• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and Experimental Evaluation of PID Controller for Digital Electro-Pneumatic Cabin Pressure Control System

    2016-12-01 03:18:48NieJinfangPanQuanShenHaoSongZhitaoZhangDalin

    Nie Jinfang,Pan Quan,Shen Hao,Song Zhitao,Zhang Dalin

    1.College of Automation,Northwestern Polytechnical University,Xi′an 710072,P.R.China;

    2.Shanghai Aircraft Airworthiness Certification Center of CAAC,Shanghai 200335,P.R.China;

    3.Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Design and Experimental Evaluation of PID Controller for Digital Electro-Pneumatic Cabin Pressure Control System

    Nie Jinfang1,3,Pan Quan1,Shen Hao2,Song Zhitao2,Zhang Dalin3*

    1.College of Automation,Northwestern Polytechnical University,Xi′an 710072,P.R.China;

    2.Shanghai Aircraft Airworthiness Certification Center of CAAC,Shanghai 200335,P.R.China;

    3.Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    The performance of the designed digital electro-pneumatic cabin pressure control system for the cabin pressure schedule of transport aircraft is investigated.Eor the purpose of this study,an experimental setup consisting of a simulated hermetic cabin and altitude simulation chamber is configured for cabin pressure control system operation.A series of experimental tests are executed to evaluate the performance of the cabin pressure control system.The parameters of the PID controller are optimized.In the optimization process,the variation regularity of the rate of cabin pressure change under various conditions is considered.An approach to prioritize the control of the rate of change of cabin pressure based on the flight status model is proposed and verified experimentally.The experimental results indicate that the proposed approach can be adopted for the designed digital electro-pneumatic cabin pressure control system to obtain a better cabin pressure schedule and rate of cabin pressure change.

    cabin;pressure control;digital electro-pneumatic;PID controller

    0 Introduction

    The cabin pressure control system(CPCS) controls the cabin pressure and pressurization rate to protect the passengers and the airplane.Since pneumatically driven systems have many distinct characteristics,such as energy-saving,cleanliness,a simple structure and operation,and high efficiency,and are suitable for working in a harsh environment,they have been extensively used for many years in cabin pressure control systems[1,2]. Recently,the appearance and development of electro-pneumatic proportional components have advanced pneumatic control techniques beyond the restrictions of point-to-point control.Electropneumatic proportional control components can convert an analog electrical input signal into outlet flow or pressure.Therefore,they can dramatically simplify pneumatic and electric circuits.

    In the past few years,several researchers have devoted their investigations to modeling the electro-pneumatic cabin pressure control system[3,4].Other studies have mainly focused on the digital proportional,integral,and derivative (PID)control strategy for the electro-pneumatic cabin pressure control system[5-9].The current trend to develop an improved electro-pneumatic cabin pressure control system with good performances in terms of safety,stability,and accuracy requires investigation to find the optimum parameters of a PID controller.This paper investigates the stability and dynamic performance of a digital electro-pneumatic cabin pressure control system with the PID control method.Eor the purpose of this study,an experimental setup is configuredfor cabin pressure control system operation.The PID controller,which is connected in a microcomputer together with a data acquisition card,is implemented.A series of tests are conducted to verify the controller′s performance for particular situations that are relevant to the aircraft′s cabin pressure control system behavior.

    *Corresponding author,E-mail address:zhangdalin@nuaa.edu.cn.

    How to cite this article:Nie Jinfang,Pan Quan,Shen Hao,et al.Design and experimental evaluation of PID controller for digital electro-pneumatic cabin pressure control system[J].Trans.Nanjing Univ.Aero.Astro.,2016,33(5):576-583. http://dx.doi.org/10.16356/j.1005-1120.2016.05.576

    1 Cabin Pressure Control System Model

    Fig.1 shows the arrangement of the digital electro-pneumatic cabin pressure control system, which is composed of a digital controller,outflow valve,and cabin.As illustrated in Fig.1,two absolute pressure sensors are used to monitor the atmospheric pressure and cabin pressure,respectively.The cabin pressure and its rate of change are set by the cabin pressure selector.The required target for the actuator is calculated with PID according to the atmospheric pressure from the air data computer and a given cabin pressure schedule.D/A drives torque motor deflection to transform the opening of the outflow valve, which in turn controls the pressure,excess pressure,and rate of cabin pressure change in real time.

    Fig.2 shows a schematic diagram of the outflow valve.The valve action is driven by the gravity of the moving part,preload of the spring, and differential pressure between the cabin pressure and cavity pressure.Compared with a purely pneumatic system,the digital pneumatic actuator has a digital signal regulator.This regulator consists of four elements:two nozzles with an air inlet from the cabin and an exhaust outlet to the atmosphere,a torque motor,and a triangle block. The torque motor dives the triangle block to change the nozzles′cross-sectional area,which controls the flux of air.Consequently,the valve opening is controlled by differential pressure on the diaphragm for controlling the pressure and rate of pressure change in the cabin.

    Fig.2 Structure of outflow valve

    2 Experiment

    Fig.3 shows the setup of the experiments. The core of the system is a simulated hermetic cabin.The simulated hermetic cabin and the digital controller are connected with a communications cable.This digital controller receives the simulated hermetic cabin pressure,the atmospheric pressure,and differential pressure signals. Before the activation of the controller,the rule set and associated membership functions in a precompiled format are sent to it.The atmospheric environment is simulated by a high-altitude simulation cabin[4,5],which simulates the atmospheric pressure while climbing and descending during flight.The atmospheric pressure is controlled by the openings of the gulp valve and the outflow valve.Two pressure transducers are used to check the pressure in the hermetic cabin and the pressure in the high-altitude simulation cabin,re-spectively.An air mass flow sensor is used to measure the flow rate at the inlet of the hermetic cabin.A vacuum pump expels the air of the highaltitude simulation cabin through the outflow valve.The installation of the outflow valve is shown in Fig.4.

    Fig.3 Experimental setup of cabin pressure control

    Fig.4 Installation of outflow valve

    The measurement and control system is built for data gathering and controlling the pressures of the hermetic cabin and the high-altitude simulation cabin based on the virtual instruments.A data acquisition and control board named SCXI-1600 is used in the system.SCXI-1600 has an accuracy of 16 bit and a rate of up to 200 kb/s.The current signal of the pressure sensors is sent to a PC via the SCXI-1102 conditioning module and SCXI-1303 terminal board.The output of the control signals computed and filtered from an analog device is transmitted by SCXI-1124 and the SCXI-1325 terminal board.The measurement and control system hardware structure is shown in Fig.5.The test rig is automated with Lab VIEW software to ensure the timing and sequence of events are precise and repeatable.Through Lab-VIEW,the acquisition and control codes are developed.Using the Lab VIEW software provided by the MATLAB script node,the acquisition and control codes can directly call Euzzy Logic Toolbox of MATLAB via Lab VIEW to design the fuzzy control rule and correction.

    Fig.5 Measurement and control system hardware structure

    Controlling the pressure of the high-altitude simulation cabin is very difficult during testing. This is associated with the performance of the cabin pressure control system being tested.It is difficult for the automatic control of pressure to meet the functioning requirements when the per-formance of the cabin pressure control system being tested is unstable.This is because the variation of the outflow valve opening causes air to flow into the high-altitude simulation cabin, which results in rapid change in a short period of time,showing that the change of cabin pressure is larger,and even leads to the coupling resonance of the two control systems and breakdown of the test unit.Therefore,manual intervention is necessary during the early stage of experiment,and the automatic control is activated when the tested pressure control system is relatively stable.

    Fig.6 Application interface

    3 Experimental Results

    A series of tests are executed to evaluate the performance of the cabin pressure control system for transport aircraft.A cabin pressure schedule of transport aircraft is shown in Fig.7.The cabin pressure is divided into three zones:free ventilation,absolute pressure,and overpressure within the flight altitude range.Based on these pressure data,the PID control parameters can be found by systematically adjusting their values to obtain the best permitting ones.

    In this section,a series of tests are performed in order to validate the performance of the digital electro-pneumatic cabin pressure control system for a given flight status.Two main requirements should be satisfied:

    (1)The pressure of the simulated hermetic cabin is controlled to follow the cabin pressure schedule of transport aircraft during climbing and diving.

    Fig.7 Cabin pressure schedule of transport aircraft

    (2)The rate of the simulated hermetic cabin pressure change under climbing and diving conditions is controlled.

    According to the PID algorithm,the controller output signal consists of three terms

    where e represents the deviation signal of the control parameter,Kpthe proportional gain,Tithe integral time constant,and Tdthe differentiating time constant.In the paper,u is the output current signal of the torque motor and e the pressure difference signal.The pressure signal is gathered 10 times per second by using anti-pulse-interfere median filtering.The nonlinear partial differential equations are converted to the incremental type in the calculation of PID[10]

    where Kp,Ki,and Kdare the constants.The values for u(n)andΔu(n)are the set upper and lower limits according to the practical system.

    The test considers a setting pressure value of the absolute pressure region for three cabin altitudes:90 kPa for 1 km,80 kPa for 2 km,and 70 k Pa for 3 km,and the supply airflow rate is 3 000 kg/h.The PID control parameters are set to Kp=3,Ki=0.5,and Kd=2 along with a sampling period of 1 s.The valve reaches the maximum opening to ensure free ventilation when the value of ambient pressure is larger than that of the setting pressure.The experimental data for the 1 km working condition are listed here to il-lustrate the problems during the control process. Fig.8 shows the experimental response of the cabin pressure for climbing within the free ventilation zone and absolute pressure zone for the 1 km working condition.Similar to the purely pneumatic cabin pressure control system,the cabin pressure curve overshoots down from the free ventilation zone to the absolute pressure zone.This is because the valve is not closed promptly at the appropriate location.The drive current shows that the torque motor opens the valve faster than it closes the valve for the same Δu(n);Thus,the pressurized process forms faster than the decompression process.Clearly,the pressure control system cannot work within the absolute pressure zone.

    In order to solve the problems,the judgment of setting pressure is added into the program(See Fig.8).The input current of the torque motor is decreased before the ambient pressure reaches the setting pressure,so that the valve is gradually closed to reduce the overshoot of the setting pressure point.

    Fig.8 Experimental response of cabin pressure with Kp=3,Ki=0.5,and Kd=2

    In order to suppress the amplitude of cabin pressure oscillation,the integral term of the PID algorithm is separated as follows:

    The experimental results for the responses for 1 km with the optimized PID algorithm are shown in Fig.9.

    It can be seen from Fig.9 that the overshootis suppressed after the point starts to adjust the pressure.By using integral separation and increasing the control cycle,the pressure in the absolute pressure zone becomes(90±2)k Pa,which basically meets the pressure control target even though decompression is still faster than pressurization in the curve.

    Fig.9 Experimental response of cabin pressure with optimized PID algorithm

    Figs.10,11 show the complete curves of the cabin pressure and its rate of change with altitude during the aircraft climbing process.In Fig.10, the cabin pressure basically conforms to the cabin pressure schedule of the transport aircraft,but significant fluctuations still exist in the whole process.As shown in Fig.11,the speed of pressurization is greater than+40 Pa/s,and the speed of decompression is greater than-100 Pa/ s.Actually,similar problems appear under 2 km and 3 km working conditions.Therefore,further tuning of the parameters of the PID controller according to the operating characteristics of the system is necessary.

    It turns out to be very difficult to achieve accurate and stable control merely by tuning the PID parameters.The operating characteristics of the cabin pressure control system need to be further analyzed.

    According to the operating principle of the system,overpressure is the power source of outflow valve actuation.The change of overpressure is the main interference of the system when the supply airflow is constant.Eor a given cabin pressure schedule,the cabin overpressure increases as the altitude increases within the absolutepressure zone when the aircraft climbs and the opposite occurs when the aircraft dives.

    Fig.10 Cabin pressure response curves with flight altitude during climbing(1 km)

    Fig.11 Rate of cabin pressure change with flight altitude during climbing

    In order to keep the exhaust flow constant,it is necessary to decrease the opening of the outflow valve when the overpressure increases for climbing.The speed of pressurization probably exceeds the design standard during the process. The judgment of the rate of cabin pressure change needs to be considered preferentially to maintain the rate of cabin pressure change within a specified range.Specifically,when the rate of change is greater than some typical values,the operating of the valve should be retarded or even stopped. The operating of the outflow valve depends on the displacement of the block driven by a motor.The electric current used to drive the corresponding valve opening should be decreased as the overpressure increases.Eor the diving and cruising process,a similar analysis should be conducted.

    According to the above analysis,some modifications are made to the digital PID control program:

    (1)Determining the flight status of the aircraft(climbing/diving/cruising).

    (2)Adjusting the PID parameters based on the flight status to follow the change of overpressure.

    (3)Judging the rate of cabin pressure change in the decompression and pressurization processes to keep the rate of cabin pressure change within a specified range preferentially.

    The results of the experimental verification based on the above proposed control method are shown in Figs.12—19.Specially,Figs.18,19 show the results of the backup status when the backup overpressure is 19.6 k Pa.

    As can be seen from the experimental results,the developed digital electro-pneumatic cabin pressure control system can match the given cabin pressure schedule.Meanwhile,the experimental results indicate that the rate of cabin pressure change can be controlled effectively with the proposed approach.

    Fig.12 Cabin pressure responses during climbing for the proposed model(1 km)

    Fig.14 Cabin pressure responses during climbing for the proposed model(2 km)

    Fig.15 Rate of cabin pressure change during climbing for the proposed model(2 km)

    Fig.16 Cabin pressure responses during diving for the proposed model(2 km)

    Fig.17 Rate of cabin pressure change during diving for the proposed model(2 km)

    Fig.18 Cabin pressure responses during climbing for the proposed model(3 km,backup overpressure)

    Fig.19 Rate of cabin pressure change during diving for the proposed model(3 km,backup overpressure)

    4 Conclusions

    An approach to prioritize the control of the rate of change of cabin pressure based on the flight status model for a digital electro-pneumatic cabin pressure control system is presented in order to improve control performance during aircraft climbing and diving.Experimental evaluation of the pressure controller is carried out for a digital electro-pneumatic cabin pressure control system,and the results show the controller can work effectively and stably to control the cabin pressure rate of change to fulfill the requirement of human physical comfort.

    [1] WANG Jun,XU Yanghe.Control of air parameters in aircraft cabin[M].Beijing:National Defense Industry Press,1980.(in Chinese)

    [2] TANG Jian,ZHANG Xingjuan,YUAN Xiugan. Research on dynamic performance of new cabin′spressure regulator[J].Aircraft Engineering,2005 (4):45-49.(in Chinese)

    [3] LEE E B.Electronic pressure regulator:AIAA 90-1940[R].1990.

    [4] ETTL H U.Modern digital pressure control system: AIAA 88-3948-CP[R].1988.

    [5] MA Hui.Research on control system of simulated atmospheric pressure cabin[D].Nanjing:Nanjing University of Aeronautics&Astronautics,2006.(in Chinese)

    [6] NIE Jinfang,PAN Quan,ZHANG Dalin.Performance investigation of high-altitude simulation cabin based on Labview[J].Journal of Nanjing University of Aeronautics&Astronautics,2014,46(4):594-598.(in Chinese)

    [7] WU Yan,ZHANG Dalin.Modeling and performance analysis of digital electronic-pneumatic cabin pressure control system[J].Journal of Nanjing University of Aeronautics&Astronautics,2008,40(3):324-328. (in Chinese)

    [8] ZHU Lei,EU Yongling,ZHAO Jingquan.Euzzy sliding mode variable structure control of digital cabin pressure regulating system[J].Journal of Applied Science,2009,27(5):545-549.(in Chinese)

    [9] HAN Yefei,EANG Gang,HU Yongxiang,et al. Modeling and PID controller designing for pressure control system of cabin function test[J].Journal of Shanghai Jiao Tong University,2011,45(7):1074-1079.(in Chinese)

    [10]CHEN Zhijiu,WU Jingyi.Automation of refrigeration equipment[M].2nd Ed.Beijing:China Machine Press,2010.(in Chinese)

    Prof.Nie Jinfang received B.S.degree in electronics engineering from Beijing University of Aeronautics and Astronautics(BUAA)in 1989 and M.S.degree in mechanical engineering from BUAA in 2004.He joined in China Research Institute of Aero-Accessories(CRIAA,former NEIAS)in 1989.Currently,he works as a professor in Nanjing Engineering Institute of Aircraft System,AVIC(NEIAS)and Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,Nan-

    jing,China.His research is focused on aircraft environment control systems.

    Prof.Pan Quan received B.S.degree in automation engineering from Huazhong University of Science and Technology,Wuhan,China,in 1982,and M.S.and Ph.D.degrees in control theory and application from Northwest Polytechnical University(NWPU),Xi′an,China,in 1991 and 1997,respectively.He is currently a full professor and president of College of Automation.His research is focused on the theory and application of information fusion,target tracking and recognition technology,spectral imaging and image processing,intelligence surveillance reconnaissance sensing system of large-scale data analysis and synthesis, UAV and aerospace satellite navigation and control platform,network information security and confidentiality of modern technology.

    Mr.Shen Hao received B.S.degree from Nanjing University of Aeronautics and Astronautics in 2000.He works for Hongdu Aviation Industry Group from 2000 to 2008.In 2008,he joined in Shanghai aircraft airworthiness certification center of CAAC,and he is the senior engineer of the mechanical system department.

    Mr.Song Zhitao received B.S.degree from Northwestern Polytechnical University in 1988.He worked for Chengdu Aircraft Industrial Group from 1988 to 2007.In 2008,he joined in Shanghai aircraft airworthiness certification center of CAAC,and he is the director of the mechanical system department.

    Prof.Zhang Dalin received B.S.degree in Aircraft Environmental Control from Nanjing University of Aeronautics and Astronautics(NUAA),Nanjing,China,in 1993,and M.S.degree in Power Engineering and Engineering Thermophysics and Ph.D.degree in Aircraft Design Engineering from NUAA,in 1996 and 2003,respectively.He is currently a full professor of College of Aerospace Engineering of NUAA,and also a member of Academic Committee of Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,Nanjing,China.His research is focused on the aircraft environmental control,aircraft icing and anti/deicing,numerical simulation and experiment of heat and mass transfer.

    (Executive Editor:Xu Chengting)

    V223.2 Document code:A Article ID:1005-1120(2016)05-0576-08

    (Received 27 April 2015;revised 7 July 2015;accepted 18 August 2015)

    少妇丰满av| 免费黄网站久久成人精品| 少妇熟女aⅴ在线视频| 老司机福利观看| 日本欧美国产在线视频| 69av精品久久久久久| 国产黄a三级三级三级人| 国产蜜桃级精品一区二区三区| 亚洲精品日韩av片在线观看| 国产精品久久久久久亚洲av鲁大| 一级黄色大片毛片| 变态另类成人亚洲欧美熟女| 亚洲欧美日韩东京热| netflix在线观看网站| 别揉我奶头 嗯啊视频| 99久国产av精品| 女的被弄到高潮叫床怎么办 | 亚洲av电影不卡..在线观看| 久久精品国产亚洲网站| 午夜福利视频1000在线观看| www.www免费av| 最近中文字幕高清免费大全6 | 日本爱情动作片www.在线观看 | 草草在线视频免费看| 日本与韩国留学比较| 精品久久久久久,| eeuss影院久久| 国产精品久久久久久精品电影| 美女免费视频网站| 国产不卡一卡二| 黄片wwwwww| 免费看a级黄色片| 欧美日本亚洲视频在线播放| 国产不卡一卡二| 男人舔女人下体高潮全视频| 日本黄大片高清| 欧美+亚洲+日韩+国产| 日本与韩国留学比较| 一a级毛片在线观看| 热99在线观看视频| 男女下面进入的视频免费午夜| 婷婷六月久久综合丁香| 他把我摸到了高潮在线观看| 免费av毛片视频| 亚洲一级一片aⅴ在线观看| 深夜精品福利| 亚洲精品国产成人久久av| 深爱激情五月婷婷| 最近中文字幕高清免费大全6 | 亚洲av电影不卡..在线观看| 校园春色视频在线观看| 老司机午夜福利在线观看视频| 亚洲av不卡在线观看| 精品久久久久久久久久久久久| 高清在线国产一区| 欧美高清性xxxxhd video| 在线播放国产精品三级| 日本三级黄在线观看| 国产在视频线在精品| 成人欧美大片| 成人欧美大片| 国产精品人妻久久久久久| 国产探花极品一区二区| h日本视频在线播放| 永久网站在线| 日韩人妻高清精品专区| 久久国产乱子免费精品| 热99在线观看视频| 99久久中文字幕三级久久日本| 99热只有精品国产| 国产黄a三级三级三级人| 嫩草影院精品99| 日本免费a在线| 日日干狠狠操夜夜爽| 18禁在线播放成人免费| 国产精品精品国产色婷婷| 国产精品国产三级国产av玫瑰| 国产黄a三级三级三级人| av在线天堂中文字幕| 深爱激情五月婷婷| 夜夜爽天天搞| 国产美女午夜福利| 可以在线观看的亚洲视频| 51国产日韩欧美| 日本撒尿小便嘘嘘汇集6| 国产精品伦人一区二区| 亚洲不卡免费看| 成人亚洲精品av一区二区| 亚洲美女搞黄在线观看 | 桃色一区二区三区在线观看| 91麻豆av在线| 久久久久久久亚洲中文字幕| 99热精品在线国产| 特级一级黄色大片| 黄色一级大片看看| 免费看日本二区| 最新在线观看一区二区三区| 日韩欧美在线二视频| 国产aⅴ精品一区二区三区波| 日本一本二区三区精品| 免费观看精品视频网站| 韩国av一区二区三区四区| 成年版毛片免费区| 成人特级黄色片久久久久久久| 成人av一区二区三区在线看| 亚洲成人久久性| 亚洲精品日韩av片在线观看| 91麻豆精品激情在线观看国产| 国产成人福利小说| 极品教师在线免费播放| 国产黄色小视频在线观看| 欧美成人a在线观看| 久久久色成人| 老司机午夜福利在线观看视频| 亚洲美女搞黄在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久久久丰满 | 我的老师免费观看完整版| 国产av在哪里看| 色吧在线观看| 亚洲精品国产成人久久av| 亚洲七黄色美女视频| 熟女电影av网| 国产69精品久久久久777片| 欧美另类亚洲清纯唯美| 国产 一区 欧美 日韩| a级一级毛片免费在线观看| 搡老熟女国产l中国老女人| 又紧又爽又黄一区二区| 亚洲成人久久性| 亚洲成人中文字幕在线播放| 久久久成人免费电影| 国产av不卡久久| 精品免费久久久久久久清纯| 午夜精品在线福利| 欧美3d第一页| 国产综合懂色| 免费人成在线观看视频色| 成人高潮视频无遮挡免费网站| 一个人看的www免费观看视频| 国产精品久久久久久亚洲av鲁大| 99久久精品热视频| 淫秽高清视频在线观看| 欧美黑人巨大hd| bbb黄色大片| 中文字幕免费在线视频6| 精品国内亚洲2022精品成人| 成人永久免费在线观看视频| 少妇高潮的动态图| ponron亚洲| 欧美bdsm另类| 在线免费观看的www视频| 欧美性猛交╳xxx乱大交人| 狠狠狠狠99中文字幕| a在线观看视频网站| 日本撒尿小便嘘嘘汇集6| 日韩欧美国产在线观看| 国产精品人妻久久久久久| 看十八女毛片水多多多| 亚洲最大成人中文| 国产乱人伦免费视频| 欧美日韩国产亚洲二区| 国内精品一区二区在线观看| 成年女人看的毛片在线观看| 搡老岳熟女国产| 国产国拍精品亚洲av在线观看| 69av精品久久久久久| 美女 人体艺术 gogo| 亚洲国产精品久久男人天堂| 午夜视频国产福利| 国产白丝娇喘喷水9色精品| 91午夜精品亚洲一区二区三区 | 又爽又黄无遮挡网站| 九色国产91popny在线| 久久久久免费精品人妻一区二区| 九九在线视频观看精品| 久久国产乱子免费精品| 九色成人免费人妻av| 久久天躁狠狠躁夜夜2o2o| 国产日本99.免费观看| 波多野结衣巨乳人妻| 欧美区成人在线视频| 亚洲精品在线观看二区| 久久这里只有精品中国| 噜噜噜噜噜久久久久久91| 国模一区二区三区四区视频| 欧美3d第一页| 99精品在免费线老司机午夜| 看免费成人av毛片| 免费看a级黄色片| 国产精品人妻久久久影院| 精品免费久久久久久久清纯| 1024手机看黄色片| 亚洲久久久久久中文字幕| 日日摸夜夜添夜夜添av毛片 | 亚洲七黄色美女视频| 中文字幕精品亚洲无线码一区| 噜噜噜噜噜久久久久久91| 少妇裸体淫交视频免费看高清| 亚洲国产色片| 亚洲人成网站高清观看| 亚洲最大成人中文| 亚洲精品一区av在线观看| 亚洲av成人av| 桃红色精品国产亚洲av| 美女高潮的动态| 亚洲中文日韩欧美视频| 亚洲第一区二区三区不卡| 久久精品国产亚洲av香蕉五月| 午夜亚洲福利在线播放| 很黄的视频免费| 看片在线看免费视频| 日本黄色视频三级网站网址| avwww免费| av视频在线观看入口| 女人被狂操c到高潮| av专区在线播放| 亚洲电影在线观看av| 国内揄拍国产精品人妻在线| 欧美日韩中文字幕国产精品一区二区三区| 99久久精品国产国产毛片| 亚洲久久久久久中文字幕| 日韩国内少妇激情av| 国产午夜精品久久久久久一区二区三区 | 夜夜夜夜夜久久久久| 成人欧美大片| 窝窝影院91人妻| 国产男靠女视频免费网站| 亚洲精品久久国产高清桃花| 小说图片视频综合网站| 亚洲国产精品合色在线| 国产成人a区在线观看| 99久国产av精品| 午夜久久久久精精品| 精品99又大又爽又粗少妇毛片 | 国产单亲对白刺激| 久久精品国产99精品国产亚洲性色| 亚洲av电影不卡..在线观看| 亚洲人成网站在线播| 国产一区二区在线观看日韩| 国语自产精品视频在线第100页| 看免费成人av毛片| 免费在线观看影片大全网站| 午夜影院日韩av| 他把我摸到了高潮在线观看| 琪琪午夜伦伦电影理论片6080| 免费大片18禁| a在线观看视频网站| 亚洲男人的天堂狠狠| 久久久久久久久中文| 久久欧美精品欧美久久欧美| 久久久久久伊人网av| 亚洲无线在线观看| 欧美zozozo另类| 亚洲欧美日韩高清专用| 亚洲国产色片| 精品午夜福利视频在线观看一区| 国产又黄又爽又无遮挡在线| 国产亚洲精品综合一区在线观看| 老熟妇乱子伦视频在线观看| 亚洲专区中文字幕在线| 99久久精品热视频| 国产一区二区亚洲精品在线观看| 国产高清有码在线观看视频| 国产麻豆成人av免费视频| av在线老鸭窝| 欧美激情久久久久久爽电影| 国产女主播在线喷水免费视频网站 | 欧美高清成人免费视频www| 欧美日韩瑟瑟在线播放| av在线蜜桃| 黄片wwwwww| 琪琪午夜伦伦电影理论片6080| 午夜福利在线观看吧| 18禁黄网站禁片午夜丰满| 日本一本二区三区精品| 亚洲av中文字字幕乱码综合| 日韩在线高清观看一区二区三区 | 国产精品久久久久久亚洲av鲁大| 3wmmmm亚洲av在线观看| 亚洲熟妇熟女久久| 欧美黑人巨大hd| 很黄的视频免费| 九色国产91popny在线| 国产精品亚洲美女久久久| 悠悠久久av| 美女高潮喷水抽搐中文字幕| 欧美日韩乱码在线| 99在线视频只有这里精品首页| 一级av片app| 可以在线观看毛片的网站| 黄色日韩在线| 美女大奶头视频| 久久这里只有精品中国| 男女之事视频高清在线观看| 国产麻豆成人av免费视频| 午夜精品一区二区三区免费看| 波野结衣二区三区在线| 日日啪夜夜撸| 香蕉av资源在线| or卡值多少钱| 嫩草影院入口| 桃色一区二区三区在线观看| 精品国内亚洲2022精品成人| 在线观看免费视频日本深夜| 午夜福利欧美成人| 国产精品女同一区二区软件 | 亚洲,欧美,日韩| 一进一出抽搐gif免费好疼| 搡女人真爽免费视频火全软件 | 欧美绝顶高潮抽搐喷水| 国产一级毛片七仙女欲春2| 热99在线观看视频| 狠狠狠狠99中文字幕| 99精品久久久久人妻精品| 欧美高清性xxxxhd video| 亚洲国产精品合色在线| 亚洲欧美日韩无卡精品| 欧美性猛交黑人性爽| 在现免费观看毛片| 国产aⅴ精品一区二区三区波| av福利片在线观看| 最新中文字幕久久久久| 亚洲av第一区精品v没综合| 欧美丝袜亚洲另类 | 黄色女人牲交| 69av精品久久久久久| 亚洲久久久久久中文字幕| 看免费成人av毛片| 婷婷六月久久综合丁香| 日韩欧美免费精品| 国产单亲对白刺激| 国产精品不卡视频一区二区| 日韩人妻高清精品专区| 九色成人免费人妻av| 午夜精品久久久久久毛片777| 久久久久久久久久久丰满 | 国产在线男女| 1000部很黄的大片| 97超视频在线观看视频| 国产成人影院久久av| 色尼玛亚洲综合影院| 日韩精品中文字幕看吧| 欧美日本亚洲视频在线播放| 午夜亚洲福利在线播放| 色视频www国产| 欧美一级a爱片免费观看看| 我的老师免费观看完整版| 九色成人免费人妻av| 中文字幕精品亚洲无线码一区| 国产在线男女| av国产免费在线观看| 一个人观看的视频www高清免费观看| 麻豆精品久久久久久蜜桃| 淫妇啪啪啪对白视频| 12—13女人毛片做爰片一| 床上黄色一级片| 蜜桃亚洲精品一区二区三区| 女同久久另类99精品国产91| 在线免费观看的www视频| 久9热在线精品视频| 一个人看视频在线观看www免费| 男女做爰动态图高潮gif福利片| 色精品久久人妻99蜜桃| 美女被艹到高潮喷水动态| 最好的美女福利视频网| 日本爱情动作片www.在线观看 | 成人二区视频| 国产乱人伦免费视频| 欧美黑人欧美精品刺激| 美女 人体艺术 gogo| 久久精品国产亚洲av涩爱 | 久久人妻av系列| 国产爱豆传媒在线观看| 一区二区三区四区激情视频 | 久久亚洲精品不卡| 99精品久久久久人妻精品| av在线亚洲专区| 男人舔女人下体高潮全视频| 欧美xxxx黑人xx丫x性爽| 看片在线看免费视频| 国产一区二区在线观看日韩| 亚洲欧美清纯卡通| 免费在线观看日本一区| 男人舔奶头视频| 国产黄色小视频在线观看| 久久草成人影院| 亚洲国产高清在线一区二区三| 女生性感内裤真人,穿戴方法视频| 国产成人av教育| 婷婷亚洲欧美| 热99在线观看视频| 一本久久中文字幕| 又爽又黄a免费视频| 国内少妇人妻偷人精品xxx网站| 舔av片在线| 久久久久久久久久久丰满 | 18禁黄网站禁片免费观看直播| 亚洲欧美日韩卡通动漫| 国产综合懂色| 日本免费一区二区三区高清不卡| 长腿黑丝高跟| 亚洲一区高清亚洲精品| 少妇高潮的动态图| 在线免费观看的www视频| 国产成人av教育| 亚洲国产日韩欧美精品在线观看| 97人妻精品一区二区三区麻豆| 一区二区三区免费毛片| 国产精品不卡视频一区二区| 精品一区二区免费观看| 99久久精品国产国产毛片| 日韩一区二区视频免费看| 国产三级中文精品| 我要看日韩黄色一级片| 精品久久久久久成人av| 精品一区二区三区人妻视频| 亚洲性夜色夜夜综合| 欧美极品一区二区三区四区| 亚洲人成网站在线播放欧美日韩| 欧美一区二区国产精品久久精品| 最新在线观看一区二区三区| 国产精品一区二区三区四区免费观看 | 大又大粗又爽又黄少妇毛片口| 2021天堂中文幕一二区在线观| 欧美成人a在线观看| 美女被艹到高潮喷水动态| avwww免费| 禁无遮挡网站| 成人精品一区二区免费| 久久精品久久久久久噜噜老黄 | 人妻少妇偷人精品九色| 国产精品亚洲美女久久久| 在线观看一区二区三区| 久久午夜亚洲精品久久| 国产精品99久久久久久久久| 亚洲美女视频黄频| 春色校园在线视频观看| 久久久精品大字幕| 精华霜和精华液先用哪个| 桃红色精品国产亚洲av| 欧美绝顶高潮抽搐喷水| 床上黄色一级片| 级片在线观看| 搡老岳熟女国产| 欧美色视频一区免费| 亚洲成av人片在线播放无| 少妇被粗大猛烈的视频| 禁无遮挡网站| 久久久久免费精品人妻一区二区| 男女做爰动态图高潮gif福利片| 99热6这里只有精品| 亚洲色图av天堂| 波多野结衣高清作品| 91久久精品国产一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 无人区码免费观看不卡| 婷婷精品国产亚洲av| 久久人人爽人人爽人人片va| 蜜桃亚洲精品一区二区三区| 日韩人妻高清精品专区| 97热精品久久久久久| 国产成人a区在线观看| 精品人妻1区二区| 国产亚洲精品久久久com| 日日摸夜夜添夜夜添av毛片 | 国产人妻一区二区三区在| 成人永久免费在线观看视频| 黄色女人牲交| 干丝袜人妻中文字幕| 我的老师免费观看完整版| 成人午夜高清在线视频| 久久久精品大字幕| 国内揄拍国产精品人妻在线| 能在线免费观看的黄片| 国产高清不卡午夜福利| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 色在线成人网| 真人一进一出gif抽搐免费| 99久久九九国产精品国产免费| 亚洲国产欧美人成| 一本精品99久久精品77| 少妇丰满av| 狂野欧美白嫩少妇大欣赏| 999久久久精品免费观看国产| 亚洲五月天丁香| 日韩,欧美,国产一区二区三区 | 色播亚洲综合网| 国产免费男女视频| 琪琪午夜伦伦电影理论片6080| 日韩欧美国产在线观看| 男女做爰动态图高潮gif福利片| 夜夜夜夜夜久久久久| 欧美一区二区精品小视频在线| a在线观看视频网站| 国产精品一区二区三区四区免费观看 | av.在线天堂| 男女视频在线观看网站免费| 色综合婷婷激情| 国产成人福利小说| 亚洲在线观看片| www.色视频.com| 国产久久久一区二区三区| 国产一区二区三区av在线 | 男人舔女人下体高潮全视频| 国产亚洲欧美98| 男人舔奶头视频| 午夜爱爱视频在线播放| 精品一区二区三区视频在线观看免费| 欧美黑人巨大hd| 久久久久国产精品人妻aⅴ院| 欧美日韩中文字幕国产精品一区二区三区| 乱码一卡2卡4卡精品| 亚洲综合色惰| 精品久久久久久成人av| 五月伊人婷婷丁香| 最新在线观看一区二区三区| 亚洲精品一区av在线观看| 免费在线观看成人毛片| 精品人妻偷拍中文字幕| 国产淫片久久久久久久久| 成年女人看的毛片在线观看| 99久久精品国产国产毛片| .国产精品久久| 69av精品久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 舔av片在线| 欧美日本视频| 丰满乱子伦码专区| 日日摸夜夜添夜夜添小说| 深夜精品福利| 黄色丝袜av网址大全| 亚洲成人中文字幕在线播放| 欧美3d第一页| 嫩草影视91久久| 热99re8久久精品国产| 日韩欧美 国产精品| 午夜福利在线观看吧| 波野结衣二区三区在线| 中亚洲国语对白在线视频| 少妇熟女aⅴ在线视频| 国产精品自产拍在线观看55亚洲| 午夜免费男女啪啪视频观看 | 91久久精品国产一区二区三区| 国产伦精品一区二区三区四那| 久久久久久国产a免费观看| 99热精品在线国产| 亚洲av成人av| 国产高清三级在线| 深夜精品福利| 国内精品久久久久精免费| 亚洲av免费在线观看| 国产色婷婷99| 国产一区二区在线av高清观看| 久久久久久久亚洲中文字幕| 亚洲国产欧洲综合997久久,| 又爽又黄a免费视频| 国产私拍福利视频在线观看| 观看免费一级毛片| 亚洲av美国av| 男女那种视频在线观看| 99热只有精品国产| 亚洲人成网站高清观看| 97超视频在线观看视频| 天堂网av新在线| 亚洲精品粉嫩美女一区| 日日摸夜夜添夜夜添小说| 国产黄a三级三级三级人| 天堂网av新在线| 久久人人爽人人爽人人片va| 亚洲三级黄色毛片| 久久精品综合一区二区三区| 亚洲精华国产精华液的使用体验 | 国产精品98久久久久久宅男小说| 亚洲五月天丁香| 国产亚洲精品久久久久久毛片| 最后的刺客免费高清国语| 熟女电影av网| 午夜精品在线福利| 三级国产精品欧美在线观看| 别揉我奶头~嗯~啊~动态视频| 日韩欧美 国产精品| 熟女人妻精品中文字幕| 亚洲精品亚洲一区二区| 麻豆精品久久久久久蜜桃| 成人三级黄色视频| 精品午夜福利视频在线观看一区| 国产不卡一卡二| 黄色丝袜av网址大全| 深夜精品福利| 美女被艹到高潮喷水动态| 嫩草影院精品99| 特级一级黄色大片| 99国产精品一区二区蜜桃av| 国产精品1区2区在线观看.| 天天躁日日操中文字幕| 夜夜看夜夜爽夜夜摸| 国产亚洲av嫩草精品影院| 悠悠久久av| x7x7x7水蜜桃| www日本黄色视频网| 在线播放国产精品三级| 色吧在线观看| 精品一区二区三区av网在线观看| 国产精品一区二区三区四区久久| 老女人水多毛片| 久久亚洲精品不卡| 亚洲欧美精品综合久久99| 91午夜精品亚洲一区二区三区 | 小蜜桃在线观看免费完整版高清| 国产私拍福利视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 嫩草影视91久久| videossex国产|