長發(fā)育必需的礦質營養(yǎng)元素,施用化肥尤其是氮肥成為提高作物產(chǎn)量的重要途徑之一[1-3]。近年來,為了追求作物高產(chǎn),氮肥的使用量越來越高,產(chǎn)量卻增加緩慢。氮肥的利用效率僅為30%—35%,遠低于世界40%—60%的平均水平[4-6]。同時,氮肥的低效利用,不僅造成生產(chǎn)成本的增加,而且?guī)砹藝乐丨h(huán)境污染,阻礙了農(nóng)業(yè)的可持續(xù)發(fā)展。因此,挖掘作物自身氮素高效利用的潛力,選育具有氮高效利用的品種,是提高作物氮素高效利用的重要手段。【前人研究進展】氮素高效利用的品種資源挖掘是提高氮肥利用效率的重要手段[6-9]。已有研究表明,水稻、小麥、玉米等作物氮素吸收和利用存在較大的基因型差異[3,8,10-11],不同生產(chǎn)效率小麥基因型生物量差異顯著[12],不同氮利用效率油菜基因型的農(nóng)藝性狀和氮營養(yǎng)性狀對氮肥的敏感性有顯著差異[13]。低氮條件下的氮高效小麥品種耐低氮能力強,增產(chǎn)潛力大[14],氮高效水稻品種能夠積累更多的氮素,提高氮同化效率[15]。陳明霞等[16]、胡標林等[17]研究表明NH3揮發(fā)、穗總粒數(shù)和結實率可以作為水稻氮高效材料篩選指標。小麥苗期相對干重是篩選小麥氮高效材料的重要指標[18-19];玉米籽粒吸氮量和吐絲期莖葉總氮量是篩選玉米氮高效的重要指標[20]。趙春波等[21]和黃永蘭等[22]分別根據(jù)黃瓜苗期干物重和水稻產(chǎn)量在不同氮水平下的差異,劃分為4種不同氮素營養(yǎng)類型?!颈狙芯壳腥朦c】關于作物氮高效品種的篩選和相關研究已有大量報道,但有關谷子氮高效品種的篩選及相關特性的研究鮮見報道。【擬解決的關鍵問題】本研究采用沙培盆栽,在低氮和高氮條件下研究3種不同生態(tài)類型的谷子品種苗期氮素營養(yǎng)效率的差異及相關性,劃分不同氮素營養(yǎng)類型,篩選出谷子氮高效利用基因型材料,為谷子氮高效品種的選育和氮高效機理研究提供依據(jù)。
1.1 供試品種
試驗谷子品種79份,其中華北夏谷品種37份,西北春谷品種25份,東北春谷品種17份。品種名稱和相關信息見表1。
1.2 試驗設計
表1 供試谷子品種Table 1 The foxtail millet varieties used in the experiment
試驗于2015年在山東省農(nóng)業(yè)科學院試驗基地溫室內(nèi)進行。采用沙培盆栽試驗,沙盒大小為0.8 m長×0.5 m寬×0.4 m高。沙盒每盆裝入35 kg細沙,容重為1.28 g·cm-3。沙子使用前用去離子水沖洗去掉粘附的營養(yǎng)元素,晾干備用。5月20日播種,出苗一周后間苗至密度為150株/m2。
在前期不同氮濃度對谷子苗期生長發(fā)育的研究基礎上(數(shù)據(jù)未發(fā)表),設置低氮(0.2 mmol·L-1)和高氮(6 mmol·L-1)2個氮素水平,每個試驗處理重復4次。采用改良Hoagland營養(yǎng)液進行澆灌。每隔2 d澆灌500 mL營養(yǎng)液,每次澆灌前用去離子水進行完全沖洗。同時每天根據(jù)水分蒸發(fā)情況,采用稱重法適量補充水分,使水分含量為最大持水量的70%。適期防治病蟲害。
1.3 測定項目與分類方法
出苗后30 d開始取樣,用去離子水沖洗植株,吸干表面水分,分地上部和根系取樣,105℃殺青、70℃烘箱烘干48 h,地上部用于相關指標的測定。地上部含氮量采用微量凱氏定氮法測定[23]。氮素吸收和利用效率的相關指標按以下公式計算[24-26]。谷子苗期氮素營養(yǎng)類型的劃分參考甘蔗[27]、水稻[28]、黃瓜[21]等的分類方法。
氮效率(g·g-1)=植株干物重 /介質中供氮量;
植株氮素吸收量(mg/plant)=植株干物重×含氮量;
氮素吸收效率(%)=植株體內(nèi)氮素吸收總量/介質中供氮量×100;
氮素利用效率(g·g-1)=植株干物重/植株體內(nèi)氮素累積量。
1.4 數(shù)據(jù)統(tǒng)計與分析
采用DPS軟件進行數(shù)據(jù)處理和統(tǒng)計分析,Excel軟件進行圖表制作。
2.1 不同谷子品種氮素吸收和利用的差異
不同谷子品種的干物重、氮吸收量、氮含量、氮素吸收和利用效率均存在顯著性差異(表2)。方差分析結果表明,各參數(shù)與谷子品種、氮素水平和二者互作相關極顯著。隨著氮水平的提高,谷子干物重、氮吸收量和氮含量增加,氮效率、氮吸收效率和利用效率降低(表3)。供試谷子品種各參數(shù)的變異系數(shù)存在明顯差異,以干物重和氮效率的變化最高,氮吸收量和氮吸收效率變化次之,氮含量和氮素利用效率的變化最低。表明不同品種間氮效率的差異主要由氮素吸收效率變化引起,氮素利用效率變化的貢獻較小。
2.2 不同生態(tài)類型谷子品種氮素吸收和利用的差異
表2 不同谷子品種氮效率和相關參數(shù)方差分析Table 2 Analysis of variance of F values of nitrogen use efficiency and related parameters in foxtail millet varieties
表3 谷子品種間氮效率和相關參數(shù)的差異Table 3 Variation of nitrogen use efficiency and related parameters in foxtail millet varieties
隨著供氮水平的提高,3種生態(tài)類型的谷子品種干物重的均值和變異系數(shù)均增加,但增幅存在差異,均值增加以東北春谷類型(0.12 g/plant)>華北夏谷類型(0.11 g/plant)>西北春谷類型(0.06 g/plant),變異系數(shù)增加以華北夏谷類型(16.40%)>東北春谷類型(13.76%)>西北春谷類型(13.50%)(表4)。在低氮條件下3種生態(tài)類型谷子品種干物重均值無顯著差異,高氮條件下華北夏谷類型和東北春谷類型干物重均值顯著高于西北春谷類型(P<0.05)。西北春谷類型品種的變異系數(shù)在高低供氮條件下均顯著高于華北夏谷類型品種和東北春谷類型品種。
3種生態(tài)類型的谷子品種氮吸收量均值和變異系數(shù)隨著氮水平的增加而提高,均值的增幅以東北春谷類型品種最高(4.25 mg/plant),大于華北夏谷類型(4.15 mg/plant)和西北春谷類型(3.04 mg/plant),變異系數(shù)的增幅以華北夏谷類型(16.36%)>西北春谷類型(14.41%)>東北春谷類型(10.83%)。在高低供氮條件下,3種生態(tài)類型谷子品種氮吸收量的均值以東北春谷類型最高,顯著高于華北夏谷類型和西北春谷類型品種(P<0.05),但變異系數(shù)以西北春谷類型最高,顯著高于華北夏谷類型和東北春谷類型品種(P<0.05)。在低氮水平下,3種生態(tài)類型谷子品種氮含量均值和變異系數(shù)均無顯著差異;在高氮水平下,華北夏谷類型和西北春谷類型品種氮含量的均值顯著高于東北春谷類型品種(P<0.05),變異系數(shù)則以華北夏谷類型品種最高,顯著高于東北春谷類型和西北春谷類型品種(P<0.05)。氮水平和生態(tài)類型對各農(nóng)藝參數(shù)均存在顯著的交互作用。
隨著供氮水平的提高,3種生態(tài)類型谷子品種氮效率和氮吸收效率變異系數(shù)顯著提高(表5),增幅以華北夏谷類型(15.86%和16.37%)>西北春谷類型(13.19%和14.39%)>東北春谷類型(11.71%和10.81%);華北夏谷類型品種氮利用效率的變異系數(shù)隨著氮水平的提高略有提高,東北春谷類型和西北春谷類型氮利用效率的變異系數(shù)則降低。在高低氮水平下,3種生態(tài)類型谷子品種氮效率和氮吸收效率均值均以東北春谷類型品種最高,高于西北春谷類型和華北夏谷類型品種,而變異系數(shù)以西北春谷類型最高,顯著高于華北夏谷類型和東北春谷類型(P<0.05)。在低氮水平下,氮利用效率的均值在3種生態(tài)類型谷子品種間無顯著差異;在高氮水平下,均值以東北春谷類型品種最高,顯著高于西北春谷類型和華北夏谷類型品種(P<0.05)。3種生態(tài)類型谷子品種氮利用效率的變異系數(shù)在高低供氮水平下均以華北夏谷類型最高,顯著高于西北春谷類型和東北春谷類型(P<0.05)。氮水平、生態(tài)類型及其交互作用對氮效率和氮吸收效率的相關參數(shù)均有顯著作用(P<0.01;P<0.05),但生態(tài)類型及其與氮水平的交互作用對氮利用效率的均值無顯著影響。
表4 不同生態(tài)類型谷子品種干物重、氮吸收量和氮含量的差異Table 4 Variation of dry weight, N content and N concentration in different ecological foxtail millet types
2.3 谷子品種干物重、氮吸收量、氮含量及氮效率的相關分析
兩氮素水平下氮效率與氮吸收量呈極顯著正相關(P<0.01;R2低氮=0.8985**,R2高氮=0.9442**),而與氮含量呈極顯著負相關(P<0.01;R2低氮=0.1962**,R2高氮=0.0998**)(圖1)。在高低氮水平下,氮效率和干物重與氮吸收效率及氮利用效率均呈極顯著正相關(圖2,圖3),但與氮素吸收效率的相關性高于氮素利用效率(R2吸收(低氮)=0.8985**>R2利用(低氮)=0.1827**;R2吸收(高氮)=0.9442**>R2利用(高氮)=0.1027**)。氮利用效率在高低氮水平下與氮含量呈極顯著負相關(圖4),相關系數(shù)分別為R2低氮=0.9924**和R2高氮=0.9910**,但與氮吸收量之間無顯著相關性。表明谷子苗期植株較高的氮含量不利于氮素的利用。在兩氮水平下,氮吸收效率與氮含量和氮利用效率均無顯著的相關性(圖5),說明氮素吸收效率和氮素利用效率是2個獨立的性狀指標。
表5 不同生態(tài)類型谷子品種氮效率的差異Table 5 Variation of nitrogen use efficiency in different ecological foxtail millet types
圖1 不同氮水平下谷子氮效率和氮含量及氮吸收量的相關性Fig. 1 Relationship between NUE with N concentration and N content amongst foxtail millet cultivars under low and high N level
圖2 不同氮水平下谷子氮效率和氮吸收效率及氮利用效率的相關性Fig. 2 Relationship between NUE with NupE and NutE amongst foxtail millet cultivars under low and high N level
圖3 不同氮水平下干物重和氮吸收效率及氮利用效率的相關性Fig. 3 Relationship between shoot biomass with NupE and NutE amongst foxtail millet cultivars under low and high N level
圖4 不同氮水平下氮利用效率和氮含量及氮吸收量的相關性Fig. 4 Relationship between NutE with N concentration and N content amongst foxtail millet cultivars under low and high N level
2.4 不同生態(tài)類型谷子品種氮效率的評價與分類
3種生態(tài)類型谷子品種干物重和氮效率在兩氮水平下表現(xiàn)出相同的趨勢(圖6)。以2個氮素水平下的干物重和氮效率平均值為標準,對谷子品種的干物重和氮效率進行分類,大于平均值的為高效型,低于平均值的為低效型。分別將3種生態(tài)類型的谷子品種劃分為4種類型,即雙高效型、高氮高效型、低氮高效型和雙低效型。4種類型谷子品種在不同生態(tài)類型間的分布存在差異。雙高效型、高氮高效型、低氮高效型和雙低效型在華北夏谷類型、東北春谷類型和西北春谷類型中所占的比例分別為29.7%、18.9%、18.9%和32.4%;52.9%、23.5%、5.9%和17.6%;36.0%、4.0%、24.0%和36.0%(電子附表1—電子附表3)。結果表明,雙高效型和高氮高效型品種在東北春谷類型中所占比例最高;低氮高效型品種在西北春谷類型中比例最高,在東北春谷類型中比例最低。
圖5 不同氮水平下氮吸收效率和氮含量及氮利用效率的相關性Fig. 5 Relationship between NupE with N concentration and NutE amongst foxtail millet cultivars under low and high N level
圖6 不同生態(tài)類型谷子品種干物重和氮效率分類Fig. 6 Classification of shoot biomass and NUE of three ecological variety types
3.1 谷子苗期氮效率差異
苗期是作物生長發(fā)育的重要階段,也是氮素供給和作物需求矛盾的主要時期[29-30],苗期作物氮素需求量低,土壤中的氮素以滲漏方式大量流失[31],挖掘苗期具有氮素高效吸收和利用的種質資源是解決苗期氮肥供需矛盾的重要途徑[32]。本研究表明,谷子品種苗期氮素營養(yǎng)性狀方面存在較大的遺傳差異,與水稻[33]、小麥[30,32,34]、黃瓜[21]等苗期研究結果基本一致。同時研究結果表明谷子莖葉干物重、氮效率、氮吸收量和氮吸收效率的變異系數(shù)隨著施氮量的提高而提高,表明高氮水平有利于增加谷子苗期生長發(fā)育和氮效率的品種間差異。關于作物苗期氮高效評價指標體系和氮高效評價指標的選用研究不一,裴雪霞等[18]認為小麥相對干重作為小麥苗期氮高效評價指標;杜保見等[19]選擇莖葉N累積量和葉面積作為小麥苗期氮高效評價指標;趙春波等[21]指出植株干物重可作同一供氮水平下黃瓜苗期N效率評價的首選指標,莖葉N累積量和N素利用指數(shù)可作為次級指標。本研究表明兩氮素水平下莖葉干物重(CV低氮35.39%和CV高氮50.83%)、氮效率(CV低氮35.35%和CV高氮50.61%)、氮吸收量(CV低氮32.82%和CV高氮48.46%)和氮吸收效率(CV低氮32.82%和CV高氮48.45%)品種間差異較大,因此,干物重和氮吸收量可以作為谷子苗期氮效率評價的首選指標。
3.2 谷子苗期氮效率參數(shù)間的相關性
作物的氮效率由氮素吸收和氮素利用效率兩部分組成。本研究表明,在高低供氮水平下谷子苗期氮效率與氮素吸收和利用效率均呈極顯著正相關(P<0.01),但與氮吸收效率的相關系數(shù)(R2低氮=0.8985**,R2高氮=0.9442**)高于與氮素利用效率的相關系數(shù)(R2低氮=0.1827**,R2高氮=0.1027**),表明谷子苗期氮素吸收效率對氮效率的貢獻起主導作用,這與在其他作物上的研究結果相似[35-37]。同時本研究表明,谷子苗期氮效率在兩氮水平下與氮素吸收量呈極顯著正相關,與氮含量呈極顯著負相關,表明谷子苗期高氮效率品種應具有高氮素積累量和低氮素含量。研究結果還表明在高低氮水平下,谷子苗期氮素吸收效率和氮素利用效率之間無顯著相關性,因此,在篩選和改良谷子苗期氮高效品種時,氮素吸收效率和氮素利用效率應作為2個獨立的性狀指標進行選擇和改良。
3.3 不同生態(tài)類型谷子品種氮效率差異與氮效率類型的劃分
中國谷子的種植區(qū)域可劃分為東北春谷類型、西北春谷類型和華北夏谷類型等3種生態(tài)類型。本研究表明,在高低供氮水平下,3種生態(tài)類型谷子品種間與氮效率的相關性狀指標均存在顯著差異。3種生態(tài)類型間比較,東北春谷類型的莖葉干物重、氮吸收量、氮效率和氮吸收效率的均值最高,但各參數(shù)品種間的變異系數(shù)以西北春谷類型最高。表明3種生態(tài)類型的谷子品種以東北春谷類型苗期生長發(fā)育和氮效率最高,但各類型品種間的差異以西北春谷類型最大。借鑒其他作物關于氮效率類型的劃分[23-24],根據(jù)莖葉干物重和氮效率均值將3種生態(tài)類型的谷子品種劃分為4種類型:在低氮和高氮水平下均高效的品種,為雙高效型,代表性的品種為龍谷32、晉谷45和豫谷17等(附表1—附表3);在高氮條件下高效的品種,為高氮高效型,代表性的品種為公矮6號、內(nèi)小香玉和魯谷5號等;在低氮條件下高效的品種,為低氮高效型,代表性的品種為公谷65、秦谷3號和冀谷26等;在低氮和高氮水平下均低效的品種,為雙低效型,代表性的品種為龍谷31、長谷4號和聊農(nóng)1號等。其中華北夏谷類型以雙低效型品種的比例最高,東北春谷類型以雙高效型品種比例最高,西北春谷類型以低氮高效型品種比例最高。上述結果表明,不同生態(tài)類型谷子品種苗期生長發(fā)育和氮效率存在差異,且4種氮效率類型在3種生態(tài)類型的谷子品種間分布不均勻,存在生態(tài)類型的差異,這可能與不同類型的生態(tài)環(huán)境和苗期土壤供氮水平有關,仍需進一步研究,以期明確不同生態(tài)類型谷子品種苗期氮效率的特征和改良的方向。
谷子苗期氮素吸收和利用效率存在顯著差異,且隨供氮水平的提高差異增大。谷子苗期干物重和氮素吸收量可以作為谷子苗期氮效率評價的重要指標。谷子苗期氮吸收效率和氮利用效率之間無顯著相關性,在谷子苗期氮高效品種篩選和評價時,應作為2個獨立的性狀指標進行選擇和改良。根據(jù)莖葉干物重和氮效率的均值將79個谷子品種劃分為4種氮效率類型,且在3種生態(tài)類型間分布不均勻,存在生態(tài)類型的差異。
[1] CASSMAN K G, DOBERMANN A, WALLERS D T, YANG H S. Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resource, 2003, 28: 315-358.
[2] PENG S, BURESH R J, HUANG J, ZHONG X, ZOU Y, YANG J, WANG G, LIU Y, TANG Q, CUI K, ZHANG F, DOBERMANN A. Improving nitrogen fertilization in rice by site-specific N management: A review. Agronomy for Sustainable Development, 2010, 30: 649-656.
[3] CHENG X J, ROLAND J, BURESH R J, WANG Z Q, ZHANG H, LIU L J, YANG J C, ZHANG J H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Research, 2015, 175: 47-55.
[4] PENG S, BURESH R J, HUANG J, YANG, J, ZOU Y, ZHONG X, WANG G, ZHANG F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research, 2006, 96: 37-47.
[5] PENG S, TANG Q, ZOU Y. Current status and challenges of rice production in China. Plant Production Science, 2009, 12: 3-8.
[6] CHEN X P, CUI Z L, FAN M S, VJITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X, GAO Q, ZHANG Q, GUO S, REN J, LI S, YE Y, WANG Z, HUANG J, TANG Q, SUN Y, PENG X, ZHANG J, HE M, ZHU Y, XUE J, WANG G, WU L, AN N, WU L, MA L, ZHANG W, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014, 514: 486-491.
[7] LADHA J K, KIRK G J D, BENNETT J, PENG S, REDDY C K, REDDY P M, SINGH U. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field CropsResearch, 1998, 56: 41-71.
[8] KANT S, BI Y M, ROTHSTEIN S J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany, 2011, 62: 1490-1509.
[9] HAEGELE J W, COOK K A, NICHOLS D M, BELOW F E. Changes in nitrogen use traits associated with genetic improvement for grain yield of maize hybrids released in different decades. Crop Science, 2013, 53: 1256-1268.
[10] 董桂春, 王熠, 于小鳳, 周娟, 彭斌, 李進前, 天昊, 張燕, 袁秋梅,王余龍. 不同生育期水稻品種氮素吸收利用的差異. 中國農(nóng)業(yè)科學, 2011, 44(22): 4570-4582. DONG G C, WANG Y, YU X F, ZHOU J, PENG B, LI Q J, TIAN H, ZHANG Y, YUAN Q M, WANG Y L. Differences of nitrogen uptake and utilization of conventional rice varieties with different growth duration. Scientia Agricultura Sinica, 2011, 44(22): 4570-4582. (in Chinese)
[11] GAJU O, ALLARD V, MARTRE P, SNAPE J W, HEUMEZ E, LEGOUIS J, MOREAU D, BOGARD M, GRIFFITHS S, ORFORD S, HUBBART S, FOULKES M J. Identification of traits to improve the nitrogen use efficiency of wheat genotypes. Field Crops Research, 2011, 123: 139-152.
[12] 張錫州, 陽顯斌, 李廷軒, 余海英. 小麥氮素利用效率的基因型差異. 應用生態(tài)學報, 2011, 22(2): 369-375. ZHANG X Z, YANG X B, LI T X, YU H Y. Genotype difference in nitrogen utilization efficiency of wheat. Chinese Journal of Applied Ecology, 2011, 22(2): 369-375. (in Chinese)
[13] 楊睿, 伍曉明, 安蓉, 李亞軍, 張玉瑩, 陳碧云, 高亞軍. 不同基因型油菜氮素利用效率的差異及其與農(nóng)藝性狀和氮營養(yǎng)性狀的關系.植物營養(yǎng)與肥料學報, 2013, 19(3): 586-596. YANG R, WU X M , AN R, LI Y J, ZHANG Y Y, CHEN B Y, GAO Y J. Differences of nitrogen use efficiency of rapeseed (Brassica napus L.) genotypes and their relations to agronomic and nitrogen characteristics. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 586-596. (in Chinese)
[14] 王小純, 王曉航, 熊淑萍, 馬新明, 丁世杰, 吳克遠, 郭建彪. 不同供氮水平下小麥品種的氮效率差異及其氮代謝特征. 中國農(nóng)業(yè)科學, 2015, 48(13): 2569-2579. WANG X C, WANG X H, XIONG S P, MA X M, DING S J, WU K Y, GUO J B. Differences in Nitrogen efficiency and nitrogen metabolism of wheat varieties under different nitrogen levels. Scientia Agricultura Sinica, 2015, 48(13): 2569-2579. (in Chinese)
[15] 馮洋, 陳海飛, 胡孝明, 周衛(wèi), 徐芳森, 蔡紅梅. 我國南方主推水稻品種氮效率篩選及評價. 植物營養(yǎng)與肥料學報, 2014, 20(5): 1051-1062. FENG Y, CHEN H F, HU X M, ZHOU W, XU F S, CAI H M. Nitrogen efficiency screening of rice cultivars popularized in south China. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1051-1062. (in Chinese)
[16] 陳明霞, 黃見良, 崔克輝, 聶立孝, 彭少兵. 不同氮效率基因型水稻植株氨揮發(fā)速率及其與氮效率的關系. 作物學報, 2010, 36(5): 879-884. CHEN M X, HUANG J L, CUI K H, NIE L X, PENG S B. Genotypic variation in ammonia volatilization rate of rice shoots and its relationship with nitrogen use efficiency. Acta Agronomic Sinica, 2010, 36(5): 879-884. (in Chinese)
[17] 胡標林, 李霞, 萬勇, 邱在輝, 聶元元, 謝建坤. 東鄉(xiāng)野生稻BILs群體耐低氮性表型性狀指標篩選及其綜合評價. 應用生態(tài)學報, 2015, 26(8): 2346-2352. HU B L, LI X, WAN Y, QIU Z H, NIE Y Y, XIE J K. Index screening and comprehensive evaluation of phenotypic traits of low nitrogen tolerance using BILs population derived from dongxiang wild rice (Oryza rufipogon Griff.). Chinese Journal of Applied Ecology, 2015, 26(8): 2346-2352. (in Chinese)
[18] 裴雪霞, 王姣愛, 黨建友, 張定一. 耐低氮小麥基因型篩選指標的研究. 植物營養(yǎng)與肥料學報, 2007, 13(1): 93-98. PEI X X, WANG J A, DANG J Y, ZHANG D Y. An approach to the screening index for low nitrogen tolerant wheat genotype. Journal of Plant Nutrition and Fertilizer, 2007, 13(1): 93-98. (in Chinese)
[19] 杜保見, 郜紅建, 常江, 章力干. 小麥苗期氮素吸收利用效率差異及聚類分析. 植物營養(yǎng)與肥料學報, 2014, 20(6): 1349-1357. DU B J, GAO H J, CHANG J, ZHANG L G. Screening and cluster analysis of nitrogen use efficiency of different wheat cultivars at the seedling stage. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1349-1357. (in Chinese)
[20] 崔文芳, 高聚林, 于曉芳, 胡樹平, 蘇治軍, 王志剛, 孫繼穎, 謝岷.氮高效玉米自交系的篩選指標及其子粒氮素營養(yǎng)特性分析. 植物營養(yǎng)與肥料學報, 2014, 20(2): 290-297. CUI W F, GAO J L, YU X F, HU S P, SU Z J, WANG Z G, SUN J Y, XIE M. The index for the screening of N-efficient inbred lines of maize and their N nutrition peculiarity in seed production. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 290-297. (in Chinese)
[21] 趙春波, 宋述堯, 趙靖, 張雪梅, 張越, 張松婷. 北方地區(qū)不同黃瓜品種氮素吸收與利用效率的差異. 中國農(nóng)業(yè)科學, 2015, 48(8): 1569-1578. ZHAO C B, SONG S Y, ZHAO J, ZHANG X M, ZHANG Y, ZHANG S T. Variation in nitrogen uptake and utilization efficiency ofdifferent cucumber varieties in northern China. Scientia Agricultura Sinica, 2015, 48(8):1569-1578. (in Chinese)
[22] 黃永蘭, 黎毛毛, 蘆明, 萬建林, 龍起樟, 王會民, 唐秀英, 范志潔. 氮高效水稻種質資源篩選及相關特性分析. 植物遺傳資源學報, 2015, 16(1): 87-93. HUANG Y L, LI M M, LU M, WAN J L, LONG Q Z, WANG H M, TANG X Y, FAN Z J. Selection of rice germplasm with high nitrogen utilization efficiency and its analysis of the related characters. Journal of Plant Genetic Resources, 2015, 16(1): 87-93. (in Chinese)
[23] 鮑士旦. 土壤農(nóng)化分析. 3版. 北京: 中國農(nóng)業(yè)出版社, 2003: 25-268. BAO S D. Soil Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agricultural Press, 2003: 25-268. (in Chinese)
[24] MOLL R H, KAMPRATH E J, JACKSON W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal, 1982, 74: 562-564.
[25] ALLEN G G, ASHOK K S, DOUGLAS G M. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, 2004, 9: 597-605.
[26] SVE?NJAK Z, RENGEL Z. Canola cultivars differ in nitrogen utilization efficiency at vegetative stage. Field Crops Research, 2006, 97(2): 221-226.
[27] ROBINSON N, FLETCHER A, WHAN A, CRITCHLEY C, VONWIRéN N, LAKSHMANAN P, SCHMINDT S. Sugarcane genotypes differ in internal nitrogen use efficiency. Functional Plant Biology, 2007, 34: 1122-1129.
[28] 張亞麗, 樊劍波, 段英華, 王東升, 葉利庭, 沈其榮. 不同基因型水稻氮利用效率的差異及評價. 土壤學報, 2008, 45(2): 265-273. ZHANG Y L, FAN J B, DUAN Y H, WANG D S, YE L T, SHEN Q R. Variation of nitrogen use efficiency of rice different in genotype and its evaluation. Acta Pedologica Sinica, 2008, 45(2): 265-273. (in Chinese)
[29] FILLERY I R, MCINNES K J. Components of the fertiliser nitrogen balance for wheat production on duplex soils. Australian Journal of Experimental Agriculture, 1992, 32: 887-899.
[30] LIAO M T, FILLERY I R P, PALTA J A. Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Functional Plant Biology, 2004, 31: 121-129.
[31] ANDERSON G C, FILLERY I R P, DUNIN F X, DOLLING P J, ASSENG S. Nitrogen and water flows under pasture-wheat and lupin-wheat rotations in deep sands in Western Australia-2. Drainage and nitrate leaching. Australian Journal of Agricultural Research, 1998, 49: 345-361.
[32] PANG J Y, PALTA J A, REBETZKE G J, MILROY S P. Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth. Functional Plant Biology, 2014, 41: 215-222.
[33] 阮新民, 施伏芝, 羅志祥, 佘德紅. 水稻苗期氮高效品種評價與篩選的初步研究. 中國稻米, 2010, 16(2): 22-25. RUAN X M, SHI F Z, LUO Z X, SHE D H. Studies on screening and evaluating nitrogen efficiency varieties rice at seedling stage. China Rice, 2010, 16(2): 22-25. (in Chinese)
[34] LIAO M T, PALTA J A, FILLERY I R P. Root characteristics of vigorous wheat improve early nitrogen uptake. Australian Journal of Agricultural Research, 2006, 57: 1097-1107.
[35] MUURINEN S, SLAFER G A, PELTONEN-SAINIO P. Breeding effects on nitrogen use efficiency of spring cereals under northern conditions. Crop Science, 2006, 46: 561-568.
[36] SYLVESTER-BRADLEY R, KINDRED D R. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. Journal of Experimental Botany, 2009, 60: 1939-1951.
[37] BINGHAM I J, KARLEY A J, WHITE P J, THOMAS W T B, RUSSELL J R. Analysis of improvements in nitrogen use efficiency associated with 75 years of spring barley breeding. European Journal of Agronomy, 2012, 42: 49-58.
(責任編輯 李莉)
Evaluation of Nitrogen Efficient Cultivars of Foxtail Millet and Analysis of the Related Characters at Seedling Stage
CHEN Er-ying, YANG Yan-bing, QIN Ling, ZHANG Hua-wen, LIU Bin, WANG Hai-lian, CHEN Gui-ling, YU Shu-ting, GUAN Yan-an
(Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100)
【Objective】The objective of this experiment was to probe genetic variation of nitrogen uptake efficiency (NupE) and nitrogen utilization efficiency (NutE) of foxtail millet cultivars at seedling stage and screen N efficient cultivars, which could provide a theoretical basis for the development of new N efficient varieties and N efficient mechanism study. 【Method】In this study, a sand culture pot experiment was conducted with 79 foxtail millet cultivars from three typically ecological types, shoot biomass, nitrogenconcentration, nitrogen content, NutE and NupE were assessed under low nitrogen (0.2 mmol·L-1) and high nitrogen (6 mmol·L-1) supply, nitrogen use efficiency (NUE) types were also classified. 【Result】Large genetic variation was observed in shoot biomass, shoot N concentration, shoot N content, NupE, NutE and NUE at seedling stage. Among the three ecological types, northwest spring foxtail millet cultivars had the highest genetic variation of NupE, followed by north summer and northeast spring foxtail millet cultivars, while the genotypic variation of NutE in north summer type was more than that in northwest and northeast spring foxtail millet cultivars. Shoot biomass was significantly and positively correlated with NupE and NutE (P<0.01), and correlation coefficients were R2N0.2=0.1827??and R2N6=0.1027??, R2N0.2=0.8985??and R2N6=0.9442??, respectively. NUE was significantly and positively correlated with nitrogen content and negatively correlated with nitrogen concentration, and correlation coefficients were R2N0.2=0.8985??and R2N6=0.9442??, R2N0.2=0.1962??and R2N6=0.0998??, respectively. NupE was negatively correlated with nitrogen concentration, and the correlation coefficients were R2N0.2=0.9924??and R2N6=0.9910??. There was no significant correlation between NupE and nitrogen concentration, and between NupE and NutE. According to means of shoot biomass and NUE of 79 foxtail millet cultivars, foxtail millet cultivars from three ecological regions were classified into four types, respectively, both higher than the average under low nitrogen and high nitrogen level (HLHH), both lower than the average under low nitrogen and high nitrogen level (LLLH), higher than the average under low nitrogen and lower than the average under high nitrogen level (HLLH), and lower than the average under low nitrogen and higher than the average under high nitrogen level (LLHH). HLHH and LLHH types were dominant cultivar types in northeast spring foxtail millet, and the percentage of LLLH types was the lowest in northeast spring foxtail millet (PNW17.6%<PNS32.4%<PNE36.0%). However, HLLH types were the main cultivar types in northwest spring foxtail millet (PNW24.0%>PNS18.9%>PNE5.9%). 【Conclusion】There was a significant NUE genetic variation of seedlings in different foxtail millet cultivars. Genetic variation of NupE was the highest in northwest spring foxtail millet cultivars, and north summer foxtail millet cultivars had the highest genetic variation of NutE. There was no significant correlation between NupE and NutE, indicating that the evaluation and improvement of N uptake and utilization should be undertaken independently.
foxtail millet; nitrogen uptake efficiency (NupE); nitrogen utilization efficiency (NutE); ecological types
2016-04-08;接受日期:2016-06-01
國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系建設專項(CARS -07 -12.5 -A11)、國家科技支撐計劃子課題(2014BAD07B01-02)、山東省重大技術專項(2015ZDJ03001-2)、山東省農(nóng)業(yè)科學院青年科研基金(2016YQN03)
聯(lián)系方式:陳二影,Tel:0531-83178115;E-mail:chenerying_001@163.com。通信作者管延安,Tel:0531-83178115;E-mail:Yguan65@163.com