馬仁雪,謝偉杰,李佳倩,江 月
(安徽財(cái)經(jīng)大學(xué) 管理科學(xué)與工程學(xué)院,安徽蚌埠 233030)
?
A一類三種群時(shí)滯捕食系統(tǒng)模型*
馬仁雪,謝偉杰,李佳倩,江 月
(安徽財(cái)經(jīng)大學(xué) 管理科學(xué)與工程學(xué)院,安徽蚌埠 233030)
研究了一類三種群時(shí)滯捕食系統(tǒng)模型的穩(wěn)定性.以食餌種群的消極負(fù)反饋時(shí)滯為分支參數(shù),利用特征值方法,得到系統(tǒng)模型局部漸近穩(wěn)定的充分條件并確定了模型產(chǎn)生Hopf分支的時(shí)滯臨界點(diǎn).最后,利用數(shù)值模擬驗(yàn)證了所得結(jié)果正確性.
時(shí)滯捕食系統(tǒng);種群;穩(wěn)定性;Hopf分支
考慮到自然界中種群之間的復(fù)雜關(guān)系,近年來多種群捕食系統(tǒng)模型受到國(guó)內(nèi)外研究學(xué)者的廣泛關(guān)注.Kar和Batabyal研究了一類兩個(gè)食餌種群和一個(gè)捕食者種群的系統(tǒng)模型持久性和穩(wěn)定性[1].Farajzadeh等人則研究了一類具有一個(gè)食餌種群和兩個(gè)捕食者種群的競(jìng)爭(zhēng)捕食系統(tǒng)模型的穩(wěn)定性[2].文獻(xiàn)[3]研究了一類時(shí)標(biāo)上具有階段結(jié)構(gòu)的三種群捕食系統(tǒng)的周期解.另外,對(duì)于具有時(shí)滯的多種群捕食系統(tǒng)模型的研究,也取得了很多成果[4~7].文獻(xiàn)[7]研究了一類時(shí)滯競(jìng)爭(zhēng)捕食系統(tǒng)模型:
(1)
(2)
其中,τ為食餌種群的消極負(fù)反饋時(shí)滯.
b1d1x2-e1x+d1=0.
(3)
(4)
其中,
整理得到:
λ3+A2λ2+A1λ+A0+(B2λ2+B1λ)e-λτ=0,
(5)
其中,
A2=-(a11+a33), A1=a11a33+a12a21+a13a31,
A0=-a12a21a33,B2=-b11,B1=a33b11.
當(dāng)τ=0時(shí),方程(5)變?yōu)?/p>
λ3+(A2+B2)λ2+(A1+A1)λ+A0=0.
對(duì)于τ>0,令λ=iω(ω>0) 為方程(5)的根,有
(6)
進(jìn)而
(7)
為了給出本文主要結(jié)果,給出下列假設(shè):即(H2) 假設(shè)方程(7)至少存在一個(gè)正實(shí)根ω0. 由方程(6)可得相應(yīng)的時(shí)滯臨界值為
當(dāng)τ=τ0時(shí),方程(5)具有一對(duì)純虛根±iω0.
對(duì)方程(5)兩端同時(shí)對(duì)τ進(jìn)行求導(dǎo), 得到
所以,
其中,
為了驗(yàn)證以上所得理論結(jié)果,我們給出一個(gè)仿真示例.為了方便起見,仍然采用文獻(xiàn)[7]中的各參數(shù)值:
(8)
經(jīng)過計(jì)算,得到系統(tǒng)(8)有唯一的正平衡點(diǎn) E*(1.308 4,0.187 6,2.818 1),并進(jìn)而得到,ω0=1.307 6, τ0=1.058 2.根據(jù)定理1中的結(jié)果可知, 當(dāng)τ∈[0,1.058 2)時(shí), E*(1.308 4,0.187 6,2.818 1)局部漸近穩(wěn)定,仿真效果如圖1所示. 當(dāng)τ>τ0=1.058 2時(shí),E*(1.308 4,0.187 6,2.818 1)將失去穩(wěn)定性,并在
E*(1.308 4,0.187 6,2.818 1)附近產(chǎn)生一簇分支周期解,仿真效果如圖2所示.
圖1: 當(dāng)τ=0.855<τ0=1.058 2 時(shí),E*漸近穩(wěn)定
圖 2: 當(dāng)τ=1.125>τ0=1.058 2時(shí)E*失穩(wěn),并產(chǎn)生Hopf分支
本文在文獻(xiàn)[7]的基礎(chǔ)上,研究了一類具有消極負(fù)反饋時(shí)滯的的三種群捕食系統(tǒng)模型.相對(duì)于文獻(xiàn)[7],本文主要研究食餌種群的消極負(fù)反饋時(shí)滯對(duì)系統(tǒng)模型的影響.研究表明,食餌種群的消極負(fù)反饋時(shí)滯對(duì)模型的穩(wěn)定性也有一定的影響.當(dāng)時(shí)滯的值低于臨界值τ0時(shí),系統(tǒng)模型處于理想的穩(wěn)定狀態(tài).當(dāng)時(shí)滯的值高于臨界值τ0時(shí),系統(tǒng)模型將失去穩(wěn)定性.并且,從仿真示例可以看出,相對(duì)于食餌種群的成熟時(shí)滯,消極負(fù)反饋時(shí)滯對(duì)模型穩(wěn)定性的影響要更大一些.因?yàn)椴捎孟嗤膮?shù)值,所得到的消極負(fù)反饋時(shí)滯臨界點(diǎn)要比成熟時(shí)滯臨界點(diǎn)小的多(成熟時(shí)滯臨界點(diǎn)可參考文獻(xiàn)[7]).
[1]T.K.Kar, A.Batabyal. Persistence and stability of a two prey one predator system [J]. International Journal of Engineering, Science and Technology,2010,2(2):174-190.
[2]徐昌進(jìn). 時(shí)標(biāo)上具有階段結(jié)構(gòu)的三種群捕食系統(tǒng)的周期解[J]. 經(jīng)濟(jì)數(shù)學(xué), 2013,30(1):5-11.
[3]A. Farajzadeh, M. H. Rahmani Doust, F. Haghighifar, D. Baleanu. The stability of gauss model having one-prey and two-predators [J]. Abstract and Applied Analysis,2012,1(1):1-9.
[4]Cui Guo-hu, Yan Xiang-ping. Stability and bifurcation analysis on a three-species food chain system with two delays [J], Communications in Nonlinear Science and Numerical Simulation, 2011, 16(9):3704-3720.
[5]Meng Xin-you, Huo Hai-feng, Zhang Xiao-bing, Xiang Hong. Stability and Hopf bifurcation in a three-species system with feedback delays [J].Donlinear Dynamics, 2011, 64(4): 349-364.
[6]Meng Xin-you, Huo Hai-feng, Zhang Xiao-bing. Stability and global Hopf bifurcation in a delayed food web consisting of a prey and two predators [J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(9):4335-4348.
[7]劉娟. 一類時(shí)滯競(jìng)爭(zhēng)捕食系統(tǒng)模型的Hopf分支[J]. 濱州學(xué)院學(xué)報(bào),2015,31(4):32-35.
[8]B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Applications of Hopf Bifurcation [M]. Cambridge University Press, Cambridge, 1981.
A Class of Three-species Predator-prey System with Time Delay
MA Ren-xue, XIE Wei-jie, LI Jia-qian, JIANG Yue
(School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu Anhui233030, China)
This paper is concerned with stability of a three-species predator-prey system with time delay. Using the characteristic value method, the sufficient conditions for the local asymptotic stability of the system model are obtained, and the time delay critical point of the Hopf bifurcation is determined. Finally, numerical simulations are used to verify the correctness of the results.
predator-prey system with time delay; species; stability; Hopf bifurcation
1673-2103(2016)05-0032-04
2016-09-20
2016年度安徽省自然科學(xué)基金青年項(xiàng)目(1608085QF151)
馬仁雪(1997-),女,安徽壽縣人,研究方向:動(dòng)力系統(tǒng).
O175.12
A