• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury

    2016-12-01 12:37:48HuiGuoHuiZhouJieLuYiQuDanYuYuTong

    Hui Guo, Hui Zhou, Jie Lu, Yi Qu Dan Yu, Yu Tong

    1 Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China

    2 Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China

    3 Department of Medical Cosmetology, Chengdu Second People’s Hospital, Chengdu, Sichuan Province, China

    REVIEW

    Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury

    Hui Guo1,2,#, Hui Zhou1,2,#, Jie Lu3,#, Yi Qu1,2, Dan Yu1,2,*, Yu Tong1,2,*

    1 Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China

    2 Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China

    3 Department of Medical Cosmetology, Chengdu Second People’s Hospital, Chengdu, Sichuan Province, China

    Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ ischemic brain injury, and is involved in the process of brain repair via the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions.

    nerve regeneration; VEGF; VEGFR; HIF1; PI3K/Akt pathway; Akt/eNOS pathway; JAK/STAT; Src-SSeCKS pathway; hypoxic/ischemic brain injury; neural regeneration

    # These authors contributed equally to this work.

    orcid: 0000-0002-1744-6020 (Yu Tong) 0000-0002-7785-9951 (Dan Yu)

    http://www.nrronline.org/

    Accepted: 2015-10-12

    Introduction

    Cerebral hypoxia leads to necrosis and apoptosis, in addition to other cellular reactions, such as angiogenesis, which promote recovery from brain injury (Bhattacharya et al. 2013). The vascular endothelial growth factor (VEGF) family comprises the trophic factors VEGF-A, VEGF-B, VEGF-C, VEGF-D, and placental growth factor, and stimulates the growth of new blood vessels (Holmes et al., 2007). VEGF is expressed in the central nervous system (CNS) after injury (Dore-Duffy et al., 2007; Chaitanya et al., 2013; Leonard and Gulati, 2013) and is an important regulator of vascular leakage in the brain. Hypoxia induces the expression of VEGF, leading to the formation of cerebral edema (Bauer et al., 2010; Baburamani et al., 2013).

    VEGF can reduce the damage caused by hypoxia/ischemia in a number of ways (Shimotake et al., 2010; Zhao et al., 2011; Dzietko et al., 2013). During cerebral ischemia, VEGF promotes neurogenesis (van Rooijen et al., 2010; Moriyama et al., 2013; Rosell et al., 2013), neurite outgrowth (Cesca et al., 2012), and the survival of newborn neuronal precursors. It also has an important role in increasing the size of the subventricular zone after injury (Gotts and Chesselet, 2005). Furthermore, inhibition of VEGF expression after injury may exacerbate neuronal and glial damage (Skold et al., 2006). However, increased endogenous VEGF interacts with its receptors on ischemic vessels, and contributes to the disruption of the blood-brain barrier and subsequent leakage (Zhang et al., 2011). Therefore, understanding the relevant signaling pathway of VEGF in response to hypoxia/ ischemia, and devising ways to modulate it, is essential for the successful treatment of hypoxic/ischemic brain injury. In this review, we provide an overview of the VEGF signaling pathway and discuss its role in hypoxic/ischemic brain injury.

    VEGF and Its Receptors (VEGFRs)

    VEGF is an endothelial cell-specific mitogen and a secreted dimeric protein, and as such can induce angiogenesis in a variety of ways (Dzietko et al., 2013; Morgan et al., 2007; Holzer et al., 2013). The role of VEGF in angiogenesis is crucial for the development and regeneration/restoration of tissue, as well as for tumor formation (Morgan et al., 2007; Dzietko et al., 2013; Holzer et al., 2013). Rodent models of hypoxia/ischemia have demonstrated that angiogenesisprovides the right neurovascular microenvironment for neuronal remodeling (Arai et al., 2009; Xiong et al., 2011). Lin et al. (2003) first found that VEGF promotes the outgrowth of nerve fibers on cultured major pelvic ganglia in vitro. A large number of studies have suggested that activation of the VEGF★VEGFR signaling pathway is beneficial to neurobehavioral recovery and neurovascular remodeling after hypoxic/ischemic brain injury (Shimotake et al., 2010; Zhao et al., 2011; Dzietko et al., 2013).

    In most mammalian tissues, VEGF165 is the most common isoform of VEGF, existing as a heparin-binding homodimeric glycoprotein of approximately 45 kDa (Holzer et al., 2013). VEGF regulates physiological and pathological angiogenesis by binding to and activating the tyrosine kinase receptors VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1) (Ho et al., 2012). In vascular endothelial cells, VEGF binds to VEGFR-1 and (predominantly) VEGFR-2, and stimulates angiogenesis in the periphery by triggering mitotic and migratory processes (Shibuya and Claesson-Welsh, 2006). VEGFR-2 is considered the major receptor for VEGF-mediated activities (Zachary and Gliki, 2001). VEGFR-1 binds to endogenous VEGF and transmits the proliferation signal for astrocytes and the vasculature (Shih et al., 2003; Krum et al., 2008; Sato et al., 2011). VEGFR-1 is upregulated almost exclusively in reactive astrocytes (Krum and Khaibullina, 2003; Khaibullina et al., 2004), while VEGFR-2 is upregulated in neurons. Furthermore, it has been shown that VEGF stimulates axonal outgrowth by binding to VEGFR-2. In situ hybridization and immunocytochemistry in adult mice revealed that VEGF promotes axonal outgrowth from dorsal root ganglia, and that the VEGFR-2 inhibitor SU5416 prevented this process (Sondel et al., 1999; Olbrich et al., 2012). These findings provide sound evidence that VEGF is necessary for the regeneration of peripheral nerves.

    VEGF and Hypoxia Inducible Factor (HIF)

    HIFs are important regulators of the transcriptional response to oxygen deprivation. In the adult hypoxic brain, the nuclear protein complex HIF-1 is the most ubiquitously expressed member of the HIF family. It is the best-characterized transcription regulator of VEGF, and binds to the consensus sequence in target gene promoters. HIF-1 is a heterodimer composed of an alpha and a beta subunit. The beta subunit has been identified as the aryl hydrocarbon receptor nuclear translocator. Hypoxia induces HIF-1 expression (Josko and Mazurek, 2004; Dery et al., 2005). Under normoxic conditions, HIF-1α is rapidly degraded by the ubiquitin-proteosome system, but remains stable during hypoxia. Conversely, HIF-1α is stable under normoxic conditions. The expression of HIF-1α is increased in different cell types during hypoxia-induced CNS injury (Jin et al., 2000). Furthermore, Marti et al. (2000) revealed that HIF-1 and VEGF mRNA are coexpressed in a mouse model of focal ischemia, and that the number of newly formed vessels is increased at the marginal zone of the cerebral infarction. The same group also analyzed the expression of VEGF and VEGFRs in hypoxic cells, observing a significant increase both in VEGF in the ischemic region and in VEGFRs at the border. They further found that expression of HIF-1 was also increased in the ischemic region. These results strongly suggest that the HIF-1-VEGF-VEGFR signaling pathway may be involved in the growth of new vessels after cerebral ischemic injury.

    In another study, Nordal et al. (2004) used immunohistochemistry and in situ hybridization to detect the expression of the HIF-1α subunit and VEGF in the irradiated rat spinal cord. HIF-1α expression was observed in glial cells expressing VEGF (Sondell et al., 2000), and VEGF expression correlated with HIF-1α expression. A number of HIF-1α-mediated regulators of genes such as VEGF and erythropoietin may be relevant in CNS injury responses (Mu et al., 2003). In the ischemic or hypoxic brain, astrocytes are one of the main sources of erythropoietin. The pathway by which HIF-1α mediates the transcriptional activation of erythropoietin expression may promote the survival of neurons during hypoxia via an astrocytic paracrine-dependent mechanism (Fandrey, 2004). By activating the phosphatidylinositol-3-kinase (PI3K)-Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways, erythropoietin increases the secretion of VEGF in neural stem cells (Xiong et al., 2011). Upregulation of VEGF increases vascular permeability and interstitial fluid pressure, and reduces perfusion and edema. Although the precise mechanism by which VEGF increases permeability remains unclear, it may involve action on tight junction proteins or adhesion molecules (Radisavljevic et al., 2000; Fischer et al., 2002). Interrupting this secondary cycle of damage caused by VEGF upregulation may improve neuroprotective strategies against CNS radiation injury. Above all, VEGF may be involved in hypoxic/ischemic brain injury via the HIF-erythropoietin-PI3K-Akt and ERK1/2-VEGF pathways.

    VEGF and the VEGFR-2-Akt-endothelial nitric oxide synthase (eNOS) pathway

    raumatic brain injury (TBI) remains one of the main causes of serious, long-term disability. One of the most prominent pathophysiological changes after TBI is ischemia and hypoxia in the lesion boundary area, and the volume of ischemic tissue in early focal cerebral ischemia after TBI correlates with neurological outcome (Coles et al., 2004). Following TBI, a substantial increase in angiogenesis occurs, which may provide oxygen and nutrition for cerebral reconstruction (Morgan et al., 2007). TBI-induced angiogenesis and functional recovery in the lesion boundary zone and hippocampus are improved by simvastatin, an effect which may be mediated by activation of the VEGFR-2-Akt-eNOS signaling pathway (Wu et al., 2011). In vitro, simvastatin can stimulate endothelial cell tube formation after oxygen-glucose deprivation. Simvastatin can also augment the expression of VEGFR-2 in brain tissue and cultured rat microvascular endothelial cells, and this effect may be related to simvastatin-induced activation of Akt. Furthermore, simvastatin can also induce Akt-dependent eNOS phosphorylation in vivo and in vitro (Wu et al., 2011).

    Many of the downstream angiogenic effects of VEGF, suchas microvascular permeability and endothelial cell proliferation, migration and survival, are mediated by VEGFR-2 (Hicklin and Ellis, 2005). On the surface of endothelial cells, VEGF activates intracellular tyrosine kinases by binding to VEGFR-2, which triggers multiple downstream signals to stimulate angiogenesis. Among these, Akt-dependent eNOS phosphorylation is essential for angiogenesis (Kureishi et al., 2000). Phosphorylation of the protein kinase Akt plays a crucial role in multiple cellular and physiologic effects (Parcellier et al., 2008). The pro-survival effects of Akt include anti-apoptosis, angiogenesis, and neuroprotection after brain injury (Kilic et al., 2006; Shein et al., 2007). In a TBI study (Thau-Zuchman et al., 2010), the effects of VEGF on brain recovery and function were examined by infusing ectogenic VEGF into the lateral ventricles of mice for 7 days after TBI. VEGF had multiple effects, including promotion of neurogenesis and angiogenesis, neuroprotection, and improvement of functional recovery by mediating phospho-Akt signaling (Thau-Zuchman et al., 2010). eNOS is a downstream mediator of VEGFR-2 and is critical for angiogenesis (Fischer et al., 2002). eNOS mediates vasodilation after hypoxic/ ischemic episodes by increasing blood flow (Bolanos and Almeida, 1999). Nitric oxide is synthesized by eNOS and is an essential component of the pathological and physiological response to hypoxia/ischemia (Kaur and Ling, 2008). Simvastatin administration can activate Akt-GSK-3 and enhance phosphorylation of eNOS in the TBI model (Thau-Zuchman et al., 2010), and phospho-eNOS in turn induces a series of downstream effects, such as angiogenesis and recruitment of mural cells to immature angiogenic sprouts (Kashiwagi et al., 2005).

    VEGF and the VEGFR-2-PI3K-Akt pathway

    The pro-angiogenic effects of VEGF are thought to be attributed to VEGFR-2, and the protective effect of VEGF on cerebral cortical neurons may involve VEGFR-2 dimerization to form a receptor complex with neuropilin-1 (Sato et al., 2011). Class Ia PI3K and its downstream effector Akt are enabled by the activation of VEGFR-2 (Koch et al., 2011). The PI3K-Akt pathway is crucial for many VEGF-dependent effects, including cell survival and migration, and vasopermeability (Olsson et al., 2006). The VEGF-PI3K-Akt pathway is not only involved in endothelial permeability in vitro (Pedram et al., 2002), but is also attributed to neuroprotection and blood-brain barrier permeability in a mouse model of focal cerebral ischemia. Furthermore, these effects are dependent on VEGFR-2 (Hicklin and Ellis, 2005). This pathway may contribute to the maintenance of mitochondrial function under conditions of tissue oxygen deficit. Akt is activated by phosphorylation of the Bcl-2-associated death promoter, which increases the removal of Bcl-xL from mitochondria, blocks the formation of the mitochondrial permeability transition pore, and maintains the mitochondrial membrane potential. In addition, Bcl-xL depresses the activity of caspases 9 and 3 by blocking the release of cytochrome c from injured mitochondria, thereby restraining DNA cleavage (Cheng et al., 2010; Wu et al., 2011).

    The specific mechanism by which VEGF-VEGFR-2 activates PI3K-Akt is still unclear, but a recent report suggested that the receptor tyrosine kinase Axl may be responsible for VEGF-A-dependent activation of PI3K/Akt (Ruan and Kazlauskas, 2012).

    VEGF and the JAK-STAT pathway

    The Janus kinase (JAK) family comprises four non-receptor tyrosine kinases, JAK1, JAK2, JAK3 and TYK2. The first three are widely expressed in various tissues and cells, but TYK3 exists only in the bone marrow and lymph system. Signal transducer and activator of transcription (STAT) is the substrate for JAK. The STAT family comprises seven latent cytoplasmic transcription factors that are involved in signal transduction mediated by cytokines and growth factors. The JAK-STAT pathway is downstream of the cytokine receptors. Activation of these cytokine receptors initiates JAK phosphorylation and activation, which in turn phosphorylates STAT. Following tyrosine phosphorylation, STAT proteins dimerize through the nuclear membrane into the nucleus, where they combine with genomic regulatory sequences and enhance the transcription of related genes (Lai and Johnson, 2010).

    In mammals, the JAK-STAT pathway is considered to be the major signaling mechanism for a number of growth factors and cytokines (Ihle and Kerr, 1995), and mediates a wide variety of biological functions in the CNS including the regeneration of peripheral nerves (Bella et al., 2006; Lin et al., 2006; Xu et al., 2009), and may also be involved in axon regeneration and in the proliferation and migration of Schwann cells after sciatic nerve injury (Xu et al., 2009).

    To date, most studies on the interaction between VEGF and the JAK-STAT pathway have focused on tumors (Roorda et al., 2010) and cellular invasiveness. Whether VEGF can directly activate the JAK-STAT pathway to promote neurite outgrowth has not been examined. VEGF may achieve this by promoting angiogenesis or by binding with JAK-STAT directly, similarly to combining with neurotrophic factors. However, activation of STAT3 can increase VEGF expression, which indicates that another signaling pathway may be involved (Wang et al., 2010). VEGF expression can be induced by latent membrane protein 1 via both the JAKSTAT and mitogen-activated protein kinase (MAPK)-ERK pathways (Wang et al., 2010). Furthermore, the increased expression of VEGF induced by elevated phosphorylation of STAT3 after nerve injury may further sensitize the JAKSTAT pathway (Bella., 2007). Therefore, VEGF may interact directly or indirectly with the JAK-STAT pathway. Further understanding of the interaction between VEGF and the JAK-STAT pathway will be beneficial to develop new therapies for neuronal recovery.

    VEGF and the Src-SSeCKS pathway

    The non-receptor tyrosine kinase Src is another protein considered to be associated with angiogenesis (Theus et al., 2006; Tang et al., 2007). The activity of Src kinase increases significantly during transient global ischemia (Schlessinger,2000) and this effect is associated with increased vascular permeability mediated by VEGF (Paul et al., 2001; Zan et al., 2014; He et al., 2015). Mice lacking the Src subtype pp60c-Src are resistant to this increase in VEGF-induced vascular permeability and have smaller infarct volumes after stroke. However, mice lacking pp59c-Fyn, another member of the Src family, do not show these effects (Paul et al., 2001). VEGF induces endothelial activation and vascular leak mainly via VEGFR-2 (Mason et al., 2004) and Src (Eliceiri et al., 1999). Src-suppressed C kinase substrate (SSeCKS) is widely expressed in astrocyte-like, neuron-like and endothelial-like cells (Zan et al., 2011). Under ischemic conditions, Src and SSeCKS can regulate the expression of VEGF (Lee et al., 2003; Zan et al., 2011). Inhibition of Src decreases VEGF-induced vascular permeability and infarct volume (Bella et al., 2007) and alleviates brain edema and injury (Akiyama et al., 2004; Lennmyr et al., 2004). Accordingly, inhibitors of VEGF or Src kinases can reduce the edema and tissue injury following myocardial ischemia injury (Weis et al., 2004). The inhibition of SSeCKS by Src and its regulation of angiogenesis and vascular permeability may be achieved by regulating VEGF and tight junction proteins after ischemic brain injury. Src and SSeCKS may have opposing effects on angiogenesis and vascular permeability after focal cerebral ischemia, and angiogenic factors are involved in this process by serving as downstream mediators (Paul et al., 2001). Furthermore, modulation of angiogenesis and vascular leakage by the Src-SSeCKS pathway helps improve recovery after focal cerebral ischemia (Bai et al., 2014).

    Table 1 VEGF pathways involved in hypoxic/ischemic brain injury

    Conclusion

    Hypoxic/ischemic brain injury causes severe brain damage, but the specific mechanisms underlying the pathophysiology of such injury, and preventive measures, remain unclear. Cerebral hypoxia/ischemia results in widespread responses at the systemic and cellular levels and regulates many physiological and pathological processes. The upregulation of VEGF is considered to be a crucial stimulus for these processes. As a hypoxia-induced angiogenic protein, VEGF plays a double-edged role in the central nervous system. Based on its trophic influence on neurons and vascular cells, it is a promising candidate for brain injury treatment. Accumulating evidence implicates VEGF in cerebral hypoxia/ischemia via the HIF-1, VEGF-R2-PI3K-Akt, VEGF-R2-Akt-eNOS, JAK-STAT, and Src-SSeCKS pathways (Table 1). Thus VEGF becomes an attractive target for the treatment of hypoxic/ ischemic brain injury. A variety of therapeutic strategies targeting VEGF are currently in the research pipeline, but most of them are in the experimental stages. Creatinine may be an effective treatment against cerebral hypoxia/ischemia, increasing the expression of VEGF and mediating neovascularization in the ischemic zone (Pedram et al., 2002); however, the downstream intracellular signaling pathways mediating these effects remain unclear. A better understanding of the VEGF signaling pathway will improve therapeutic advances for hypoxic/ischemic brain injury.

    Author contributions: HZ and JL performed the literature search. DY and YQ performed the study selection. HG and YT wrote this paper. All authors approved the final version of this paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    Akiyama C, Yuguchi T, Nishio M, Tomishima T, Fujinaka T, Taniguchi M, Nakajima Y, Kohmura E, Yoshimine T (2004) Src family kinase inhibitor PP1 reduces secondary damage after spinal cord compression in rats. J Neurotrauma 21:923-931.

    Arai K, Jin G, Navaratna D, Lo EH (2009) Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS J 276:4644-4652.

    Baburamani AA, Castillo-Melendez M, Walker DW (2013) VEGF expression and microvascular responses to severe transient hypoxia in the fetal sheep brain. Pediatr Res 73:310-316.

    Bai Y, Xu G, Xu M, Li Q, Qin X (2014) Inhibition of Src phosphorylation reduces damage to the blood-brain barrier following transient focal cerebral ischemia in rats. Int J Mol Med 34:1473-1482.

    Bauer AT, Burgers HF, Rabie T, Marti HH (2010) Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab 30:837-848.

    Bella AJ, Lin G, Tantiwongse K, Garcia M, Lin CS, Brant W, Lue TF (2006) Brain-derived neurotrophic factor (BDNF) acts primarily via the JAK/STAT pathway to promote neurite growth in the major pelvic ganglion of the rat: part I. J Sex Med 3:815-820.

    Bella AJ, Lin G, Garcia MM, Tantiwongse K, Brant WO, Lin CS, Lue TF (2007) Upregulation of penile brain-derived neurotrophic factor (BDNF) and activation of the JAK/STAT signalling pathway in the major pelvic ganglion of the rat after cavernous nerve transection. Eur Urol 52:574-580.

    Bhattacharya P, Pandey AK, Paul S, Patnaik R, Yavagal DR (2013) Aquaporin-4 inhibition mediates piroxicam-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rodents. PLoS One 8:e73481.

    Bolanos JP, Almeida A (1999) Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta 1411:415-436.

    Cesca F, Yabe A, Spencer-Dene B, Scholz-Starke J, Medrihan L, Maden CH, Gerhardt H, Orriss IR, Baldelli P, Al-Qatari M, Koltzenburg M, Adams RH, Benfenati F, Schiavo G (2012) Kidins220/ARMS mediates the integration of the neurotrophin and VEGF pathways in the vascular and nervous systems. Cell Death Differ 19:194-208.

    Chaitanya GV, Cromer WE, Parker CP, Couraud PO, Romero IA, Weksler B, Mathis JM, Minagar A, Alexander JS (2013) A recombinant inhibitory isoform of vascular endothelial growth factor164/165 aggravates ischemic brain damage in a mouse model of focal cerebral ischemia. Am J Pathol 183:1010-1024.

    Cheng XW, Kuzuya M, Kim W, Song H, Hu L, Inoue A, Nakamura K, Di Q, Sasaki T, Tsuzuki M, Shi GP, Okumura K, Murohara T (2010) Exercise training stimulates ischemia-induced neovascularization via phosphatidylinositol 3-kinase/Akt-dependent hypoxia-induced factor-1 alpha reactivation in mice of advanced age. Circulation 122:707-716.

    Coles JP, Fryer TD, Smielewski P, Chatfield DA, Steiner LA, Johnston AJ, Downey SP, Williams GB, Aigbirhio F, Hutchinson PJ, Rice K, Carpenter TA, Clark JC, Pickard JD, Menon DK (2004) Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab 24:202-211.

    Dery MA, Michaud MD, Richard DE (2005) Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol 37:535-540.

    Dore-Duffy P, Wang X, Mehedi A, Kreipke CW, Rafols JA (2007) Differential expression of capillary VEGF isoforms following traumatic brain injury. Neurol Res 29:395-403.

    Dzietko M, Derugin N, Wendland MF, Vexler ZS, Ferriero DM (2013) Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke. Transl Stroke Res 4:189-200.

    Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915-924.

    Fandrey J (2004) Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol 286:R977-988.

    Fischer S, Wobben M, Marti HH, Renz D, Schaper W (2002) Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res 63:70-80.

    Gotts JE, Chesselet MF (2005) Vascular changes in the subventricular zone after distal cortical lesions. Exp Neurol 194:139-150.

    He YX, Liu J, Guo B, Wang YX, Pan X, Li D, Tang T, Chen Y, Peng S, Bian Z, Liang Z, Zhang BT, Lu A, Zhang G (2015) Src inhibitor reduces permeability without disturbing vascularization and prevents bone destruction in steroid-associated osteonecrotic lesions in rabbits. Sci Rep 5:8856.

    Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011-1027.

    Ho VC, Duan LJ, Cronin C, Liang BT, Fong GH (2012) Elevated vascular endothelial growth factor receptor-2 abundance contributes to increased angiogenesis in vascular endothelial growth factor receptor-1-deficient mice. Circulation 126:741-752.

    Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19:2003-2012.

    Holzer LA, Cor A, Pfandlsteiner G, Holzer G (2013) Expression of VEGF, its receptors, and HIF-1alpha in Dupuytren’s disease. Acta Orthop 84:420-425.

    Ihle JN, Kerr IM (1995) Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 11:69-74.

    Jin KL, Mao XO, Nagayama T, Goldsmith PC, Greenberg DA (2000) Induction of vascular endothelial growth factor and hypoxia-inducible factor-1alpha by global ischemia in rat brain. Neuroscience 99:577-585.

    Josko J, Mazurek M (2004) Transcription factors having impact on vascular endothelial growth factor (VEGF) gene expression in angiogenesis. Med Sci Monit 10:RA89-98.

    Kashiwagi S, Izumi Y, Gohongi T, Demou ZN, Xu L, Huang PL, Buerk DG, Munn LL, Jain RK, Fukumura D (2005) NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J Clin Invest 115:1816-1827.

    Kaur C, Ling EA (2008) Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res 5:71-81.

    Khaibullina AA, Rosenstein JM, Krum JM (2004) Vascular endothelial growth factor promotes neurite maturation in primary CNS neuronal cultures. Brain Res Dev Brain Res 148:59-68.

    Kilic E, Kilic U, Wang Y, Bassetti CL, Marti HH, Hermann DM (2006) The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF’s neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. FASEB J 20:1185-1187.

    Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437:169-183.

    Krum JM, Khaibullina A (2003) Inhibition of endogenous VEGF impedes revascularization and astroglial proliferation: roles for VEGF in brain repair. Exp Neurol 181:241-257.

    Krum JM, Mani N, Rosenstein JM (2008) Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury. Exp Neurol 212:108-117.

    Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC, Walsh K (2000) The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6:1004-1010.

    Lai SY, Johnson FM (2010) Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches. Drug Resist Updat 13:67-78.

    Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9:900-906.

    Lennmyr F, Ericsson A, Gerwins P, Akterin S, Ahlstrom H, Terent A (2004) Src family kinase-inhibitor PP2 reduces focal ischemic brain injury. Acta Neurol Scand 110:175-179.

    Leonard MG, Gulati A (2013) Endothelin B receptor agonist, IRL-1620, enhances angiogenesis and neurogenesis following cerebral ischemia in rats. Brain Res 1528:28-41.

    Lin G, Bella AJ, Lue TF, Lin CS (2006) Brain-derived neurotrophic factor (BDNF) acts primarily via the JAK/STAT pathway to promote neurite growth in the major pelvic ganglion of the rat: part 2. J Sex Med 3:821-827.

    Lin G, Chen KC, Hsieh PS, Yeh CH, Lue TF, Lin CS (2003) Neurotrophic effects of vascular endothelial growth factor and neurotrophins on cultured major pelvic ganglia. BJU Int 92:631-635.

    Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, Risau W (2000) Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156:965-976.

    Mason JC, Steinberg R, Lidington EA, Kinderlerer AR, Ohba M, Haskard DO (2004) Decay-accelerating factor induction on vascular endothelium by vascular endothelial growth factor (VEGF) is mediated via a VEGF receptor-2 (VEGF-R2)- and protein kinase C-alpha/epsilon (PKCalpha/epsilon)-dependent cytoprotective signaling pathway and is inhibited by cyclosporin A. J Biol Chem 279:41611-41618.

    Morgan R, Kreipke CW, Roberts G, Bagchi M, Rafols JA (2007) Neovascularization following traumatic brain injury: possible evidence for both angiogenesis and vasculogenesis. Neurol Res 29:375-381.

    Moriyama Y, Takagi N, Hashimura K, Itokawa C, Tanonaka K (2013) Intravenous injection of neural progenitor cells facilitates angiogenesis after cerebral ischemia. Brain Behav 3:43-53.

    Mu D, Jiang X, Sheldon RA, Fox CK, Hamrick SE, Vexler ZS, Ferriero DM (2003) Regulation of hypoxia-inducible factor 1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis 14:524-534.

    Nordal RA, Nagy A, Pintilie M, Wong CS (2004) Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 10:3342-3353.

    Olbrich L, Foehring D, Happel P, Brand-Saberi B, Theiss C (2012) Fast rearrangement of the neuronal growth cone’s actin cytoskeleton following VEGF stimulation. Histochem Cell Biol 139:431-445.

    Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 7:359-371.

    Parcellier A, Tintignac LA, Zhuravleva E, Hemmings BA (2008) PKB and the mitochondria: AKTing on apoptosis. Cell Signal 20:21-30.

    Paul R, Zhang ZG, Eliceiri BP, Jiang Q, Boccia AD, Zhang RL, Chopp M, Cheresh DA (2001) Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat Med 7:222-227.

    Pedram A, Razandi M, Levin ER (2002) Deciphering vascular endothelial cell growth factor/vascular permeability factor signaling to vascular permeability. Inhibition by atrial natriuretic peptide. J Biol Chem 277:44385-44398.

    Radisavljevic Z, Avraham H, Avraham S (2000) Vascular endothelial growth factor up-regulates ICAM-1 expression via the phosphatidylinositol 3 OH-kinase/AKT/Nitric oxide pathway and modulates migration of brain microvascular endothelial cells. J Biol Chem 275:20770-20774.

    Roorda BD, Ter Elst A, Scherpen FJ, Meeuwsen-de Boer TG, Kamps WA, de Bont ES (2010) VEGF-A promotes lymphoma tumour growth by activation of STAT proteins and inhibition of p27(KIP1) via paracrine mechanisms. Eur J Cancer 46:974-982.

    Rosell A, Morancho A, Navarro-Sobrino M, Martinez-Saez E, Hernandez-Guillamon M, Lope-Piedrafita S, Barcelo V, Borras F, Penalba A, Garcia-Bonilla L, Montaner J (2013) Factors secreted by endothelial progenitor cells enhance neurorepair responses after cerebral ischemia in mice. PLoS One 8:e73244.

    Ruan GX, Kazlauskas A (2012) Axl is essential for VEGF-A-dependent activation of PI3K/Akt. EMBO J 31:1692-1703.

    Sato W, Tanabe K, Kosugi T, Hudkins K, Lanaspa MA, Zhang L, Campbell-Thompson M, Li Q, Long DA, Alpers CE, Nakagawa T (2011) Selective stimulation of VEGFR2 accelerates progressive renal disease. Am J Pathol 179:155-166.

    Schlessinger J (2000) New roles for Src kinases in control of cell survival and angiogenesis. Cell 100:293-296.

    Shein NA, Tsenter J, Alexandrovich AG, Horowitz M, Shohami E (2007) Akt phosphorylation is required for heat acclimation-induced neuroprotection. J Neurochem 103:1523-1529.

    Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312:549-560.

    Shih SC, Ju M, Liu N, Mo JR, Ney JJ, Smith LE (2003) Transforming growth factor beta1 induction of vascular endothelial growth factor receptor 1: mechanism of pericyte-induced vascular survival in vivo. Proc Natl Acad Sci U S A 100:15859-15864.

    Shimotake J, Derugin N, Wendland M, Vexler ZS, Ferriero DM (2010) Vascular endothelial growth factor receptor-2 inhibition promotes cell death and limits endothelial cell proliferation in a neonatal rodent model of stroke. Stroke 41:343-349.

    Skold MK, Risling M, Holmin S (2006) Inhibition of vascular endothelial growth factor receptor 2 activity in experimental brain contusions aggravates injury outcome and leads to early increased neuronal and glial degeneration. Eur J Neurosci 23:21-34.

    Sondell M, Lundborg G, Kanje M (1999) Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 19:5731-5740.

    Sondell M, Sundler F, Kanje M (2000) Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci 12:4243-4254.

    Tang X, Feng Y, Ye K (2007) Src-family tyrosine kinase fyn phosphorylates phosphatidylinositol 3-kinase enhancer-activating Akt, preventing its apoptotic cleavage and promoting cell survival. Cell Death Differ 14:368-377.

    Thau-Zuchman O, Shohami E, Alexandrovich AG, Leker RR (2010) Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J Cereb Blood Flow Metab 30:1008-1016.

    Theus MH, Wei L, Francis K, Yu SP (2006) Critical roles of Src family tyrosine kinases in excitatory neuronal differentiation of cultured embryonic stem cells. Exp Cell Res 312:3096-3107.

    van Rooijen E, Voest EE, Logister I, Bussmann J, Korving J, van Eeden FJ, Giles RH, Schulte-Merker S (2010) von Hippel-Lindau tumor suppressor mutants faithfully model pathological hypoxia-driven angiogenesis and vascular retinopathies in zebrafish. Dis Model Mech 3:343-353.

    Wang Z, Luo F, Li L, Yang L, Hu D, Ma X, Lu Z, Sun L, Cao Y (2010) STAT3 activation induced by Epstein-Barr virus latent membrane protein1 causes vascular endothelial growth factor expression and cellular invasiveness via JAK3 And ERK signaling. Eur J Cancer 46:2996-3006.

    Weis S, Shintani S, Weber A, Kirchmair R, Wood M, Cravens A, McSharry H, Iwakura A, Yoon YS, Himes N, Burstein D, Doukas J, Soll R, Losordo D, Cheresh D (2004) Src blockade stabilizes a Flk/ cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest 113:885-894.

    Wu H, Jiang H, Lu D, Qu C, Xiong Y, Zhou D, Chopp M, Mahmood A (2011) Induction of angiogenesis and modulation of vascular endothelial growth factor receptor-2 by simvastatin after traumatic brain injury. Neurosurgery 68:1363-1371; discussion 1371.

    Xiong Y, Zhang Y, Mahmood A, Meng Y, Qu C, Chopp M (2011) Erythropoietin mediates neurobehavioral recovery and neurovascular remodeling following traumatic brain injury in rats by increasing expression of vascular endothelial growth factor. Transl Stroke Res 2:619-632.

    Xu JJ, Chen EY, Lu CL, He C (2009) Recombinant ciliary neurotrophic factor promotes nerve regeneration and induces gene expression in silicon tube-bridged transected sciatic nerves in adult rats. J Clin Neurosci 16:812-817.

    Zachary I, Gliki G (2001) Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 49:568-581.

    Zan L, Zhang X, Xi Y, Wu H, Song Y, Teng G, Li H, Qi J, Wang J (2014) Src regulates angiogenic factors and vascular permeability after focal cerebral ischemia-reperfusion. Neuroscience 262:118-128.

    Zan L, Wu H, Jiang J, Zhao S, Song Y, Teng G, Li H, Jia Y, Zhou M, Zhang X, Qi J, Wang J (2011) Temporal profile of Src, SSeCKS, and angiogenic factors after focal cerebral ischemia: correlations with angiogenesis and cerebral edema. Neurochem Int 58:872-879.

    Zhang L, Deng M, Zhou S (2011) Tetramethylpyrazine inhibits hypoxia-induced pulmonary vascular leakage in rats via the ROS-HIFVEGF pathway. Pharmacology 87:265-273.

    Zhao H, Bao XJ, Wang RZ, Li GL, Gao J, Ma SH, Wei JJ, Feng M, Zhao YJ, Ma WB, Yang Y, Li YN, Kong YG (2011) Postacute ischemia vascular endothelial growth factor transfer by transferrin-targeted liposomes attenuates ischemic brain injury after experimental stroke in rats. Hum Gene Ther 22:207-215.

    Copyedited by Slone-Murphy J, Raye W, Li CH, Song LP, Zhao M

    10.4103/1673-5374.175067

    How to cite this article: Guo H, Zhou H, Lu J, Qu Y, Yu D, Tong Y (2016) Vascular endothelial growth factor∶ an attractive target in the treatment of hypoxic/ischemic brain injury. Neural Regen Res 11(1)∶174-179.

    Funding: Funding: This study was supported by the National Natural Science Foundation of China, No. 81401238, 81330016, 31171020, 81172174 and 81270724; the grants from Ministry of Education of China, No. 313037, 20110181130002; a grant from State Commission of Science Technology of China, No. 2012BAI04B04; the grants from Science and Technology Bureau of Sichuan Province of China, No. 2012SZ0010, 2014FZ0113, 2014SZ0149; and a grant from Clinical Discipline Program (Neonatology) from the Ministry of Health of China, No. 1311200003303.

    *Correspondence to: Yu Tong or Dan Yu, zisu_yu@163.com or yd540@126.com.

    乱人伦中国视频| 亚洲精华国产精华精| 美女 人体艺术 gogo| 成人18禁高潮啪啪吃奶动态图| 日韩精品中文字幕看吧| 国产在线观看jvid| 色综合站精品国产| 国产精品美女特级片免费视频播放器 | 色综合站精品国产| 日本wwww免费看| 免费观看精品视频网站| 激情视频va一区二区三区| 一区福利在线观看| 国产精品久久久久久人妻精品电影| 日本vs欧美在线观看视频| 亚洲在线自拍视频| 老熟妇仑乱视频hdxx| 人人妻人人爽人人添夜夜欢视频| 99在线视频只有这里精品首页| 黑人欧美特级aaaaaa片| 精品国产超薄肉色丝袜足j| 日韩欧美一区二区三区在线观看| 电影成人av| 精品日产1卡2卡| 91九色精品人成在线观看| 伊人久久大香线蕉亚洲五| 免费高清视频大片| av福利片在线| 午夜日韩欧美国产| 国产亚洲精品第一综合不卡| 香蕉丝袜av| 一进一出抽搐动态| 窝窝影院91人妻| 麻豆久久精品国产亚洲av | 久久久久久久久中文| 欧美亚洲日本最大视频资源| 国产午夜精品久久久久久| tocl精华| 久久青草综合色| 色哟哟哟哟哟哟| 男女床上黄色一级片免费看| 后天国语完整版免费观看| 久久人妻av系列| 亚洲中文字幕日韩| 人人妻人人爽人人添夜夜欢视频| 国产色视频综合| 国产高清国产精品国产三级| 亚洲国产欧美日韩在线播放| 露出奶头的视频| 美女 人体艺术 gogo| 美女福利国产在线| 日韩成人在线观看一区二区三区| cao死你这个sao货| 午夜久久久在线观看| 亚洲自偷自拍图片 自拍| 久久久国产欧美日韩av| 51午夜福利影视在线观看| 国产97色在线日韩免费| 咕卡用的链子| 亚洲片人在线观看| 亚洲五月婷婷丁香| 中文字幕高清在线视频| www.自偷自拍.com| 亚洲av第一区精品v没综合| 亚洲第一欧美日韩一区二区三区| 一级a爱视频在线免费观看| 男女做爰动态图高潮gif福利片 | 桃色一区二区三区在线观看| 欧美日韩瑟瑟在线播放| 久久精品国产清高在天天线| 99在线视频只有这里精品首页| av国产精品久久久久影院| 12—13女人毛片做爰片一| 在线天堂中文资源库| 一级作爱视频免费观看| 国产亚洲精品一区二区www| 亚洲成人免费av在线播放| 国产精品av久久久久免费| 夜夜夜夜夜久久久久| 日韩免费高清中文字幕av| 亚洲成人精品中文字幕电影 | 中文字幕高清在线视频| 免费看a级黄色片| 香蕉丝袜av| 精品日产1卡2卡| 亚洲精品一卡2卡三卡4卡5卡| 国产蜜桃级精品一区二区三区| 亚洲五月天丁香| 黄色丝袜av网址大全| 亚洲欧美激情在线| 女生性感内裤真人,穿戴方法视频| 在线观看免费午夜福利视频| 国产免费男女视频| 亚洲激情在线av| 一区二区三区精品91| 精品第一国产精品| 丝袜在线中文字幕| 午夜福利一区二区在线看| 日韩av在线大香蕉| 中文欧美无线码| 亚洲欧美日韩高清在线视频| 精品电影一区二区在线| 天天添夜夜摸| 国产亚洲欧美精品永久| 动漫黄色视频在线观看| 国产精品自产拍在线观看55亚洲| 人妻久久中文字幕网| 国产精品一区二区精品视频观看| 国产欧美日韩精品亚洲av| 午夜精品在线福利| 久久国产亚洲av麻豆专区| 欧美+亚洲+日韩+国产| 成在线人永久免费视频| 午夜久久久在线观看| 一边摸一边抽搐一进一出视频| 国产av一区二区精品久久| 日韩高清综合在线| 亚洲av片天天在线观看| 久热这里只有精品99| 久久久久国内视频| 黑人操中国人逼视频| 美女大奶头视频| 啪啪无遮挡十八禁网站| 91大片在线观看| 老汉色∧v一级毛片| 亚洲av日韩精品久久久久久密| 夜夜夜夜夜久久久久| 国产精品国产高清国产av| 亚洲国产精品999在线| a级毛片在线看网站| 欧美久久黑人一区二区| 女人高潮潮喷娇喘18禁视频| 十八禁人妻一区二区| xxxhd国产人妻xxx| 国产精品久久久av美女十八| 久久久久久久久久久久大奶| 日日夜夜操网爽| 亚洲精品一区av在线观看| 亚洲av熟女| 伦理电影免费视频| 三上悠亚av全集在线观看| 国内毛片毛片毛片毛片毛片| 亚洲avbb在线观看| 亚洲成人免费电影在线观看| 日韩欧美免费精品| 高潮久久久久久久久久久不卡| 国产精品影院久久| 免费人成视频x8x8入口观看| 可以在线观看毛片的网站| 国产亚洲精品第一综合不卡| 1024视频免费在线观看| 9191精品国产免费久久| 久久天堂一区二区三区四区| 欧美丝袜亚洲另类 | 他把我摸到了高潮在线观看| 精品久久久久久电影网| 亚洲精品一卡2卡三卡4卡5卡| 一二三四社区在线视频社区8| aaaaa片日本免费| 国产精品乱码一区二三区的特点 | 中文欧美无线码| 精品卡一卡二卡四卡免费| 一a级毛片在线观看| 国产色视频综合| 在线国产一区二区在线| 宅男免费午夜| 狂野欧美激情性xxxx| 麻豆成人av在线观看| 国产亚洲欧美在线一区二区| 国内久久婷婷六月综合欲色啪| 老司机靠b影院| 日韩欧美免费精品| 亚洲色图综合在线观看| 久久亚洲精品不卡| 很黄的视频免费| 国产精品一区二区精品视频观看| 成在线人永久免费视频| 黄色a级毛片大全视频| 亚洲伊人色综图| av超薄肉色丝袜交足视频| 免费观看精品视频网站| 午夜福利一区二区在线看| 欧美日韩一级在线毛片| 一二三四在线观看免费中文在| 国产三级黄色录像| 天堂影院成人在线观看| 成人三级黄色视频| 一进一出抽搐动态| 丰满饥渴人妻一区二区三| 90打野战视频偷拍视频| 91老司机精品| 精品一品国产午夜福利视频| 日韩一卡2卡3卡4卡2021年| 美女国产高潮福利片在线看| 午夜福利在线免费观看网站| 欧美久久黑人一区二区| 一区福利在线观看| 最新在线观看一区二区三区| 午夜两性在线视频| 极品教师在线免费播放| 9色porny在线观看| 亚洲自拍偷在线| 久久精品亚洲av国产电影网| 国产伦一二天堂av在线观看| 成年人免费黄色播放视频| 精品日产1卡2卡| 少妇粗大呻吟视频| 亚洲人成电影观看| 国产精品国产高清国产av| 19禁男女啪啪无遮挡网站| 可以免费在线观看a视频的电影网站| 天堂俺去俺来也www色官网| 久久久精品欧美日韩精品| 国产片内射在线| 人人妻,人人澡人人爽秒播| 一级,二级,三级黄色视频| 看片在线看免费视频| 两个人免费观看高清视频| 精品熟女少妇八av免费久了| 夜夜看夜夜爽夜夜摸 | 可以在线观看毛片的网站| 国产精品香港三级国产av潘金莲| 18禁黄网站禁片午夜丰满| 国产乱人伦免费视频| 琪琪午夜伦伦电影理论片6080| 午夜久久久在线观看| 成人国产一区最新在线观看| 又大又爽又粗| 又黄又爽又免费观看的视频| 国产精品av久久久久免费| 黑人欧美特级aaaaaa片| 午夜福利一区二区在线看| 精品久久久久久电影网| 亚洲精品中文字幕在线视频| 麻豆av在线久日| 女人爽到高潮嗷嗷叫在线视频| 99热只有精品国产| 欧美中文综合在线视频| 一级a爱片免费观看的视频| 国产av又大| 国产精品乱码一区二三区的特点 | 午夜老司机福利片| 色哟哟哟哟哟哟| 亚洲黑人精品在线| 香蕉久久夜色| 色综合站精品国产| 亚洲色图综合在线观看| 深夜精品福利| 黄色丝袜av网址大全| 村上凉子中文字幕在线| 久久这里只有精品19| 黄网站色视频无遮挡免费观看| 人成视频在线观看免费观看| 无限看片的www在线观看| 国产黄a三级三级三级人| 欧洲精品卡2卡3卡4卡5卡区| 日本欧美视频一区| 色婷婷av一区二区三区视频| 国产欧美日韩一区二区三区在线| 久久性视频一级片| 亚洲欧美日韩另类电影网站| 夜夜爽天天搞| 欧美精品啪啪一区二区三区| 极品教师在线免费播放| 丝袜美足系列| 国产精品九九99| av天堂久久9| 丁香欧美五月| 成人手机av| 免费在线观看视频国产中文字幕亚洲| 久久久国产精品麻豆| 丰满迷人的少妇在线观看| 一级a爱片免费观看的视频| bbb黄色大片| 亚洲成人免费电影在线观看| 1024视频免费在线观看| 成年版毛片免费区| 满18在线观看网站| 又黄又粗又硬又大视频| 亚洲中文av在线| 欧美大码av| 亚洲欧美日韩无卡精品| x7x7x7水蜜桃| 黑人巨大精品欧美一区二区蜜桃| 嫁个100分男人电影在线观看| 在线十欧美十亚洲十日本专区| 久久香蕉国产精品| 窝窝影院91人妻| 欧美老熟妇乱子伦牲交| 国产av一区在线观看免费| 日韩欧美国产一区二区入口| 日本一区二区免费在线视频| 成人av一区二区三区在线看| 后天国语完整版免费观看| 少妇 在线观看| 在线看a的网站| 91在线观看av| 国产精品自产拍在线观看55亚洲| 亚洲国产欧美网| 亚洲成av片中文字幕在线观看| √禁漫天堂资源中文www| 村上凉子中文字幕在线| 亚洲免费av在线视频| 久久久久久人人人人人| 午夜精品久久久久久毛片777| 在线观看免费视频日本深夜| 18美女黄网站色大片免费观看| 亚洲va日本ⅴa欧美va伊人久久| 久久精品人人爽人人爽视色| 看片在线看免费视频| 亚洲久久久国产精品| www.熟女人妻精品国产| 午夜福利一区二区在线看| 精品欧美一区二区三区在线| 美女大奶头视频| 97超级碰碰碰精品色视频在线观看| 欧美一区二区精品小视频在线| 久久久久九九精品影院| 一边摸一边做爽爽视频免费| 99riav亚洲国产免费| 精品福利观看| 日韩av在线大香蕉| 国产乱人伦免费视频| 18禁美女被吸乳视频| 好看av亚洲va欧美ⅴa在| 国产免费现黄频在线看| 中文字幕高清在线视频| 亚洲人成77777在线视频| 国产激情欧美一区二区| 19禁男女啪啪无遮挡网站| 黄色怎么调成土黄色| 18禁国产床啪视频网站| 精品第一国产精品| 中文字幕人妻丝袜一区二区| 精品国产乱子伦一区二区三区| 1024香蕉在线观看| 中文字幕最新亚洲高清| 欧美老熟妇乱子伦牲交| 久久人人爽av亚洲精品天堂| 国产精品一区二区三区四区久久 | 亚洲色图 男人天堂 中文字幕| 久久香蕉精品热| 亚洲一区二区三区欧美精品| 中文亚洲av片在线观看爽| 亚洲精华国产精华精| 老司机在亚洲福利影院| av超薄肉色丝袜交足视频| 欧美不卡视频在线免费观看 | 国产无遮挡羞羞视频在线观看| av超薄肉色丝袜交足视频| 激情在线观看视频在线高清| 一级片免费观看大全| 色婷婷久久久亚洲欧美| 人成视频在线观看免费观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久久久人妻精品电影| 欧美精品啪啪一区二区三区| 久久亚洲真实| 侵犯人妻中文字幕一二三四区| 99国产精品一区二区蜜桃av| 激情在线观看视频在线高清| 久久久久久久精品吃奶| 国产精品一区二区精品视频观看| 又大又爽又粗| 超碰97精品在线观看| 亚洲五月婷婷丁香| 12—13女人毛片做爰片一| 久9热在线精品视频| 妹子高潮喷水视频| 久久香蕉激情| 亚洲av成人不卡在线观看播放网| 操美女的视频在线观看| 亚洲第一av免费看| 亚洲男人的天堂狠狠| 亚洲精品久久成人aⅴ小说| 国产精品久久电影中文字幕| 在线永久观看黄色视频| 久久影院123| 欧美黄色片欧美黄色片| 窝窝影院91人妻| 国产精品日韩av在线免费观看 | 韩国精品一区二区三区| 最新在线观看一区二区三区| 在线视频色国产色| www.精华液| 国产精品久久久人人做人人爽| 午夜久久久在线观看| 两个人免费观看高清视频| 久久伊人香网站| 久久天堂一区二区三区四区| 人人妻人人添人人爽欧美一区卜| 欧美激情极品国产一区二区三区| netflix在线观看网站| 久久中文字幕人妻熟女| 色老头精品视频在线观看| 母亲3免费完整高清在线观看| 9热在线视频观看99| 母亲3免费完整高清在线观看| 黄色成人免费大全| 青草久久国产| 老熟妇仑乱视频hdxx| 99久久国产精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 高清av免费在线| 精品一品国产午夜福利视频| 两个人看的免费小视频| 亚洲中文av在线| 91在线观看av| 男女下面插进去视频免费观看| 777久久人妻少妇嫩草av网站| 免费看十八禁软件| 亚洲精品中文字幕在线视频| 久久久精品国产亚洲av高清涩受| 成人三级黄色视频| 成人18禁在线播放| 亚洲av成人av| 亚洲中文日韩欧美视频| 51午夜福利影视在线观看| 成年版毛片免费区| 久久九九热精品免费| 亚洲一区二区三区色噜噜 | 亚洲三区欧美一区| 99香蕉大伊视频| 亚洲av成人不卡在线观看播放网| 精品久久蜜臀av无| 国产精品国产av在线观看| 黑人欧美特级aaaaaa片| 久久精品人人爽人人爽视色| 免费日韩欧美在线观看| 午夜福利在线观看吧| 国产99白浆流出| 国产国语露脸激情在线看| 午夜免费成人在线视频| 国产激情久久老熟女| 亚洲视频免费观看视频| 日日摸夜夜添夜夜添小说| 国产精品自产拍在线观看55亚洲| 老熟妇乱子伦视频在线观看| 欧美精品一区二区免费开放| 波多野结衣高清无吗| 欧美中文日本在线观看视频| avwww免费| 久久午夜综合久久蜜桃| 国产亚洲欧美在线一区二区| 欧美性长视频在线观看| 丝袜人妻中文字幕| 午夜精品国产一区二区电影| 精品第一国产精品| 琪琪午夜伦伦电影理论片6080| av电影中文网址| 免费搜索国产男女视频| 免费观看精品视频网站| 老汉色av国产亚洲站长工具| 9191精品国产免费久久| 90打野战视频偷拍视频| 99国产精品99久久久久| av在线天堂中文字幕 | 极品教师在线免费播放| 国产精品一区二区精品视频观看| 欧美色视频一区免费| 精品人妻1区二区| 校园春色视频在线观看| 99热只有精品国产| 黑人操中国人逼视频| cao死你这个sao货| 色哟哟哟哟哟哟| 日本vs欧美在线观看视频| 男女下面进入的视频免费午夜 | 久久九九热精品免费| 12—13女人毛片做爰片一| 亚洲免费av在线视频| 久久精品aⅴ一区二区三区四区| 国产成人av激情在线播放| 女性生殖器流出的白浆| 欧美日韩瑟瑟在线播放| tocl精华| 亚洲国产毛片av蜜桃av| 亚洲欧洲精品一区二区精品久久久| 长腿黑丝高跟| 无限看片的www在线观看| 1024视频免费在线观看| 成人国产一区最新在线观看| 亚洲avbb在线观看| 久久久水蜜桃国产精品网| 欧美乱码精品一区二区三区| 一边摸一边抽搐一进一小说| 亚洲全国av大片| 久久久久国产一级毛片高清牌| 18禁国产床啪视频网站| 精品国产国语对白av| 久久久久久久久久久久大奶| 纯流量卡能插随身wifi吗| 中出人妻视频一区二区| 中文字幕人妻丝袜一区二区| 日韩免费高清中文字幕av| 久久精品成人免费网站| 欧美+亚洲+日韩+国产| 一级片'在线观看视频| 亚洲av美国av| 香蕉久久夜色| 嫁个100分男人电影在线观看| 国产深夜福利视频在线观看| √禁漫天堂资源中文www| 在线天堂中文资源库| 不卡av一区二区三区| 91国产中文字幕| 午夜免费成人在线视频| 天堂影院成人在线观看| 成在线人永久免费视频| 国产亚洲av高清不卡| 久久这里只有精品19| 久热这里只有精品99| 久久 成人 亚洲| 亚洲国产精品一区二区三区在线| 麻豆久久精品国产亚洲av | 岛国视频午夜一区免费看| 91在线观看av| 亚洲人成电影观看| 午夜影院日韩av| 成人18禁高潮啪啪吃奶动态图| 黑丝袜美女国产一区| 麻豆成人av在线观看| 精品无人区乱码1区二区| 国产高清激情床上av| 中文字幕av电影在线播放| 99国产精品一区二区蜜桃av| 欧美一区二区精品小视频在线| 成熟少妇高潮喷水视频| 亚洲精品粉嫩美女一区| 国产乱人伦免费视频| 国产国语露脸激情在线看| 日韩欧美一区视频在线观看| 99国产精品99久久久久| 色精品久久人妻99蜜桃| 人人妻,人人澡人人爽秒播| 国产高清videossex| 国产成人精品在线电影| 国产精品久久久久久久电影| 女人被狂操c到高潮| 亚洲精品色激情综合| 久久精品国产亚洲av涩爱 | 97人妻精品一区二区三区麻豆| 亚洲av成人精品一区久久| 天美传媒精品一区二区| 99久久久亚洲精品蜜臀av| 欧美日韩亚洲国产一区二区在线观看| 有码 亚洲区| h日本视频在线播放| 中文字幕精品亚洲无线码一区| 丰满的人妻完整版| 人人妻人人看人人澡| 日韩欧美精品免费久久 | 午夜久久久久精精品| 国产精品自产拍在线观看55亚洲| 在线天堂最新版资源| 色视频www国产| 88av欧美| 欧美精品啪啪一区二区三区| 欧美日韩福利视频一区二区| 亚洲片人在线观看| 欧美高清成人免费视频www| 国产成人影院久久av| 久久国产乱子伦精品免费另类| 国产精品一区二区免费欧美| 免费观看人在逋| 999久久久精品免费观看国产| 成年女人毛片免费观看观看9| 欧美精品国产亚洲| 亚洲国产精品合色在线| 国产精品美女特级片免费视频播放器| 久久99热这里只有精品18| 韩国av一区二区三区四区| 亚洲五月婷婷丁香| 精品久久久久久久久亚洲 | 午夜福利在线在线| 久久国产精品人妻蜜桃| 51午夜福利影视在线观看| 国产精品综合久久久久久久免费| 日本在线视频免费播放| 免费看美女性在线毛片视频| 人妻夜夜爽99麻豆av| 亚洲国产精品久久男人天堂| 欧美性感艳星| 免费在线观看影片大全网站| 别揉我奶头 嗯啊视频| 国产精品女同一区二区软件 | 久久久久久国产a免费观看| 一级黄色大片毛片| 国产精品亚洲av一区麻豆| 国产av不卡久久| av天堂中文字幕网| 美女高潮的动态| 亚洲av成人av| 亚洲专区国产一区二区| 女人被狂操c到高潮| 有码 亚洲区| 国产视频一区二区在线看| 亚洲第一欧美日韩一区二区三区| 国产精品日韩av在线免费观看| 国产视频一区二区在线看| 国产精品久久久久久久久免 | 天堂网av新在线| 性插视频无遮挡在线免费观看| 欧美日本亚洲视频在线播放| 啦啦啦韩国在线观看视频| 一边摸一边抽搐一进一小说| 亚洲精品日韩av片在线观看| 精品久久久久久久人妻蜜臀av| 亚洲欧美清纯卡通| 欧美在线黄色| 在线国产一区二区在线| 久久午夜亚洲精品久久| 国产精品av视频在线免费观看| 成人永久免费在线观看视频| 精品人妻熟女av久视频|