• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and Experimental Evaluation of PID Controller for Digital Electro-Pneumatic Cabin Pressure Control System

    2016-12-01 03:18:48NieJinfangPanQuanShenHaoSongZhitaoZhangDalin

    Nie Jinfang,Pan Quan,Shen Hao,Song Zhitao,Zhang Dalin

    1.College of Automation,Northwestern Polytechnical University,Xi′an 710072,P.R.China;

    2.Shanghai Aircraft Airworthiness Certification Center of CAAC,Shanghai 200335,P.R.China;

    3.Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Design and Experimental Evaluation of PID Controller for Digital Electro-Pneumatic Cabin Pressure Control System

    Nie Jinfang1,3,Pan Quan1,Shen Hao2,Song Zhitao2,Zhang Dalin3*

    1.College of Automation,Northwestern Polytechnical University,Xi′an 710072,P.R.China;

    2.Shanghai Aircraft Airworthiness Certification Center of CAAC,Shanghai 200335,P.R.China;

    3.Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    The performance of the designed digital electro-pneumatic cabin pressure control system for the cabin pressure schedule of transport aircraft is investigated.Eor the purpose of this study,an experimental setup consisting of a simulated hermetic cabin and altitude simulation chamber is configured for cabin pressure control system operation.A series of experimental tests are executed to evaluate the performance of the cabin pressure control system.The parameters of the PID controller are optimized.In the optimization process,the variation regularity of the rate of cabin pressure change under various conditions is considered.An approach to prioritize the control of the rate of change of cabin pressure based on the flight status model is proposed and verified experimentally.The experimental results indicate that the proposed approach can be adopted for the designed digital electro-pneumatic cabin pressure control system to obtain a better cabin pressure schedule and rate of cabin pressure change.

    cabin;pressure control;digital electro-pneumatic;PID controller

    0 Introduction

    The cabin pressure control system(CPCS) controls the cabin pressure and pressurization rate to protect the passengers and the airplane.Since pneumatically driven systems have many distinct characteristics,such as energy-saving,cleanliness,a simple structure and operation,and high efficiency,and are suitable for working in a harsh environment,they have been extensively used for many years in cabin pressure control systems[1,2]. Recently,the appearance and development of electro-pneumatic proportional components have advanced pneumatic control techniques beyond the restrictions of point-to-point control.Electropneumatic proportional control components can convert an analog electrical input signal into outlet flow or pressure.Therefore,they can dramatically simplify pneumatic and electric circuits.

    In the past few years,several researchers have devoted their investigations to modeling the electro-pneumatic cabin pressure control system[3,4].Other studies have mainly focused on the digital proportional,integral,and derivative (PID)control strategy for the electro-pneumatic cabin pressure control system[5-9].The current trend to develop an improved electro-pneumatic cabin pressure control system with good performances in terms of safety,stability,and accuracy requires investigation to find the optimum parameters of a PID controller.This paper investigates the stability and dynamic performance of a digital electro-pneumatic cabin pressure control system with the PID control method.Eor the purpose of this study,an experimental setup is configuredfor cabin pressure control system operation.The PID controller,which is connected in a microcomputer together with a data acquisition card,is implemented.A series of tests are conducted to verify the controller′s performance for particular situations that are relevant to the aircraft′s cabin pressure control system behavior.

    *Corresponding author,E-mail address:zhangdalin@nuaa.edu.cn.

    How to cite this article:Nie Jinfang,Pan Quan,Shen Hao,et al.Design and experimental evaluation of PID controller for digital electro-pneumatic cabin pressure control system[J].Trans.Nanjing Univ.Aero.Astro.,2016,33(5):576-583. http://dx.doi.org/10.16356/j.1005-1120.2016.05.576

    1 Cabin Pressure Control System Model

    Fig.1 shows the arrangement of the digital electro-pneumatic cabin pressure control system, which is composed of a digital controller,outflow valve,and cabin.As illustrated in Fig.1,two absolute pressure sensors are used to monitor the atmospheric pressure and cabin pressure,respectively.The cabin pressure and its rate of change are set by the cabin pressure selector.The required target for the actuator is calculated with PID according to the atmospheric pressure from the air data computer and a given cabin pressure schedule.D/A drives torque motor deflection to transform the opening of the outflow valve, which in turn controls the pressure,excess pressure,and rate of cabin pressure change in real time.

    Fig.2 shows a schematic diagram of the outflow valve.The valve action is driven by the gravity of the moving part,preload of the spring, and differential pressure between the cabin pressure and cavity pressure.Compared with a purely pneumatic system,the digital pneumatic actuator has a digital signal regulator.This regulator consists of four elements:two nozzles with an air inlet from the cabin and an exhaust outlet to the atmosphere,a torque motor,and a triangle block. The torque motor dives the triangle block to change the nozzles′cross-sectional area,which controls the flux of air.Consequently,the valve opening is controlled by differential pressure on the diaphragm for controlling the pressure and rate of pressure change in the cabin.

    Fig.2 Structure of outflow valve

    2 Experiment

    Fig.3 shows the setup of the experiments. The core of the system is a simulated hermetic cabin.The simulated hermetic cabin and the digital controller are connected with a communications cable.This digital controller receives the simulated hermetic cabin pressure,the atmospheric pressure,and differential pressure signals. Before the activation of the controller,the rule set and associated membership functions in a precompiled format are sent to it.The atmospheric environment is simulated by a high-altitude simulation cabin[4,5],which simulates the atmospheric pressure while climbing and descending during flight.The atmospheric pressure is controlled by the openings of the gulp valve and the outflow valve.Two pressure transducers are used to check the pressure in the hermetic cabin and the pressure in the high-altitude simulation cabin,re-spectively.An air mass flow sensor is used to measure the flow rate at the inlet of the hermetic cabin.A vacuum pump expels the air of the highaltitude simulation cabin through the outflow valve.The installation of the outflow valve is shown in Fig.4.

    Fig.3 Experimental setup of cabin pressure control

    Fig.4 Installation of outflow valve

    The measurement and control system is built for data gathering and controlling the pressures of the hermetic cabin and the high-altitude simulation cabin based on the virtual instruments.A data acquisition and control board named SCXI-1600 is used in the system.SCXI-1600 has an accuracy of 16 bit and a rate of up to 200 kb/s.The current signal of the pressure sensors is sent to a PC via the SCXI-1102 conditioning module and SCXI-1303 terminal board.The output of the control signals computed and filtered from an analog device is transmitted by SCXI-1124 and the SCXI-1325 terminal board.The measurement and control system hardware structure is shown in Fig.5.The test rig is automated with Lab VIEW software to ensure the timing and sequence of events are precise and repeatable.Through Lab-VIEW,the acquisition and control codes are developed.Using the Lab VIEW software provided by the MATLAB script node,the acquisition and control codes can directly call Euzzy Logic Toolbox of MATLAB via Lab VIEW to design the fuzzy control rule and correction.

    Fig.5 Measurement and control system hardware structure

    Controlling the pressure of the high-altitude simulation cabin is very difficult during testing. This is associated with the performance of the cabin pressure control system being tested.It is difficult for the automatic control of pressure to meet the functioning requirements when the per-formance of the cabin pressure control system being tested is unstable.This is because the variation of the outflow valve opening causes air to flow into the high-altitude simulation cabin, which results in rapid change in a short period of time,showing that the change of cabin pressure is larger,and even leads to the coupling resonance of the two control systems and breakdown of the test unit.Therefore,manual intervention is necessary during the early stage of experiment,and the automatic control is activated when the tested pressure control system is relatively stable.

    Fig.6 Application interface

    3 Experimental Results

    A series of tests are executed to evaluate the performance of the cabin pressure control system for transport aircraft.A cabin pressure schedule of transport aircraft is shown in Fig.7.The cabin pressure is divided into three zones:free ventilation,absolute pressure,and overpressure within the flight altitude range.Based on these pressure data,the PID control parameters can be found by systematically adjusting their values to obtain the best permitting ones.

    In this section,a series of tests are performed in order to validate the performance of the digital electro-pneumatic cabin pressure control system for a given flight status.Two main requirements should be satisfied:

    (1)The pressure of the simulated hermetic cabin is controlled to follow the cabin pressure schedule of transport aircraft during climbing and diving.

    Fig.7 Cabin pressure schedule of transport aircraft

    (2)The rate of the simulated hermetic cabin pressure change under climbing and diving conditions is controlled.

    According to the PID algorithm,the controller output signal consists of three terms

    where e represents the deviation signal of the control parameter,Kpthe proportional gain,Tithe integral time constant,and Tdthe differentiating time constant.In the paper,u is the output current signal of the torque motor and e the pressure difference signal.The pressure signal is gathered 10 times per second by using anti-pulse-interfere median filtering.The nonlinear partial differential equations are converted to the incremental type in the calculation of PID[10]

    where Kp,Ki,and Kdare the constants.The values for u(n)andΔu(n)are the set upper and lower limits according to the practical system.

    The test considers a setting pressure value of the absolute pressure region for three cabin altitudes:90 kPa for 1 km,80 kPa for 2 km,and 70 k Pa for 3 km,and the supply airflow rate is 3 000 kg/h.The PID control parameters are set to Kp=3,Ki=0.5,and Kd=2 along with a sampling period of 1 s.The valve reaches the maximum opening to ensure free ventilation when the value of ambient pressure is larger than that of the setting pressure.The experimental data for the 1 km working condition are listed here to il-lustrate the problems during the control process. Fig.8 shows the experimental response of the cabin pressure for climbing within the free ventilation zone and absolute pressure zone for the 1 km working condition.Similar to the purely pneumatic cabin pressure control system,the cabin pressure curve overshoots down from the free ventilation zone to the absolute pressure zone.This is because the valve is not closed promptly at the appropriate location.The drive current shows that the torque motor opens the valve faster than it closes the valve for the same Δu(n);Thus,the pressurized process forms faster than the decompression process.Clearly,the pressure control system cannot work within the absolute pressure zone.

    In order to solve the problems,the judgment of setting pressure is added into the program(See Fig.8).The input current of the torque motor is decreased before the ambient pressure reaches the setting pressure,so that the valve is gradually closed to reduce the overshoot of the setting pressure point.

    Fig.8 Experimental response of cabin pressure with Kp=3,Ki=0.5,and Kd=2

    In order to suppress the amplitude of cabin pressure oscillation,the integral term of the PID algorithm is separated as follows:

    The experimental results for the responses for 1 km with the optimized PID algorithm are shown in Fig.9.

    It can be seen from Fig.9 that the overshootis suppressed after the point starts to adjust the pressure.By using integral separation and increasing the control cycle,the pressure in the absolute pressure zone becomes(90±2)k Pa,which basically meets the pressure control target even though decompression is still faster than pressurization in the curve.

    Fig.9 Experimental response of cabin pressure with optimized PID algorithm

    Figs.10,11 show the complete curves of the cabin pressure and its rate of change with altitude during the aircraft climbing process.In Fig.10, the cabin pressure basically conforms to the cabin pressure schedule of the transport aircraft,but significant fluctuations still exist in the whole process.As shown in Fig.11,the speed of pressurization is greater than+40 Pa/s,and the speed of decompression is greater than-100 Pa/ s.Actually,similar problems appear under 2 km and 3 km working conditions.Therefore,further tuning of the parameters of the PID controller according to the operating characteristics of the system is necessary.

    It turns out to be very difficult to achieve accurate and stable control merely by tuning the PID parameters.The operating characteristics of the cabin pressure control system need to be further analyzed.

    According to the operating principle of the system,overpressure is the power source of outflow valve actuation.The change of overpressure is the main interference of the system when the supply airflow is constant.Eor a given cabin pressure schedule,the cabin overpressure increases as the altitude increases within the absolutepressure zone when the aircraft climbs and the opposite occurs when the aircraft dives.

    Fig.10 Cabin pressure response curves with flight altitude during climbing(1 km)

    Fig.11 Rate of cabin pressure change with flight altitude during climbing

    In order to keep the exhaust flow constant,it is necessary to decrease the opening of the outflow valve when the overpressure increases for climbing.The speed of pressurization probably exceeds the design standard during the process. The judgment of the rate of cabin pressure change needs to be considered preferentially to maintain the rate of cabin pressure change within a specified range.Specifically,when the rate of change is greater than some typical values,the operating of the valve should be retarded or even stopped. The operating of the outflow valve depends on the displacement of the block driven by a motor.The electric current used to drive the corresponding valve opening should be decreased as the overpressure increases.Eor the diving and cruising process,a similar analysis should be conducted.

    According to the above analysis,some modifications are made to the digital PID control program:

    (1)Determining the flight status of the aircraft(climbing/diving/cruising).

    (2)Adjusting the PID parameters based on the flight status to follow the change of overpressure.

    (3)Judging the rate of cabin pressure change in the decompression and pressurization processes to keep the rate of cabin pressure change within a specified range preferentially.

    The results of the experimental verification based on the above proposed control method are shown in Figs.12—19.Specially,Figs.18,19 show the results of the backup status when the backup overpressure is 19.6 k Pa.

    As can be seen from the experimental results,the developed digital electro-pneumatic cabin pressure control system can match the given cabin pressure schedule.Meanwhile,the experimental results indicate that the rate of cabin pressure change can be controlled effectively with the proposed approach.

    Fig.12 Cabin pressure responses during climbing for the proposed model(1 km)

    Fig.14 Cabin pressure responses during climbing for the proposed model(2 km)

    Fig.15 Rate of cabin pressure change during climbing for the proposed model(2 km)

    Fig.16 Cabin pressure responses during diving for the proposed model(2 km)

    Fig.17 Rate of cabin pressure change during diving for the proposed model(2 km)

    Fig.18 Cabin pressure responses during climbing for the proposed model(3 km,backup overpressure)

    Fig.19 Rate of cabin pressure change during diving for the proposed model(3 km,backup overpressure)

    4 Conclusions

    An approach to prioritize the control of the rate of change of cabin pressure based on the flight status model for a digital electro-pneumatic cabin pressure control system is presented in order to improve control performance during aircraft climbing and diving.Experimental evaluation of the pressure controller is carried out for a digital electro-pneumatic cabin pressure control system,and the results show the controller can work effectively and stably to control the cabin pressure rate of change to fulfill the requirement of human physical comfort.

    [1] WANG Jun,XU Yanghe.Control of air parameters in aircraft cabin[M].Beijing:National Defense Industry Press,1980.(in Chinese)

    [2] TANG Jian,ZHANG Xingjuan,YUAN Xiugan. Research on dynamic performance of new cabin′spressure regulator[J].Aircraft Engineering,2005 (4):45-49.(in Chinese)

    [3] LEE E B.Electronic pressure regulator:AIAA 90-1940[R].1990.

    [4] ETTL H U.Modern digital pressure control system: AIAA 88-3948-CP[R].1988.

    [5] MA Hui.Research on control system of simulated atmospheric pressure cabin[D].Nanjing:Nanjing University of Aeronautics&Astronautics,2006.(in Chinese)

    [6] NIE Jinfang,PAN Quan,ZHANG Dalin.Performance investigation of high-altitude simulation cabin based on Labview[J].Journal of Nanjing University of Aeronautics&Astronautics,2014,46(4):594-598.(in Chinese)

    [7] WU Yan,ZHANG Dalin.Modeling and performance analysis of digital electronic-pneumatic cabin pressure control system[J].Journal of Nanjing University of Aeronautics&Astronautics,2008,40(3):324-328. (in Chinese)

    [8] ZHU Lei,EU Yongling,ZHAO Jingquan.Euzzy sliding mode variable structure control of digital cabin pressure regulating system[J].Journal of Applied Science,2009,27(5):545-549.(in Chinese)

    [9] HAN Yefei,EANG Gang,HU Yongxiang,et al. Modeling and PID controller designing for pressure control system of cabin function test[J].Journal of Shanghai Jiao Tong University,2011,45(7):1074-1079.(in Chinese)

    [10]CHEN Zhijiu,WU Jingyi.Automation of refrigeration equipment[M].2nd Ed.Beijing:China Machine Press,2010.(in Chinese)

    Prof.Nie Jinfang received B.S.degree in electronics engineering from Beijing University of Aeronautics and Astronautics(BUAA)in 1989 and M.S.degree in mechanical engineering from BUAA in 2004.He joined in China Research Institute of Aero-Accessories(CRIAA,former NEIAS)in 1989.Currently,he works as a professor in Nanjing Engineering Institute of Aircraft System,AVIC(NEIAS)and Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,Nan-

    jing,China.His research is focused on aircraft environment control systems.

    Prof.Pan Quan received B.S.degree in automation engineering from Huazhong University of Science and Technology,Wuhan,China,in 1982,and M.S.and Ph.D.degrees in control theory and application from Northwest Polytechnical University(NWPU),Xi′an,China,in 1991 and 1997,respectively.He is currently a full professor and president of College of Automation.His research is focused on the theory and application of information fusion,target tracking and recognition technology,spectral imaging and image processing,intelligence surveillance reconnaissance sensing system of large-scale data analysis and synthesis, UAV and aerospace satellite navigation and control platform,network information security and confidentiality of modern technology.

    Mr.Shen Hao received B.S.degree from Nanjing University of Aeronautics and Astronautics in 2000.He works for Hongdu Aviation Industry Group from 2000 to 2008.In 2008,he joined in Shanghai aircraft airworthiness certification center of CAAC,and he is the senior engineer of the mechanical system department.

    Mr.Song Zhitao received B.S.degree from Northwestern Polytechnical University in 1988.He worked for Chengdu Aircraft Industrial Group from 1988 to 2007.In 2008,he joined in Shanghai aircraft airworthiness certification center of CAAC,and he is the director of the mechanical system department.

    Prof.Zhang Dalin received B.S.degree in Aircraft Environmental Control from Nanjing University of Aeronautics and Astronautics(NUAA),Nanjing,China,in 1993,and M.S.degree in Power Engineering and Engineering Thermophysics and Ph.D.degree in Aircraft Design Engineering from NUAA,in 1996 and 2003,respectively.He is currently a full professor of College of Aerospace Engineering of NUAA,and also a member of Academic Committee of Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,Nanjing,China.His research is focused on the aircraft environmental control,aircraft icing and anti/deicing,numerical simulation and experiment of heat and mass transfer.

    (Executive Editor:Xu Chengting)

    V223.2 Document code:A Article ID:1005-1120(2016)05-0576-08

    (Received 27 April 2015;revised 7 July 2015;accepted 18 August 2015)

    一级二级三级毛片免费看| 精品人妻偷拍中文字幕| 寂寞人妻少妇视频99o| 国产熟女欧美一区二区| 高清在线视频一区二区三区| 国产一区亚洲一区在线观看| 国产亚洲5aaaaa淫片| 中文欧美无线码| 免费看a级黄色片| 五月伊人婷婷丁香| 亚洲精品日韩av片在线观看| 草草在线视频免费看| 亚洲av免费在线观看| a级毛片免费高清观看在线播放| 日韩成人av中文字幕在线观看| 王馨瑶露胸无遮挡在线观看| av国产久精品久网站免费入址| 成年人午夜在线观看视频| 男人狂女人下面高潮的视频| 黄色欧美视频在线观看| 伦精品一区二区三区| 在线a可以看的网站| 久久精品人妻少妇| 国产高清不卡午夜福利| 91精品伊人久久大香线蕉| 日韩 亚洲 欧美在线| 国产美女午夜福利| 欧美成人午夜免费资源| 高清毛片免费看| 久久精品国产a三级三级三级| 久久久久性生活片| 亚洲成人久久爱视频| 一级毛片我不卡| 亚洲最大成人手机在线| 一级毛片我不卡| 久久午夜福利片| 亚洲国产色片| 国产v大片淫在线免费观看| 亚洲人成网站高清观看| 精品久久久久久久人妻蜜臀av| 国产毛片在线视频| 夜夜看夜夜爽夜夜摸| 亚洲真实伦在线观看| av在线观看视频网站免费| 神马国产精品三级电影在线观看| 婷婷色麻豆天堂久久| 国内精品美女久久久久久| 1000部很黄的大片| 男女无遮挡免费网站观看| 97精品久久久久久久久久精品| 国产爱豆传媒在线观看| 亚洲成人av在线免费| 美女脱内裤让男人舔精品视频| 国产精品一区二区性色av| 寂寞人妻少妇视频99o| 久久久午夜欧美精品| 国产精品成人在线| 精品国产乱码久久久久久小说| 成人国产麻豆网| 国产欧美另类精品又又久久亚洲欧美| 国产精品三级大全| 亚洲精品久久午夜乱码| 亚洲高清免费不卡视频| 热99国产精品久久久久久7| 亚洲欧美日韩另类电影网站 | 欧美变态另类bdsm刘玥| h日本视频在线播放| 日本黄大片高清| 日产精品乱码卡一卡2卡三| 赤兔流量卡办理| 国产乱人偷精品视频| 看免费成人av毛片| 22中文网久久字幕| 亚洲欧美精品专区久久| 亚洲av男天堂| av在线天堂中文字幕| 热99国产精品久久久久久7| 久久精品国产亚洲av天美| 午夜视频国产福利| 麻豆久久精品国产亚洲av| av播播在线观看一区| 亚洲av免费在线观看| 国产精品久久久久久av不卡| 18禁动态无遮挡网站| 亚洲在线观看片| 亚洲国产日韩一区二区| 亚洲真实伦在线观看| 国产国拍精品亚洲av在线观看| 亚洲高清免费不卡视频| 久久精品久久久久久久性| 丝袜喷水一区| 亚洲不卡免费看| 欧美zozozo另类| 国模一区二区三区四区视频| 18禁动态无遮挡网站| 赤兔流量卡办理| 我的老师免费观看完整版| 国产欧美另类精品又又久久亚洲欧美| 好男人视频免费观看在线| 国产精品99久久99久久久不卡 | 国产日韩欧美亚洲二区| 免费大片黄手机在线观看| 久久久久久九九精品二区国产| 两个人的视频大全免费| 亚洲天堂国产精品一区在线| 一级av片app| 亚洲欧美日韩另类电影网站 | 亚洲一级一片aⅴ在线观看| 青青草视频在线视频观看| 麻豆精品久久久久久蜜桃| 日韩电影二区| 日韩,欧美,国产一区二区三区| 九九在线视频观看精品| 亚洲天堂av无毛| 亚洲内射少妇av| 18禁在线无遮挡免费观看视频| 丝袜脚勾引网站| 别揉我奶头 嗯啊视频| 看黄色毛片网站| 你懂的网址亚洲精品在线观看| 免费观看无遮挡的男女| 嫩草影院入口| 久久久久性生活片| 国产探花在线观看一区二区| 精品国产一区二区三区久久久樱花 | 2021天堂中文幕一二区在线观| 黄色怎么调成土黄色| 亚洲国产成人一精品久久久| 美女脱内裤让男人舔精品视频| 国产av不卡久久| 亚洲精品第二区| 色5月婷婷丁香| 日韩中字成人| 在线 av 中文字幕| 国产欧美亚洲国产| 2018国产大陆天天弄谢| 晚上一个人看的免费电影| 天天躁夜夜躁狠狠久久av| 国产亚洲91精品色在线| 亚洲精品中文字幕在线视频 | 一级a做视频免费观看| 免费观看a级毛片全部| 在线天堂最新版资源| 久久久亚洲精品成人影院| 日日啪夜夜撸| 男女下面进入的视频免费午夜| 只有这里有精品99| 国产v大片淫在线免费观看| 日本免费在线观看一区| 日本黄大片高清| 少妇丰满av| 青青草视频在线视频观看| 国产黄色视频一区二区在线观看| 免费黄频网站在线观看国产| av天堂中文字幕网| 日韩伦理黄色片| 超碰av人人做人人爽久久| 韩国av在线不卡| 久久久精品免费免费高清| 国产免费福利视频在线观看| 免费电影在线观看免费观看| 丝袜美腿在线中文| 久久精品久久久久久久性| 人人妻人人澡人人爽人人夜夜| xxx大片免费视频| 麻豆乱淫一区二区| 国产av码专区亚洲av| 男女国产视频网站| 中文在线观看免费www的网站| 午夜福利高清视频| 亚洲婷婷狠狠爱综合网| 美女被艹到高潮喷水动态| 国产真实伦视频高清在线观看| 美女内射精品一级片tv| 熟女av电影| 国产精品秋霞免费鲁丝片| 久久久久精品性色| 国产白丝娇喘喷水9色精品| 久久久国产一区二区| 美女高潮的动态| 精品国产露脸久久av麻豆| 国产视频首页在线观看| av黄色大香蕉| 哪个播放器可以免费观看大片| 丰满少妇做爰视频| 十八禁网站网址无遮挡 | 欧美人与善性xxx| 日日撸夜夜添| 少妇熟女欧美另类| 亚洲欧美精品自产自拍| 天天躁日日操中文字幕| 久久亚洲国产成人精品v| 少妇人妻 视频| 丝袜脚勾引网站| 黄色配什么色好看| 嫩草影院精品99| 久久精品国产鲁丝片午夜精品| 久久久亚洲精品成人影院| 91久久精品国产一区二区成人| 亚洲天堂国产精品一区在线| 亚洲天堂av无毛| 男人和女人高潮做爰伦理| 91狼人影院| 99久久中文字幕三级久久日本| 久久久久性生活片| 纵有疾风起免费观看全集完整版| 少妇裸体淫交视频免费看高清| videos熟女内射| 蜜臀久久99精品久久宅男| 欧美成人一区二区免费高清观看| 麻豆成人av视频| 久久精品国产自在天天线| 毛片一级片免费看久久久久| 一级毛片电影观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲av免费高清在线观看| 欧美xxxx性猛交bbbb| 国产精品人妻久久久久久| 美女脱内裤让男人舔精品视频| 国产欧美另类精品又又久久亚洲欧美| 久久久久九九精品影院| 亚洲av在线观看美女高潮| 欧美激情国产日韩精品一区| 国产日韩欧美在线精品| 国产av码专区亚洲av| 亚州av有码| 国产亚洲91精品色在线| 乱系列少妇在线播放| 国产伦精品一区二区三区四那| 精品人妻视频免费看| 亚洲婷婷狠狠爱综合网| 国产综合懂色| 夜夜看夜夜爽夜夜摸| 久久久精品94久久精品| 女人被狂操c到高潮| 伦理电影大哥的女人| 亚洲精品成人久久久久久| 嫩草影院入口| 18禁裸乳无遮挡免费网站照片| 99热这里只有是精品50| freevideosex欧美| 嫩草影院精品99| 亚洲人成网站在线播| 亚洲电影在线观看av| 国产一区二区亚洲精品在线观看| 国产视频内射| 国产精品.久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲成人久久爱视频| 国产成人freesex在线| 久久99热这里只有精品18| 成年人午夜在线观看视频| 97超碰精品成人国产| 久久国产乱子免费精品| 日韩成人av中文字幕在线观看| 国产精品久久久久久精品古装| 五月开心婷婷网| 免费av毛片视频| 国产亚洲av嫩草精品影院| 日韩欧美一区视频在线观看 | 老女人水多毛片| 你懂的网址亚洲精品在线观看| 免费电影在线观看免费观看| 下体分泌物呈黄色| 日韩,欧美,国产一区二区三区| 亚洲精品乱久久久久久| 亚洲国产色片| 欧美高清成人免费视频www| 久久99精品国语久久久| 精品久久国产蜜桃| 色婷婷久久久亚洲欧美| 天堂网av新在线| 久久热精品热| 丰满人妻一区二区三区视频av| 亚洲精品视频女| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩国内少妇激情av| 国产一区二区三区av在线| 少妇人妻一区二区三区视频| 午夜激情久久久久久久| 狂野欧美白嫩少妇大欣赏| 成人午夜精彩视频在线观看| 夜夜看夜夜爽夜夜摸| 精品久久国产蜜桃| 美女高潮的动态| 波野结衣二区三区在线| 中文精品一卡2卡3卡4更新| 下体分泌物呈黄色| 国产成人一区二区在线| 精品国产三级普通话版| 日本欧美国产在线视频| 国产又色又爽无遮挡免| 免费观看a级毛片全部| 国语对白做爰xxxⅹ性视频网站| 日韩欧美一区视频在线观看 | 午夜免费观看性视频| 美女国产视频在线观看| 日日啪夜夜爽| 搡女人真爽免费视频火全软件| 欧美3d第一页| 91aial.com中文字幕在线观看| 国产精品一区www在线观看| 免费观看av网站的网址| 99久久精品国产国产毛片| 免费av不卡在线播放| 久久99热这里只频精品6学生| 国产精品人妻久久久久久| 国产成人精品婷婷| 联通29元200g的流量卡| 日韩av免费高清视频| 亚洲天堂国产精品一区在线| 七月丁香在线播放| 日日啪夜夜爽| 国产精品一及| 精品人妻一区二区三区麻豆| 3wmmmm亚洲av在线观看| 亚洲精品国产av蜜桃| 国产精品成人在线| 成人鲁丝片一二三区免费| 男女啪啪激烈高潮av片| 亚洲人成网站在线观看播放| 2018国产大陆天天弄谢| 成人欧美大片| 久久精品久久久久久噜噜老黄| av国产精品久久久久影院| 久久人人爽人人爽人人片va| 精品久久久精品久久久| 久久久久久久国产电影| 中文天堂在线官网| 精品久久久精品久久久| 久久鲁丝午夜福利片| 亚洲精品国产成人久久av| 亚洲人成网站高清观看| 日韩不卡一区二区三区视频在线| a级毛色黄片| 亚洲av欧美aⅴ国产| 亚洲综合精品二区| 黄色一级大片看看| 在线观看国产h片| 久久精品熟女亚洲av麻豆精品| 亚洲国产av新网站| 又爽又黄无遮挡网站| 男女啪啪激烈高潮av片| 大香蕉97超碰在线| 伦理电影大哥的女人| 久久人人爽av亚洲精品天堂 | 免费看不卡的av| 777米奇影视久久| 亚洲精品一区蜜桃| 3wmmmm亚洲av在线观看| 久久精品国产亚洲网站| 边亲边吃奶的免费视频| 亚洲欧美清纯卡通| 国产黄片美女视频| 久久久精品欧美日韩精品| 97在线人人人人妻| 国产成人精品久久久久久| 又粗又硬又长又爽又黄的视频| 女人被狂操c到高潮| 性插视频无遮挡在线免费观看| 久久精品国产亚洲网站| 久久鲁丝午夜福利片| 国产精品秋霞免费鲁丝片| 99久国产av精品国产电影| 尾随美女入室| av免费在线看不卡| 麻豆乱淫一区二区| 最近中文字幕2019免费版| 深爱激情五月婷婷| 亚洲人成网站高清观看| 美女主播在线视频| 国产成人aa在线观看| 在线a可以看的网站| 国产高清国产精品国产三级 | 成人亚洲精品av一区二区| 午夜福利高清视频| 嫩草影院入口| 中国美白少妇内射xxxbb| 91久久精品国产一区二区三区| 国产日韩欧美亚洲二区| 国产真实伦视频高清在线观看| 国产淫片久久久久久久久| 尾随美女入室| 亚洲av福利一区| 亚洲精品国产av蜜桃| 国产极品天堂在线| 欧美激情国产日韩精品一区| 在线观看一区二区三区| 男人爽女人下面视频在线观看| 在线精品无人区一区二区三 | 久久99蜜桃精品久久| 免费观看的影片在线观看| 亚洲性久久影院| 成人国产av品久久久| 18+在线观看网站| 草草在线视频免费看| 少妇 在线观看| 全区人妻精品视频| 黄色怎么调成土黄色| 可以在线观看毛片的网站| 搡女人真爽免费视频火全软件| 久久人人爽人人片av| 亚洲电影在线观看av| 最近中文字幕高清免费大全6| 日韩电影二区| 亚洲伊人久久精品综合| 成人二区视频| 天天躁夜夜躁狠狠久久av| 午夜老司机福利剧场| 高清视频免费观看一区二区| 啦啦啦在线观看免费高清www| 国产91av在线免费观看| 国产精品成人在线| 51国产日韩欧美| 免费观看在线日韩| 亚洲最大成人av| 色视频www国产| 91精品国产九色| 成年女人看的毛片在线观看| 国产综合精华液| 在线观看一区二区三区激情| 一个人看的www免费观看视频| 久久精品久久久久久噜噜老黄| 熟女人妻精品中文字幕| 国产伦在线观看视频一区| 色吧在线观看| 婷婷色av中文字幕| 久久精品国产亚洲av涩爱| 欧美少妇被猛烈插入视频| 丝瓜视频免费看黄片| 国产精品福利在线免费观看| 午夜爱爱视频在线播放| 欧美日韩一区二区视频在线观看视频在线 | 久久99蜜桃精品久久| 国产精品蜜桃在线观看| www.色视频.com| 免费少妇av软件| 久久久精品94久久精品| 日韩,欧美,国产一区二区三区| 六月丁香七月| 国产高潮美女av| 免费黄色在线免费观看| 久久国产乱子免费精品| 涩涩av久久男人的天堂| 男女边吃奶边做爰视频| 日韩国内少妇激情av| 18禁在线无遮挡免费观看视频| 国产午夜福利久久久久久| 国产人妻一区二区三区在| 神马国产精品三级电影在线观看| 国产欧美日韩一区二区三区在线 | 美女被艹到高潮喷水动态| 国产精品女同一区二区软件| 亚洲美女搞黄在线观看| 永久网站在线| 免费观看无遮挡的男女| 欧美老熟妇乱子伦牲交| 亚洲国产欧美在线一区| av黄色大香蕉| 亚洲怡红院男人天堂| 在线亚洲精品国产二区图片欧美 | 大香蕉久久网| 亚洲av电影在线观看一区二区三区 | 国产白丝娇喘喷水9色精品| 大香蕉久久网| 成人高潮视频无遮挡免费网站| 成人国产麻豆网| 99久国产av精品国产电影| 在线a可以看的网站| 国产高清有码在线观看视频| 欧美97在线视频| 亚洲天堂av无毛| 建设人人有责人人尽责人人享有的 | 欧美日韩视频高清一区二区三区二| 可以在线观看毛片的网站| 亚洲国产欧美在线一区| 丝袜喷水一区| 高清日韩中文字幕在线| 亚洲美女搞黄在线观看| 亚洲欧美日韩无卡精品| 国产精品久久久久久久久免| 各种免费的搞黄视频| 另类亚洲欧美激情| 卡戴珊不雅视频在线播放| 国产成人精品久久久久久| 国产精品国产三级国产专区5o| 又大又黄又爽视频免费| 成人综合一区亚洲| 天美传媒精品一区二区| 免费观看在线日韩| 性色av一级| 国产精品秋霞免费鲁丝片| 国产淫语在线视频| 亚洲精品久久午夜乱码| 欧美xxⅹ黑人| 干丝袜人妻中文字幕| 久久久久久伊人网av| 精品久久久久久久人妻蜜臀av| 国产高清有码在线观看视频| 国产成人精品久久久久久| 国产精品一二三区在线看| 亚洲国产av新网站| 亚洲av中文字字幕乱码综合| 中文字幕制服av| 精品国产三级普通话版| 美女被艹到高潮喷水动态| 最近中文字幕高清免费大全6| 高清午夜精品一区二区三区| 人妻系列 视频| 99久久精品热视频| 看黄色毛片网站| 国产成人a∨麻豆精品| 交换朋友夫妻互换小说| 欧美3d第一页| 日韩三级伦理在线观看| 伦精品一区二区三区| 久久久久九九精品影院| 亚洲精品久久久久久婷婷小说| 丝瓜视频免费看黄片| 夫妻午夜视频| 大香蕉久久网| 黄色视频在线播放观看不卡| 精品久久久久久久久亚洲| 天堂网av新在线| 色视频在线一区二区三区| 日本免费在线观看一区| 热re99久久精品国产66热6| 国产精品久久久久久精品电影| 午夜免费观看性视频| 91久久精品国产一区二区成人| 午夜福利网站1000一区二区三区| 欧美日韩亚洲高清精品| 国产黄a三级三级三级人| 亚洲国产日韩一区二区| 亚洲国产色片| 视频区图区小说| 亚洲丝袜综合中文字幕| 欧美zozozo另类| 亚洲av欧美aⅴ国产| 中文字幕免费在线视频6| 有码 亚洲区| 看十八女毛片水多多多| 免费黄色在线免费观看| 亚洲av男天堂| 伦精品一区二区三区| 2021少妇久久久久久久久久久| 国产真实伦视频高清在线观看| 亚洲av成人精品一区久久| 日本av手机在线免费观看| 亚洲第一区二区三区不卡| 女人被狂操c到高潮| xxx大片免费视频| 日韩,欧美,国产一区二区三区| 国产老妇伦熟女老妇高清| 黄片wwwwww| 久久这里有精品视频免费| 毛片一级片免费看久久久久| 国产黄色免费在线视频| 日日啪夜夜爽| 国产精品女同一区二区软件| 制服丝袜香蕉在线| 欧美极品一区二区三区四区| 一级毛片电影观看| 美女脱内裤让男人舔精品视频| 成年免费大片在线观看| 精品午夜福利在线看| 亚洲国产日韩一区二区| 乱系列少妇在线播放| 搡女人真爽免费视频火全软件| 人人妻人人看人人澡| 亚洲综合精品二区| 亚洲精品日韩av片在线观看| 一级毛片aaaaaa免费看小| 91精品伊人久久大香线蕉| 亚洲精品日韩在线中文字幕| 免费黄频网站在线观看国产| 亚洲精品久久午夜乱码| 天天躁夜夜躁狠狠久久av| 97在线人人人人妻| 午夜免费鲁丝| av在线蜜桃| 熟妇人妻不卡中文字幕| 我要看日韩黄色一级片| 国产成人精品久久久久久| 狠狠精品人妻久久久久久综合| a级毛片免费高清观看在线播放| 最近中文字幕2019免费版| 亚洲成人一二三区av| 一边亲一边摸免费视频| 夫妻性生交免费视频一级片| 天堂俺去俺来也www色官网| 18禁裸乳无遮挡动漫免费视频 | 精品久久久精品久久久| 国产真实伦视频高清在线观看| 美女被艹到高潮喷水动态| 国模一区二区三区四区视频| 国产真实伦视频高清在线观看| 美女被艹到高潮喷水动态| 一级毛片我不卡| 亚洲精品成人久久久久久| 日韩一区二区视频免费看| 国模一区二区三区四区视频| 国产一区二区三区av在线| 美女被艹到高潮喷水动态| 欧美日韩国产mv在线观看视频 | 亚洲欧美日韩卡通动漫| 亚洲精品日韩在线中文字幕| 99热这里只有是精品50| 国产成人a∨麻豆精品| av播播在线观看一区| 秋霞伦理黄片| 男插女下体视频免费在线播放| av免费观看日本| 波多野结衣巨乳人妻| 亚洲最大成人手机在线|