• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    h-adaptive Discontinuous Galerkin Method for Laminar Compressible Navier-Stokes Equations on Curved Mesh

    2016-12-01 03:18:45SunQiangLyuHongqiangWuYizhao

    Sun Qiang,Lyu Hongqiang,Wu Yizhao

    College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    h-adaptive Discontinuous Galerkin Method for Laminar Compressible Navier-Stokes Equations on Curved Mesh

    Sun Qiang,Lyu Hongqiang*,Wu Yizhao

    College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    An h-adaptive method is developed for high-order discontinuous Galerkin methods(DGM)to solve the laminar compressible Navier-Stokes(N-S)equations on unstructured mesh.The vorticity is regarded as the indicator of adaptivity.The elements where the vorticity is larger than a pre-defined upper limit are refined,and those where the vorticity is smaller than a pre-defined lower limit are coarsened if they have been refined.A high-order geometric approximation of curved boundaries is adopted to ensure the accuracy.Numerical results indicate that highly accurate numerical results can be obtained with the adaptive method at relatively low expense.

    h-adaptivity;high-order discontinuous Galerkin methods(DGM);N-S equations;high-order boundary approximation

    0 Introduction

    Discontinuous Galerkin(DG)methods[1-13]have received increasing attention in computational fluid dynamics in recent years due to various attractive features.Bassi and Rebay[3-5]developed a high-order discontinuous finite element method to solve the Euler and Navier-Stokes equations. Cockburn and Shu[6,7]devised a high-order accurate total variation bounded(TVB)Runge-Kutta discontinuous Galerkin(RKDG)method to simulate the nonlinear systems of conservation laws. More recently,high-order DG methods have been applied to solve various engineering problems[8-18]on unstructured grid.In fact,DG methods are similar to finite element methods which can achieve higher-order accuracy via using high-order polynomial approximation inside elements.Moreover,upwind scheme can be easily implemented through using appropriate numerical fluxes over element interfaces.In addition,DG methods lead to compact space discretization formulae for both the Euler and the Navier-Stokes(N-S)equations. The compactness of the methods has advantages for parallel implementation.

    Despite these advantages,DG methods still need to be improved in many respects,such as the shock-capturing and the huge computational expense caused by the high-order polynomial approximation[8-15].Usually,high discontinuity only exits locally,e.g.the boundary layer in the flow field.It will cost high expense to capture them by enhancing the order of the polynomials or generating more dense mesh globally.Adaptive DG methods are helpful to solve such problems. Thanks to the simple communication at element interfaces,elements with″hanging nodes″can be treated as elements without hanging nodes,which simplifies local mesh h-refinement.In addition, the communication at element interfaces allows different orders between neighboring elements. Several adaptive DG methods[19-23]have been developed to improve the accuracy and reduce the computational expense.

    It has been proved that high-order DG methods are inaccurate at curved solid walls if a piece-wise linear approximation of the geometry of the boundary is employed[3],and a higher-order boundary representation is necessary to ensure the accuracy of the solution.In the paper,an h-adaptive strategy is developed for DG methods to simulate compressible laminar N-S equations on highly accurate boundary.Because of the high intensity of the vorticity in boundary layer and shedding vortex regions,vorticity is used as the sensor of the h-adaptivity.Eor the steady case,a Newton method[24]is employed to solve the nonlinear discrete systems and the Block-Gauss Seidel[10,11]method is used to solve the resulting sparse linear system at each nonlinear iteration.The time integration of the unsteady case presented below can be accomplished by means of an explicit method. The four-stage Runge-Kutta scheme is used in the paper.Since DG methods are relatively sensitive to the initial guess,a hierarchical solution procedure is suggested[10,12].

    *Corresponding author,E-mail address:hongqiang.lu@nuaa.edu.cn.

    How to cite this article:Sun Qiang,Lyu Hongqiang,Wu Yizhao.h-adaptive discontinuous Galerkin method for laminar compressible Navier-Stokes equations on curved mesh[J].Trans.Nanjing Univ.Aero.Astro.,2016,33(5):566-575.

    http://dx.doi.org/10.16356/j.1005-1120.2016.05.566

    1 Governing Equations

    The two-dimensional laminar N-S equations can be written as follows

    where the conservative variables u and the cartesian components fe(u)and ge(u)of the inviscid (Euler)flux function Fe(u)are given by

    whereρ,P and e denote the density,pressure and the total internal energy per unit mass respectively.u and v are the velocity components.The total

    The cartesian components fv(u,?u)and gv(u,?u)of the viscous flux function Fv(u,?u) are given by

    2 DG Discretization

    The weak formulation of Eq.(1)can be obtained by multiplying a″test function″v,integrating over the domainΩand performing integration by parts

    where F(u,?u)=Fe(u)-Fv(u,?u),?Ωis the boundary ofΩ.

    The integrals over the domainΩcan be expanded into the sum of integrals over a collection of non-overlapping triangle elements{E}.The semi-discrete equations for element E can be written as

    where?E is the boundary of E.In each element, the functions uhand vh,which are the approximations to u and v,are given by

    where the expansion coefficients Uiand Videnotethe degrees of freedom of the numerical solution and the test function in element E,φithe n (shape)basis functions of degree p.Since Eq.(6) must be satisfied for any element E and function vhand vhare a linear combination of n shape functionsφi,Eq.(6)is equivalent to the following system

    Note that,no global continuity is enforced on u andφi,discontinuities are allowed over element interfaces.Elux terms are not unique at element interfaces due to the discontinuous function approximation.The physical normal flux F(uh,?uh)·n in Eq.(8)is replaced by a numerical flux H u-h,?u-h,u+h,?u+h,

    ( )n,which is calculated using the internal u-h,external interface state u+hand the normal vector n pointing outward from E.The numerical flux for the inviscid part of the equations can be analogous to those employed in upwind finite volume methods.In the paper,the LLE scheme is used[10,24].

    In the context of the DG method an auxiliary variableθ=?u is introduced for the treatment of the viscous flux.Since DG methods obey to the hyperbolic systems of conservation laws,the following system of two first-order equations is obtained

    Similar to the treatment of Eq.(1),the weak formulation of the first equation can be obtained by applying the DG discretization

    θcan be written as the following formulation

    The numerical flux function Hhincludes the inviscid numerical fluxand the viscous numerical flux function Hv.In the paper,Hvis given by the average value of the viscous fluxes on the interface.

    3 Relaxation

    By assembling together all the elemental contributions,the semidiscrete equations can be written as

    where M is the mass matrix,U the global vector of the degrees of freedom,and() R U the residual vector.Due to the block diagonal structure of M, the time integration of the unsteady problem presented below can be accomplished by means of an explicit method.In the paper,the TVB Runge-Kutta schemes is used[6].

    Eor steady problems,the Newton method[23]is used to solve the nonlinear system in Eq.(15)

    where w is the under-relaxation factor andΔUnis obtained by solving the following linear system

    In order to improve the conditioning of the linear system(17),a pseudo-time derivative is introduced to original discrete system[25]

    4 Adaptive Strategy

    The entire computation procedure starts from solving p=0(p is the order of the basic functions)solution on a very coarse initial grid.As the order p increases,the mesh needs to be refined in the region where the solution is not smooth enough.After a number of iteration steps,the solution in the region mentioned may become smooth enough.Then,the elements which have been refined should be coarsened to reduce the computational expense when the solution becomes smooth enough.

    The vorticity v exists everywhere in the viscous flow.Moreover,due to the great velocity gradient in the shear layer and the vortices,it can be huge in these regions.In the paper,the vorticity v is used as the adaptivity sensor.

    4.1 Mesh refinement

    During the computational process,elements should be refined when v is larger than the pre-defined upper limit.The″father″e(cuò)lement which needs to be refined is divided into four″child″e(cuò)lements(See Fig.1).

    It has been proved that the high-order DG method is inaccurate at curved solid walls if only a piecewise linear approximation of the boundary is employed and a higher-order boundary representa-tion can improve the accuracy of the solution[3]. In the paper,the edges on the solid wall of the boundary elements are represented by a high-order polynomial.The designed high-order(Sixthorder)curve can represent the real solid wall precisely(See the dash lines in Fig.1).

    Fig.1 Element refinement

    If the boundary elements need to be refined, the mid-point of the boundary edge is found according to the designed curve and the new″child″e(cuò)lements are generated by connecting it with the mid-points of the other two edges as shown in Fig.1.Two of the new″child″e(cuò)lements are on the solid wall and their boundary edge will also be represented by the high-order polynomial(See the dash lines in Fig.1).

    In order to avoid significant gradient in mesh size between neighboring elements,a smoothing strategy is employed.If element e in Fig.2 needs to be refined,the neighboring element f must also be refined to avoid extreme difference in local mesh size.In another word,the maximum difference between refinement times of neighboring elements is 1.At the same time,a minimum mesh size hminis pre-defined and the refinement will stop when the element′s genomic size reaches hminto avoid the unlimited refinement of the element.

    Fig.2 Smoothing strategy

    4.2 Mesh coarsening

    During the computation,solution in the elements which have been refined may become smooth enough.In order to reduce the expense, these elements can be coarsened.In this case,the four″child″e(cuò)lements will merge into one″father″e(cuò)lement where the vorticity v is smaller than the pre-defined lower limit.

    In Fig.3,the solid lines indicate the elements which are not on the solid wall.If the″father″e(cuò)lement is on the solid wall,its boundary edge will also be represented by a high-order polynomial to approach the real wall(See the dash lines in Fig. 3).Like in the refinement,in order to avoid extreme difference in local mesh size,″child″e(cuò)lements fi(i=0,1,2,3)cannot be merged(See Fig.2)if e is coarsened.In another word,mesh coarsening is the inverse operation of the mesh refinement and the max difference between refinement times of neighboring elements is 1.In addition,the initial element cannot be coarsened.

    Fig.3 Element coarsening

    4.3 Data storage structure of grid

    To ensure the high program transportability, the mesh adaptivity works as an independent module.It only changes the mesh and flow field solver module is not impacted.In the paper,all the information of the points,edges and elements is stored in a list structure.Fig.4 demonstrates the refinement of element E.

    Fig.4 Element increasing

    In Fig.4,E denotes the″father″e(cuò)lement which needs to be refined.The center″child″e(cuò)lement remains the same index as E,and the other three around the center″child″e(cuò)lement(See Fig.2)range at the end of the list.The same method is applied to the points and edges.Data transmission between grid module and flow field solver module will work well without any influence from mesh adaptivity.

    Similarly,Fig.5 shows that four″child″e(cuò)le-ments merge into a″father″e(cuò)lement.

    Fig.5 Element decreasing

    The three″child″e(cuò)lements fiwill be merged to the center″child″e(cuò)lement E,and accordingly the index of the elements after f3should be subtracted 3.

    Two flags are attached to each element to indicate the initial index and refinement times during the mesh refinement.The mesh coarsening will work according to these two flags and the relationship between neighboring elements.

    5 Numerical Results

    5.1 Transonic flow around NACA0012 airfoil

    Eirstly,the subsonic viscous flow around the NACA0012 airfoil(Ma=0.5,α=0°,Re=5 000) is simulated.The initial mesh contains 478 elements,260 grid points,and there are 32 grid points on the solid boundary(See Fig.6).

    Fig.7 demonstrates the Mach contours and the vorticity distribution obtained when p=4 on the initial grid.It is obvious that the solution is not smooth enough because of the coarse grid in the boundary layer,which suggests smaller mesh size in this region to improve the accuracy of the solution.

    In order to improve the accuracy of the solution and reduce the computational expense,the local adaptive method introduced above is applied. Fig.8(a)shows the final mesh and the vorticity v distribution,where only the local mesh near the boundary and in wake region is refined.Fig.8(b) shows the final local mesh after adaption compared with the initial mesh.

    Fig.9 depicts the Mach contours obtained with the adaptive method,where the solution is much smoother than that obtained on the initial mesh in Fig.7.In addition,Fig.9(b)shows the streamlines and the two symmetrical vortices[3]in the wake region are captured well.

    Fig.6 Initial grid

    Fig.8 Vorticity distribution and local grid after adaption

    Fig.7 Mach contours and vorticity v distribution when p=4

    Fig.9 Mach contours and streamlines after adaption

    Fig.10 Cpand Cfdistribution

    5.2 Von Karman vortex street

    The well-known Von Karman vortex street is simulated,where Ma=0.1,α=0,Re=150.The initial mesh is shown in Fig.11,which contains 1 114 elements and there are only 12 points on the solid boundary(See Fig.11).

    Fig.12 demonstrates the Von Karman vortex street obtained when p=4 on the initial grid.The solution is not smooth and the resolution of the vortices is low because the initial mesh is not fine enough.Unfortunately,shedding vortices are not captured precisely on the initial coarse mesh even if the high-order scheme is applied.On the other hand,the intensity of the vortices is low due to the big numerical dissipation which is mainly caused by the large mesh size.It is suggested that the mesh in these regions should be refined.

    Adaptive method introduced above is used in this case and the final local grid and Von Karman vortex street are shown in Fig.13.Due to the smaller mesh size in the boundary layer region andwake region after adaption,the solution is much smoother compared with that in Fig.12 and the intensity of the vortices is enhanced because of the low dissipation.

    Fig.11 Initial grid

    Fig.12 Von Karman vortex street on initial mesh

    Fig.13 Von Karman vortex street with adaptive method

    Fig.14 Von Karman vortex street with mesh adaptivity

    In the paper,refinement and coarsening always work simultaneously.The elements where the vorticity is greater than the pre-defined upper limit are refined,and those where the vorticity is smaller than the pre-defined lower limit are coarsened to reduce the computation and storage expense if they have been refined.Fig.14 shows the Von Karman vortex street with the adaptive method introduced above on several time of one period.

    The Von Karman vortex street is a quasisteady case because of its periodicity.The number of elements in the entire domain should vary in a small scale for which it is a good case to test the behavior of the introduced method.Fig.15 shows the history of the number of the elements over the entire domain,where the element number varies around 2 500.

    The evolution of the drag and lift coefficient in time is shown in Fig.16 while the period of vortex shedding(Strouhal number)is found to be St=0.185.In Table 1,the variations of lift coefficient Cland drag coefficient Cdare documented with amplitudes and mean values and the results of sixth-order finite difference scheme are also included as a reference[26]for comparison.It is clearly that the accuracy of lift and drag coefficient is drastically improved by using the adaptive method.

    Fig.15 Number of element during iteration

    Fig.16 Variation of lift and drag coefficient

    Tab.1 Comparison between lift and drag coefficient

    6 Conclusions

    An h-adaptive DG method is developed to solve the two-dimensional compressible laminar N-S equations.The vorticity v works well as the sensor of the mesh adaptivity in the subsonic viscous flow cases.In order to ensure the accuracy of the solution,a high-order approximation boundary is designed to approach the real solid wall during the h-adaptivity.Numerical results show that grid refinement and coarsening only work in the local region and the accuracy of the solution is improved at low expense.

    Acknowledgement

    This work was supported by the National Natural Science Eoundation of China(11272152).

    [1] REED W H,HILL T R.Triangular mesh methods for the neutron transport equation:Los Alamos Report LA-UR-73-479[R].1973.

    [2] LESAINT P,RAVIART P A.On a finite element method for solving the neutron transport equation[J]. Mathematical Aspects of Einite Elements in Partial Differential Equations,1974(33):89-123.

    [3] BASSI E,REBAY S.A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J]. Journal of Computational Physics,1997,131(2): 267-279.

    [4] BASSI E,REBAY S.High-order accurate discontinuous finite element solution of the 2D Euler equations [J].Journal of Computational Physics,1997,138 (2):251-285.

    [5] BASSI E,REBAY S.A high order discontinuous Galerkin method for compressible turbulent flows [M].[S.l.]:Springer Berlin Heidelberg,2000:77-88.

    [6] COCKBURN B,SHU C W.The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems[J].Journal of Computational Physics,1998,141(2):199-224.

    [7] COCKBURN B,SHU C W.The local discontinuous Galerkin method for time-dependent convection-diffusion systems[J].SIAM Journal on Numerical Analysis,1998,35(6):2440-2463.

    [8] LU H,BERZINS M,GOODYER C E,et al.Adaptive high-order discontinuous Galerkin solution of elastohydrodynamic lubrication point contact problems[J].Advances in Engineering Software,2012, 45(1):313-324.

    [9] LU H,XU Y,GAO Y,et al.A CED-based high-order discontinuous Galerkin solver for three dimensional electromagnetic scattering problems[J].Advances in Engineering Software,2015,83:1-10.

    [10]LU H,SUN Q.A straight forward hp-adaptivity strategy for shock-capturing with high-order discontinuous Galerkin methods[J].Advances in Applied Mathematics and Mechanics,2014,6(1):135-144.

    [11]LU H,SUN Q,QIN W L.3D numerical solution of aero-noise with high-order discontinuous Galerkin method[J].Transactions of Nanjing University of Aeronautics&Astronautics,2013,30(3):227-231.

    [12]LV Hongqiang,ZHU Guoxiang,SONG Jiangyong, et al.High-order discontinuous Galerkin solution of linearized Euler equations[J].Chinese Journal of Theoretical and Applied Mechanics,2011,43(3): 621-624.(in Chinese)

    [13]LV H Q.High-order discontinuous Galerkin solution of low-Re viscous flows[J].Modern Physics Letters B,2009,23(3):309-312.

    [14]LV H Q,XU Y,GAO Y,et al.A high-order discontinuous Galerkin method for the two-dimensional time-domain Maxwell′s equations on curved mesh [J].Advances in Applied Mathematics&Mechanics,2016,8(1):104-116.

    [15]LV H Q,CAO K,WU L B Y,et al.High-order mesh generation for discontinuous Galerkin methodsbased on elastic deformation[J].Advances in Applied Mathematics&Mechanics,2016,8(4):693-702.

    [16]Zhang Laiping,Liu Wei,He Lixin,et al.A class of discontinuous Galerkin/finite volume hybrid schemes based on the″static re-construction″and″dynamic reconstruction″[J].Chinese Journal of Theoretical and Applied Mechanics,2010,42(6):1013-1022.(in Chinese)

    [17]YU J,YAN C.An artificial diffusivity discontinuous Galerkin scheme for discontinuous flows[J].Computers&Eluids,2013,75:56-71.

    [18]YU Jian,YAN Chao.Study on discontinuous Galerkin method for Navier-Stokes equations[J].Chinese Journal of Theoretical and Applied Mechanics,2010, 42(5):962-969.(in Chinese)

    [19]YANG X,JAMES A J,LOWENGRUB J,et al.An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids [J].Journal of Computational Physics,2006,217 (2):364-394.

    [20]REMACLE J E,LI X,SHEPHARD M S,et al.Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods[J].International Journal for Numerical Methods in Engineering,2005, 62(7):899-923.

    [21]XU Yun,YU Xijun.Adaptive discontinuous Galerkin methods for hyperbolic conservation laws[J].Chinese Journal of Computational Physics,2009,26(2):159-168.(in Chinese)

    [22]WU Di,YU Xijun.Adaptive discontinuous Galerkin method for Euler equations[J].Chinese Journal of Computational Physics,2010,27(4):492-500.(in Chinese)

    [23]HARTMANN R,HOUSTON P.Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations[J].Journal of Computational Physics,2002,183:508-532.

    [24]XIA Yidong,WU Yizhao,LV Hongqiang,et al. Parallel computation of a high-order discontinuous Galerkin method on unstructured grids[J].Acta Aerodynamica Sinica,2011,29(5):537-541.(in Chinese)

    [25]HILLEWAERT K,CHEVAUGEON N,GEUZAINE P,et al.Hierarchic multigrid iteration strategy for the discontinuous Galerkin solution of the steady Euler equations[J].International Journal for Numerical Methods in Eluids,2006,51(9/10):1157-1176.

    [26]INOUE O,HATAKEYAMA N.Sound generation by a two-dimensional circular cylinder in a uniform flow[J].Journal of Eluid Mechanics,2002,471: 285-314.

    Mr.Sun Qiang received B.S.degree from College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics in 2011.In September 2011,he became a post-graduate student at the Aerodynamics Department. His research is focused on the discontinuous Galerkin method and mesh adaptivity.

    Prof.Lv Hongqiang received B.S.degree from Aerodynamics Department of Nanjing University of Aeronautics and Astronautics in 1999 and M.S.degree in 2002 from the same university.He received Ph.D.and Doctor degrees from University of Leeds in 2006.In the same year,he joined in College of Aerospace Engineering of Nanjing University of Aeronautics and Astronautics.His current research interest includes the application of the discontinuous Galerkin methods and numerical simulation of the Maxwell equations.

    Prof.Wu Yizhao received B.S.degree from University of Science and Technology of China in 1968,and received M. S.degree in 1981 and Ph.D.degree in 1987 from Nanjing Aviation Institute.He is currently a professor and doctoral supervisor at College of Aerospace Engineering of Nanjing University of Aeronautics and Astronautics,and his research interests are computational fluid dynamics and multigrid.

    (Executive Editor:Xu Chengting)

    V211.3 Document code:A Article ID:1005-1120(2016)05-0566-10

    (Received 14 April 2015;revised 18 August 2015;acceped 5 September 2015)

    禁无遮挡网站| 精品久久久久久久久久免费视频| 俺也久久电影网| 听说在线观看完整版免费高清| 色吧在线观看| 男女午夜视频在线观看| 又黄又爽又免费观看的视频| 九色国产91popny在线| 亚洲成av人片免费观看| 欧美一区二区国产精品久久精品| 欧美又色又爽又黄视频| www日本在线高清视频| 天堂网av新在线| 成人亚洲精品av一区二区| 在线看三级毛片| 99热6这里只有精品| 日本一二三区视频观看| 日韩av在线大香蕉| 97超视频在线观看视频| 国内精品一区二区在线观看| 欧美日本视频| 国产高清三级在线| 国产精品永久免费网站| 99久久精品国产亚洲精品| tocl精华| 午夜福利视频1000在线观看| 亚洲最大成人手机在线| 嫁个100分男人电影在线观看| 欧美成人a在线观看| 欧美xxxx黑人xx丫x性爽| 久久久久国内视频| 亚洲精品久久国产高清桃花| 国产av不卡久久| 国产探花在线观看一区二区| 99精品在免费线老司机午夜| 高潮久久久久久久久久久不卡| 日日夜夜操网爽| 一级毛片高清免费大全| 淫妇啪啪啪对白视频| 国产视频内射| 操出白浆在线播放| 狂野欧美白嫩少妇大欣赏| 亚洲人成伊人成综合网2020| 99热6这里只有精品| 免费看十八禁软件| 99国产综合亚洲精品| 两个人视频免费观看高清| 免费观看人在逋| 最近最新免费中文字幕在线| 欧美成人一区二区免费高清观看| 日韩av在线大香蕉| 免费人成视频x8x8入口观看| 日本免费a在线| 母亲3免费完整高清在线观看| 免费大片18禁| 性色av乱码一区二区三区2| 欧美成人a在线观看| 久久九九热精品免费| 久久午夜亚洲精品久久| 国产精品嫩草影院av在线观看 | 亚洲精品粉嫩美女一区| 亚洲无线在线观看| 国产精品爽爽va在线观看网站| 我要搜黄色片| 亚洲黑人精品在线| 成年人黄色毛片网站| 欧美日韩福利视频一区二区| 国产亚洲欧美98| 99热这里只有精品一区| 内地一区二区视频在线| 国产aⅴ精品一区二区三区波| 99久久综合精品五月天人人| 亚洲av不卡在线观看| av黄色大香蕉| 看片在线看免费视频| 欧美日本视频| 老司机在亚洲福利影院| 久久国产精品影院| 国产老妇女一区| 国产高潮美女av| 色在线成人网| 亚洲片人在线观看| 日本精品一区二区三区蜜桃| 成年女人永久免费观看视频| 午夜亚洲福利在线播放| 最近最新免费中文字幕在线| 黄片大片在线免费观看| 51国产日韩欧美| 欧美3d第一页| 免费看日本二区| 精品久久久久久久久久久久久| 99久久精品一区二区三区| 成人精品一区二区免费| 欧美日韩国产亚洲二区| 一级黄色大片毛片| 日韩免费av在线播放| 亚洲精品日韩av片在线观看 | 亚洲五月天丁香| 国产亚洲精品久久久com| 午夜激情欧美在线| 日本黄色片子视频| 两个人看的免费小视频| 国产亚洲精品一区二区www| 国语自产精品视频在线第100页| 动漫黄色视频在线观看| 成人国产一区最新在线观看| 此物有八面人人有两片| 国产精品香港三级国产av潘金莲| 欧美午夜高清在线| 久久精品影院6| 深爱激情五月婷婷| 十八禁人妻一区二区| 欧美日韩一级在线毛片| 别揉我奶头~嗯~啊~动态视频| 91麻豆av在线| 日韩欧美国产在线观看| 精品国内亚洲2022精品成人| 国产激情欧美一区二区| 好看av亚洲va欧美ⅴa在| 熟女电影av网| 日本黄色视频三级网站网址| 午夜福利在线观看免费完整高清在 | 最新在线观看一区二区三区| 亚洲一区高清亚洲精品| 男女那种视频在线观看| 国产成人av激情在线播放| av专区在线播放| 国产亚洲精品一区二区www| 亚洲av五月六月丁香网| 国产精品98久久久久久宅男小说| 国产单亲对白刺激| 在线播放国产精品三级| 免费无遮挡裸体视频| 欧美在线黄色| 欧美成人性av电影在线观看| 久久草成人影院| 日韩国内少妇激情av| 亚洲成人中文字幕在线播放| 在线观看美女被高潮喷水网站 | 母亲3免费完整高清在线观看| 美女 人体艺术 gogo| 中文资源天堂在线| 亚洲午夜理论影院| 一个人看视频在线观看www免费 | 久久久久久久久大av| 丰满的人妻完整版| 国产一区二区亚洲精品在线观看| 一个人免费在线观看的高清视频| 一个人观看的视频www高清免费观看| 久久久久国内视频| 久久久久性生活片| 制服人妻中文乱码| 欧美日韩国产亚洲二区| 在线天堂最新版资源| 色在线成人网| 丰满人妻一区二区三区视频av | 18禁美女被吸乳视频| 禁无遮挡网站| 在线观看免费午夜福利视频| 亚洲人成网站在线播| 中文字幕av在线有码专区| 亚洲av五月六月丁香网| 国产高潮美女av| 日本 av在线| 亚洲精品美女久久久久99蜜臀| 极品教师在线免费播放| 亚洲精品影视一区二区三区av| 日本 欧美在线| 在线观看免费午夜福利视频| 婷婷丁香在线五月| 亚洲欧美日韩高清在线视频| 老司机深夜福利视频在线观看| 老熟妇乱子伦视频在线观看| av在线蜜桃| 亚洲精品成人久久久久久| 国产国拍精品亚洲av在线观看 | 少妇裸体淫交视频免费看高清| 欧美激情在线99| 操出白浆在线播放| 精品日产1卡2卡| 人妻丰满熟妇av一区二区三区| www日本在线高清视频| 亚洲av成人不卡在线观看播放网| 丰满的人妻完整版| 免费大片18禁| 亚洲最大成人手机在线| 色综合欧美亚洲国产小说| 窝窝影院91人妻| 欧美最新免费一区二区三区 | 久久久精品大字幕| 国产亚洲精品综合一区在线观看| 一级黄色大片毛片| 亚洲精品在线观看二区| 亚洲av免费在线观看| 亚洲七黄色美女视频| 国产精品嫩草影院av在线观看 | 亚洲精品乱码久久久v下载方式 | 国产精品三级大全| 嫩草影院入口| 一进一出抽搐动态| 精品久久久久久成人av| 99热这里只有是精品50| 日韩国内少妇激情av| 91久久精品电影网| 国产精品一及| 欧美一区二区亚洲| av女优亚洲男人天堂| 中文字幕人妻熟人妻熟丝袜美 | 久久久久久久午夜电影| a在线观看视频网站| 亚洲av不卡在线观看| 亚洲午夜理论影院| 一区二区三区高清视频在线| 午夜a级毛片| 观看美女的网站| 国产中年淑女户外野战色| 午夜精品一区二区三区免费看| 国产精品99久久99久久久不卡| 2021天堂中文幕一二区在线观| 天堂动漫精品| 桃红色精品国产亚洲av| 欧美极品一区二区三区四区| 啦啦啦韩国在线观看视频| 九九在线视频观看精品| 国产一区二区在线观看日韩 | 97超级碰碰碰精品色视频在线观看| 国产aⅴ精品一区二区三区波| 国产毛片a区久久久久| 午夜影院日韩av| 久久久国产精品麻豆| 成人av在线播放网站| 黑人欧美特级aaaaaa片| 女同久久另类99精品国产91| 男人舔女人下体高潮全视频| 一夜夜www| 国产亚洲欧美98| 亚洲午夜理论影院| 成人av一区二区三区在线看| 欧美一级毛片孕妇| 欧美一级a爱片免费观看看| 三级男女做爰猛烈吃奶摸视频| 最新中文字幕久久久久| 舔av片在线| 国产中年淑女户外野战色| 中文字幕久久专区| 少妇高潮的动态图| 美女免费视频网站| 久久久久久国产a免费观看| 麻豆国产av国片精品| 中文字幕人妻熟人妻熟丝袜美 | 一进一出好大好爽视频| 免费人成视频x8x8入口观看| 欧美丝袜亚洲另类 | a级毛片a级免费在线| 操出白浆在线播放| 男女那种视频在线观看| 在线a可以看的网站| 少妇丰满av| 国产伦人伦偷精品视频| 老司机午夜十八禁免费视频| 国产精品电影一区二区三区| 99久久久亚洲精品蜜臀av| 亚洲熟妇中文字幕五十中出| 久久午夜亚洲精品久久| 男女那种视频在线观看| 中文亚洲av片在线观看爽| 色综合亚洲欧美另类图片| 国产精品久久久久久人妻精品电影| 欧美黄色淫秽网站| 亚洲无线观看免费| 国产野战对白在线观看| 啦啦啦免费观看视频1| 我要搜黄色片| 精品午夜福利视频在线观看一区| 两性午夜刺激爽爽歪歪视频在线观看| ponron亚洲| 久久久国产精品麻豆| x7x7x7水蜜桃| 9191精品国产免费久久| av在线蜜桃| 国产成年人精品一区二区| 99在线视频只有这里精品首页| 亚洲在线观看片| 99久久久亚洲精品蜜臀av| 99在线人妻在线中文字幕| 成年人黄色毛片网站| www.熟女人妻精品国产| 黄色日韩在线| 草草在线视频免费看| 夜夜爽天天搞| 国产 一区 欧美 日韩| 麻豆久久精品国产亚洲av| 女生性感内裤真人,穿戴方法视频| 1024手机看黄色片| 免费在线观看日本一区| 国产精品亚洲一级av第二区| 色吧在线观看| a在线观看视频网站| 国产精品电影一区二区三区| 此物有八面人人有两片| 国产精品精品国产色婷婷| 狂野欧美激情性xxxx| 一本综合久久免费| 亚洲成人中文字幕在线播放| 性色av乱码一区二区三区2| 少妇的丰满在线观看| 婷婷亚洲欧美| 中文字幕人成人乱码亚洲影| 一个人观看的视频www高清免费观看| 熟女少妇亚洲综合色aaa.| 色老头精品视频在线观看| 国产精品香港三级国产av潘金莲| 最近最新中文字幕大全免费视频| 国产精品 欧美亚洲| 在线观看66精品国产| 久久精品国产清高在天天线| 男人和女人高潮做爰伦理| 午夜精品一区二区三区免费看| 日韩国内少妇激情av| 国内精品一区二区在线观看| 精品久久久久久久久久久久久| 亚洲美女视频黄频| 日本在线视频免费播放| or卡值多少钱| 女生性感内裤真人,穿戴方法视频| 日本一二三区视频观看| 亚洲在线自拍视频| 91字幕亚洲| 制服丝袜大香蕉在线| 一卡2卡三卡四卡精品乱码亚洲| 少妇熟女aⅴ在线视频| 久久99热这里只有精品18| 午夜福利在线观看吧| 99热这里只有是精品50| 欧美日韩黄片免| АⅤ资源中文在线天堂| 欧美乱妇无乱码| 在线播放无遮挡| 午夜福利欧美成人| 国模一区二区三区四区视频| 亚洲在线自拍视频| 男人舔奶头视频| 夜夜爽天天搞| 99热这里只有是精品50| 国产亚洲精品久久久久久毛片| 国产欧美日韩精品亚洲av| 夜夜夜夜夜久久久久| 激情在线观看视频在线高清| 久久精品国产清高在天天线| 好男人在线观看高清免费视频| 看黄色毛片网站| 久久国产乱子伦精品免费另类| 老鸭窝网址在线观看| 淫妇啪啪啪对白视频| 欧美又色又爽又黄视频| 69人妻影院| 黑人欧美特级aaaaaa片| 日韩人妻高清精品专区| 天美传媒精品一区二区| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区激情视频| 国产精品日韩av在线免费观看| 女人被狂操c到高潮| 在线十欧美十亚洲十日本专区| 日韩欧美一区二区三区在线观看| 亚洲国产色片| 亚洲黑人精品在线| 夜夜躁狠狠躁天天躁| 国产午夜精品久久久久久一区二区三区 | 99精品在免费线老司机午夜| 悠悠久久av| 99在线人妻在线中文字幕| 可以在线观看的亚洲视频| 免费av观看视频| 美女大奶头视频| 男插女下体视频免费在线播放| 啦啦啦观看免费观看视频高清| 国产精品影院久久| 岛国在线免费视频观看| 黄色丝袜av网址大全| 在线观看av片永久免费下载| 午夜福利免费观看在线| 亚洲国产中文字幕在线视频| 国产亚洲精品久久久久久毛片| 精品久久久久久久毛片微露脸| 欧美极品一区二区三区四区| 亚洲精品在线美女| 色综合站精品国产| 欧美日韩亚洲国产一区二区在线观看| 成年女人看的毛片在线观看| 国产一区二区激情短视频| 亚洲精品乱码久久久v下载方式 | 亚洲五月天丁香| 国产激情欧美一区二区| 中文字幕人成人乱码亚洲影| 最近在线观看免费完整版| netflix在线观看网站| 国产主播在线观看一区二区| 精品熟女少妇八av免费久了| 亚洲欧美日韩东京热| 亚洲18禁久久av| 欧美丝袜亚洲另类 | 久久久国产成人免费| 国产毛片a区久久久久| 亚洲国产欧美人成| 亚洲不卡免费看| 久久欧美精品欧美久久欧美| 精品久久久久久久末码| av专区在线播放| 国产一区在线观看成人免费| 国产淫片久久久久久久久 | 国产v大片淫在线免费观看| 欧美日韩黄片免| 国产三级黄色录像| 欧美国产日韩亚洲一区| 国产av在哪里看| 嫁个100分男人电影在线观看| 伊人久久精品亚洲午夜| www.999成人在线观看| 女人被狂操c到高潮| 午夜两性在线视频| 叶爱在线成人免费视频播放| 国产精品久久久久久久久免 | 真人做人爱边吃奶动态| 色在线成人网| 禁无遮挡网站| 日本熟妇午夜| 国产成人福利小说| 国产精品久久电影中文字幕| 亚洲专区中文字幕在线| 欧美成人一区二区免费高清观看| 少妇的逼水好多| 久久久久久久久久黄片| 国产单亲对白刺激| 久久久久久九九精品二区国产| 一区二区三区免费毛片| 韩国av一区二区三区四区| 国产精品免费一区二区三区在线| 首页视频小说图片口味搜索| av在线蜜桃| 日韩欧美精品免费久久 | 国产亚洲精品av在线| 国产精品免费一区二区三区在线| 亚洲精品456在线播放app | 免费在线观看亚洲国产| 亚洲成人免费电影在线观看| 99国产精品一区二区蜜桃av| 国产亚洲精品综合一区在线观看| 97超视频在线观看视频| www国产在线视频色| АⅤ资源中文在线天堂| 色噜噜av男人的天堂激情| bbb黄色大片| 九九在线视频观看精品| 深爱激情五月婷婷| 啦啦啦观看免费观看视频高清| 在线观看一区二区三区| 国产美女午夜福利| 午夜两性在线视频| 成人午夜高清在线视频| 亚洲成av人片在线播放无| 男女床上黄色一级片免费看| 婷婷丁香在线五月| 欧美+亚洲+日韩+国产| 亚洲av免费高清在线观看| av天堂中文字幕网| 露出奶头的视频| 中文字幕久久专区| www.色视频.com| 国产中年淑女户外野战色| 国产午夜福利久久久久久| 女人十人毛片免费观看3o分钟| 欧美日本视频| 国产成人福利小说| 中文在线观看免费www的网站| 一a级毛片在线观看| 桃色一区二区三区在线观看| 国产精品综合久久久久久久免费| 午夜福利在线观看吧| 国产免费男女视频| 综合色av麻豆| 欧美最黄视频在线播放免费| 国产91精品成人一区二区三区| 亚洲人成网站在线播| 亚洲自拍偷在线| bbb黄色大片| 精品一区二区三区人妻视频| 久久天躁狠狠躁夜夜2o2o| 日韩国内少妇激情av| 叶爱在线成人免费视频播放| 精品久久久久久久人妻蜜臀av| 国产色婷婷99| 女人高潮潮喷娇喘18禁视频| 操出白浆在线播放| 午夜福利在线观看免费完整高清在 | 99热这里只有精品一区| 一区二区三区高清视频在线| 久久精品91无色码中文字幕| 免费看光身美女| 18禁在线播放成人免费| 真人做人爱边吃奶动态| 中文字幕人妻丝袜一区二区| 在线播放国产精品三级| 热99在线观看视频| 中出人妻视频一区二区| 亚洲乱码一区二区免费版| 国产麻豆成人av免费视频| 1000部很黄的大片| 午夜福利视频1000在线观看| 亚洲色图av天堂| 欧美激情在线99| 国产精品乱码一区二三区的特点| 少妇裸体淫交视频免费看高清| 亚洲一区二区三区不卡视频| 叶爱在线成人免费视频播放| 麻豆一二三区av精品| 九九久久精品国产亚洲av麻豆| 国产成人aa在线观看| 亚洲精品在线美女| 国产精华一区二区三区| 欧美日韩国产亚洲二区| 高清日韩中文字幕在线| 国内久久婷婷六月综合欲色啪| 欧美bdsm另类| 人妻久久中文字幕网| 亚洲美女黄片视频| 很黄的视频免费| 久久精品人妻少妇| 狂野欧美白嫩少妇大欣赏| 麻豆久久精品国产亚洲av| 国产亚洲av嫩草精品影院| 欧美日韩综合久久久久久 | 亚洲在线观看片| 深夜精品福利| 亚洲人成网站高清观看| 91麻豆精品激情在线观看国产| www.熟女人妻精品国产| 日韩欧美一区二区三区在线观看| 亚洲久久久久久中文字幕| 久久亚洲精品不卡| 色综合欧美亚洲国产小说| 啦啦啦免费观看视频1| 国产97色在线日韩免费| 午夜福利在线在线| 97超级碰碰碰精品色视频在线观看| 午夜福利在线在线| e午夜精品久久久久久久| av中文乱码字幕在线| av片东京热男人的天堂| 欧美+亚洲+日韩+国产| 无人区码免费观看不卡| 此物有八面人人有两片| 午夜激情欧美在线| 亚洲精品一区av在线观看| 两人在一起打扑克的视频| 亚洲真实伦在线观看| 最新在线观看一区二区三区| 日韩成人在线观看一区二区三区| 成人鲁丝片一二三区免费| 亚洲美女黄片视频| 色综合欧美亚洲国产小说| 男女下面进入的视频免费午夜| 亚洲av电影不卡..在线观看| 久久亚洲精品不卡| 在线播放国产精品三级| 他把我摸到了高潮在线观看| 久久久久精品国产欧美久久久| 国产欧美日韩一区二区三| 国产综合懂色| 免费av毛片视频| 国产 一区 欧美 日韩| 国产高清视频在线观看网站| 欧美一级a爱片免费观看看| 麻豆国产97在线/欧美| 色综合婷婷激情| 在线观看美女被高潮喷水网站 | 亚洲精品乱码久久久v下载方式 | 国产高清videossex| 国产精品,欧美在线| 中文字幕久久专区| 亚洲精品国产精品久久久不卡| 国产精品野战在线观看| 久久久久久久午夜电影| 中文资源天堂在线| 亚洲七黄色美女视频| 国产精品1区2区在线观看.| 免费观看的影片在线观看| ponron亚洲| 成年免费大片在线观看| 午夜福利18| 99热这里只有精品一区| 国产私拍福利视频在线观看| 脱女人内裤的视频| 久久久久久大精品| 国产伦一二天堂av在线观看| 欧美在线一区亚洲| 黄色成人免费大全| 桃红色精品国产亚洲av| 悠悠久久av| 97超级碰碰碰精品色视频在线观看| www日本黄色视频网| 精品99又大又爽又粗少妇毛片 | 国产探花在线观看一区二区| 久久久久久久午夜电影| 亚洲一区二区三区不卡视频| 欧美成人性av电影在线观看| 国产精品98久久久久久宅男小说| 亚洲五月婷婷丁香| 亚洲专区中文字幕在线| 欧美丝袜亚洲另类 | 色尼玛亚洲综合影院| 亚洲精品美女久久久久99蜜臀| 国产激情偷乱视频一区二区| 99国产综合亚洲精品| 白带黄色成豆腐渣|