• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    穩(wěn)定模的分裂性

    2016-11-25 05:37:52陳文彬李福芳
    關(guān)鍵詞:教育軟件廣州大學(xué)計(jì)算機(jī)科學(xué)

    陳文彬,李福芳,鄒 宇

    (廣州大學(xué)a.計(jì)算機(jī)科學(xué)與教育軟件學(xué)院;b.廣東省數(shù)學(xué)教育軟件工程技術(shù)研究中心,廣東 廣州 510006)

    穩(wěn)定模的分裂性

    陳文彬a,李福芳a,鄒 宇b

    (廣州大學(xué)a.計(jì)算機(jī)科學(xué)與教育軟件學(xué)院;b.廣東省數(shù)學(xué)教育軟件工程技術(shù)研究中心,廣東 廣州 510006)

    邏輯程序是一些具有正負(fù)子句的規(guī)則集合.基于MOORE提出的自認(rèn)知邏輯的基礎(chǔ)上,GELFOND引進(jìn)了穩(wěn)定模的概念,后來(lái)得到更進(jìn)一步的發(fā)展.在文章中,作者研究了穩(wěn)定模的分裂性質(zhì).這性質(zhì)表明當(dāng)邏輯程序分裂成部分時(shí)候,它的穩(wěn)定模的計(jì)算可以得到簡(jiǎn)化.

    穩(wěn)定模;邏輯程序;埃爾布郎模;穩(wěn)定集

    0 Introduction

    In some cases,a logic program can be split into two parts such that one part does not refer to the predicates defined in the other part.There is a long history about the idea of splitting a logic program into parts.The notation of a stratification is involved with the application of splitting[1].In a stratified program,by applying the splitting step several times, the intended model can be arrived at.In a locally stratified program[2],the notation of a stratification has been extended.In a locally stratified program,it may be possible to split a program into infinite parts instead of finite parts.The splitting in the context of“answer set semantic”and several applications have been discussed[3].

    The declarative semantics for a logic program∏can be defined by selecting one of its models as the“canonical”model CM(∏).Whether an answer toa given query is considered correct is determined by the canonical model.The canonical model is usually selected among the Herbrand models of Q.The Herbrand models are those models whose universe is the set of all ground terms(which do not contain variables).An Herbrand model is completely determined by the ground atoms that are true in it,and it can be identified with the set of these atoms.

    A Herbrand model M of∏is minimal,if no proper subset of M is a model of∏.When a logic program does not contain negation,it has exactly one minimal Herbrand model.A negation-free logic program[5]usually selects the minimal Herbrand model as its canonical model CM(∏).However,there may be several minimal Herbrand models for logic programs with negation.There has been much work on defining canonical models for logic programs with negation.In the papers(Refs.[1,4-5]),the“stratified”logic programs were introduced,and canonical models were defined for stratified logic programs by an“iterated fixed point”method.Further generalizations can be found in Ref.[2](“perfect models”)and in Ref.[6](“well-founded models”).All these definitions impose some restrictions on the use of negation.GELFOND introduced an approach to negation through stable models[7],and motivated it by appealing to autoepistemic logic,as developed by MOORE[8].The theory has been further developed by GELFOND,et al[9],and also by MAREK and TRUSZCZYNSKI[10-11].In Ref.[12],KAMINSKI gives a transformation that embeds logic programs into default logic.In[13-16],some extends of the stable Model semantic are given.

    In this paper,we study the property of stable models when a logic program is split into parts.The property shows how computing the stable model for a logic program can be simplified when the program is split into parts.The splitting process is similar to the one in the context“answer set semantic”[3].Based on a splitting set,a logic program is split into two parts.Then the union of the stable models of the two parts are the stable models of that logic program.We illustrate the splitting property of stable models by an example.

    Paper organization Section 2 gives some background about stable models.Section 3 describes the notion of splitting a logic program and shows the property of stable models for split logic program.An example is given in section 4.We conclude with section 5.

    1 Prelim inaries

    In the section we follow the definition of Ref.[9],which defines stability without reference to autoepistemic logic.GELFOND and LIFSCHITZ[9]define a stable model to be one that reproduces itself in a certain three stage transformations,which we call the stability transformation.

    The logic programs under consideration are sets of rules of the form

    Where A is an atom,and L1,…,Lmare literals(i.e.,atoms or negated atoms),m≥0.Rule(1)is notational variant of the formula

    so that any logic programs can be viewed as a set of first order formulas.Accordingly,we can talk about models of a logic program.Every logic program has many different models.

    Let∏be a logic program,i.e.,a set of rules of form(1).We assume that each rule containing variables is replaced by all its ground instance,so that all atoms in∏are ground.(Since∏is not required to be finite,the variables can be eliminated in this way even when the program uses function symbols,and its Herbrand universe is infinite.)

    For any set M of atoms from∏,let∏Mbe the program obtained from∏by deleting:

    (1)Each rule that has a negative literal?B in its body with B∈M,and

    (2)All negative literals in the bodies of the remaining rules.

    Clearly,∏Mis negation-free,so that∏Mhas aunique minimal Herbrand model.If this model coincides with M,then we say that M is a stable set of∏.Such sets can be also described as the fixed points of the operator SЦdefined by the condition:for any set M of atoms from∏,SЦ(M)is the minimal Herbrand model of∏M.

    Lemma 1 Any stable set of∏is a minimal Herbrand model of∏.

    In view of this fact,stable sets can be also called stable models.The proof of lemma 1 is given in Ref.[9].

    2 The splitting property of stable models

    In the section we describe the splitting process for logic programs and give the splitting property of stable models.

    For any rule of∏,let Pos be the set of positive literals in its body,and let Neg be the set of atoms that represent negative literals in its body.

    Definition 1 Let U be a set of literals,we say that U splits∏if for every rule Head←Pos,?(Neg)in∏,Pos∪Neg is contained in U whenever Head∈U.

    If U splits∏,then the set of rules in∏whose heads belong to U is the base of∏(relative to U),denoted by bU(∏).

    For any logic program∏,any set U of literals and any subset C of U,eU(∏,C)stands for the program obtained from∏by

    (ⅰ)deleting each rule Head←Pos,?(Neg)such that Pos∩(UC)≠or Neg∩C≠,

    (ⅱ)replacing each remaining rule Head←Pos,?(Neg)by Head←(PosU),?(NegU).

    The theorem below describes the splitting property of stable models.

    Theorem 2 Let U be a set of literals that splits a program∏.A consistent set of literals is a stable model for∏if it can be represented in the form C1∪C2,where C1is a stable model for bU(∏)and C2is a stable model for eU(∏U(∏),C1).

    In order to prove that C1is a stable model for bU(∏),we need prove that C1is the minimal Herbrand model of∏1C1where∏1C1denotes bU(∏)by the definition of a stable model.

    Given any rule R′∈∏1C1,R′:d←A1,…,Anis reduced from R:d←A1,…,An,?B1,…,?Bmsuch that BiC1for any i.Because BiC1for any i,BiC for any i.Then R′∈∏C.Because C is a stable model,R′is satisfied in C.So R′is satisfied in C1.Then C1is a Herbrand model of∏1C1.

    Assume then a subset C3of C1is a model of∏1C1,we show that C3∪C2is also model of∏C.

    Given any rule R′∈∏C,R′:d←A1,…,Anis reduced from R:d←A1,…,An,?B1,…,?Bmsuch that BiC for any i.If d∈U,Then R′∈∏1C1.Since C3is a model of∏1C1,R′is satisfied in C3.Then R′is satisfied in C3∪C2.If dU and Aiis true in C3∪C2for any i,Then d is true in C since R′is satisfied in C.Thus d∈C.since dU,d∈C2.Hence R′is satisfied in C3∪C2.Thus C3∪C2is a Herbrand model of∏C.Because C is the minimal Herbrand model of∏C,C=C3∪C2.Hence C3=C1.Thus C1is the minimal Herbrand model of∏1C1.So C1is a stable model for bU(∏).

    Now we show that C2is a stable model for eU(∏U(∏),C1).Let∏2denote eU(∏U(∏),C1).It suffices to show that C2is the minimal Herbrand model of∏2C2.We prove first that C2is a Herbrand model of∏2C2.

    Assume that R′is a rule of∏2C2and R′:d←A1,…,Anis reduced from R:d←A1,…,An,?B1,…,?Bmsuch that BiC2for any i.Since R∈∏2,BiU for any i.Thus Bidoesn’t belong to C1.Hence BiC for any i.So R′∈∏C.Since C is a stable model for∏,R′is satisfied in C.Hence if Aiis true in C2for any i,then d is true in C.Then d∈C.Since dU,d∈C2.Thus R′is satisfied in C2.So C2is a Herbrand model of∏2C2.

    Furthermore we prove that C2is minimal model.Suppose that a subset C4of C2is a model of∏2C2.We show that C4∪C1is also model of∏C.

    Given any rule R′∈∏C,R′:d←A1,…,Anis reduced from R:d←A1,…,An,?B1,…,?Bmsuch that BiC for any i.If d∈U,then R′∈∏1C1.Since C1is a model of∏1C1,R′is satisfied in C1.Then R′is true in C4∪C1.If dU and A1,…,Anare true in C4∪C1,then we suppose that A1,…,Ahbelong to C4and other Aibelong to C1.Then R″:d←A1,…,Ahbelong to∏2.Thus R″belongs to∏2C2.Since C4is a model of∏2C2,R″is satisfied in C4.So d is true in C4.Thus R′is satisfied in C4∪C1.So C4∪C1is a model of∏C.Because C is the minimal Herbrand model of∏C,C=C4∪C1.Hence C4=C2.Thus C2is the minimal Herbrand model of∏2C2.So C2is a stable model for eU(∏U(∏),C1).

    Given any rule R′∈∏C,R′:d←A1,…,Anis reduced from R:d←A1,…,An,?B1,…,?Bmsuch that BiC for any i.If d∈U,then R′∈∏1C1.Since C1is a model of∏1C1,R′is satisfied in C1.Then R′is true in C1∪C2.If dU and A1,…,Anare true in C1∪C2,then we suppose that A1,…,Ahbelong to C2and other Aibelongs to C1.Then R″:d←A1,…,Ahbelong to∏2.Thus R″belongs to∏2C2.Since C2is a model of∏2C2,R″is satisfied in C2.So d is true in C2.Thus R′is satisfied in C2∪C1.So C2∪C1is a model of∏C.

    If a subset D of C is a model of∏C,then D∩U is a model of∏1C1by the proof of the first part.So D∩U=C1.Similarly,DU=C2.Then D=C1∪C2. Hence C is the minimal Herbrand model of∏C.So C is a stable model for∏.

    3 Exam ples

    The next example illustrates the splitting property of stable models.Consider the logic program consisting of the three rules below.

    Let∏be(2)with the third rule replaced by its ground instance:

    It has exactly one stable model C1,which is{P(1,2),P(2,1)}.Then we can obtain eU(∏U(∏),C1)below:

    It has two stable models:C21={Q(1)},C22={Q(2)}.So∏has two stable models:

    4 Conclusion

    We discuss the idea of splitting a logic program in the context of the stable model semantics.The splitting property of stable models is showed in this paper.The property shows how computing the stable model for a logic program can be simplified when the program is split into parts.The splitting process is similar to the one in the context“answer set semantic”[7].Based on a splitting set,a logic program is split into two parts.Then the union of the stable models of the two parts are the stable models of that logic program.We illustrate the splitting property of stable models by an example.

    Acknow ledgements

    We would like to thank the anonymous referees for their careful reading of the manuscripts and many useful suggestions.

    [1] APT K R,BLAIR,WALKER A.Towards a theory of declarative knowledge[M]∥MINKER J(ed.),F(xiàn)oundations of Deductive Data-bases and Logic Programming.Los Altos:Morgan Kaufmann Publishers,1988:89-148.

    [2] PRZYMUSINSKI T.On the declarative semantics of stratified deductive databases and logic programs[M]∥MINKER J(ed.),F(xiàn)oundations of Deductive Databases and Logic Programming.Los Altos:Morgan Kaufmann Publishers,1988:193-216.

    建設(shè)榆林特色生態(tài)名市,是榆林市“十二五”規(guī)劃確立的重要內(nèi)容,榆陽(yáng)區(qū)做為這一規(guī)劃施行的主陣地,科學(xué)規(guī)劃,分類(lèi)指導(dǎo),數(shù)十年堅(jiān)持“南治土、北治沙”,取得了舉世矚目的成績(jī)。

    [3] LIFSCHTI V,TURNER V.Splitting a logic program[M]∥HENTENRYCK P V(ed.),Proc.Eleventh Int’l Conf.on Logic Programming,1994,23-37.

    [4] CHANDRA A,HAREL D.Horn clause queries and generalizations[J].Logic Program,1985,1:1-15.

    [5] VAN GELDER A.Negation as failure using tight derivations for general logic programs[M]∥MINKER J(ed.),F(xiàn)oundations of Deductive Databases and Logic Programming.Los Altos:Morgan Kaufmann Publishers,1988:193-216.

    [6] VAN GELDER A,ROSS K,SCHLIPF J S.Unfounded sets and well-founded semantics for general logic programs[C]∥Proc.Seventh Symp.On Principles of Database Systems,1988:221-230.

    [7] GELFOND M.On stratified autoepistemic theories[C]∥Proc.AAAI,1987.

    [8] MOORE R.Semantical considerations on nonmonotomic logic[J].Artif Intell,1985,28:75-94.

    [9] GELFOND M,LIFSCHTIZ V.The stable model semantics for logic programming[C]∥In Fifth Int’l Conf.Symp.on Logic Programming,Seattle,1988:1070-1080.

    [10]MAREK A,TRUSZCZYNSKI M.Autoepistemic logic[R].University of Kentucky,1988.

    [11]MAREK W.Stable theories in autoepistemic logic[R].University of Kentucky,1986.

    [12]KAMINSKI M.A note on the stable model semantics for logic programs[J].Artif Intell,1997,96(2):467-479.

    [13]SIMONS P,NIEMELA I,SOININEN T.Extending and implementing the stable model semantics[J].Artif Intell,2002,138(1/2):181-234.

    [14]JANHUNEN T,OIKARINEN E.Testing the equivalence of logic programs under stable model semantics[J].JELIA,2002,2424:493-504.

    [15]PEREIRA L M,PINTO A M.Revised stable models:A semantics for logic programs[J].LNAI,2005,3808:29-42.

    [16]BENHAMOU B,SIEGEL P.A new semantics for logic programs capturing and extending the stable model semantics[J].IEEE Internat Confer Tool Artif Intell,2012,8345(11):572-579.

    【責(zé)任編輯:陳 鋼】

    The sp litting property of stable models

    CHEN W en-bina,LI Fu-fanga,ZOU Yub
    (a.School of Computer Science and Educational Software,b.Guangdong Prouincial Engineering Technology Research Center for Mathematical Educational Software,Guangzhou University,Guangzhou 510006,China)

    A general logic program is a set of rules that have both positive and negative subgoals.GELFOND introduced an approach to negation through stable models,and motivated it by appealing to autoepistemic logic,as developed by MOORE.The theory has been further developed by GELFOND,et al,and also by MAREK and TRUSZCZYNSKI.In this paper we study the splitting property of stable models.The property shows how computing the stable model for a logic program can be simplified when the program is split into parts.

    stable models;logic programs;Herbrand model;stable set

    ET 471 Document code:A

    TP 18

    A

    1671-4229(2016)01-0013-05

    Received date:2015-12-15; Revised date:2015-12-25

    Foundation items:National Science Foundation of China(NSFC)under Grant No.11271097.Natural Science Foundation of China under Grant No.61472092;Guangdong Provincial Science and Technology Plan Project under Grant No.2013B010401037;and Guangzhou Municipal High School Science Research Fund under Grant No.120142131.

    Biography:CHEN Wen-bin(1975-),male,associate professor.Ph.D.E-mail:cwb2011@gzhu.edu.cn.

    猜你喜歡
    教育軟件廣州大學(xué)計(jì)算機(jī)科學(xué)
    廣州大學(xué)作品選登
    A Tale of Two Cities:Creating city images through “Shanghai Police Real Stories” and“Guard the Liberation West”
    “互聯(lián)網(wǎng)+教育”背景下二線(xiàn)城市教育軟件應(yīng)用現(xiàn)狀研究
    ——以濟(jì)南市為例
    探討計(jì)算機(jī)科學(xué)與技術(shù)跨越式發(fā)展
    淺談?dòng)?jì)算機(jī)科學(xué)與技術(shù)的現(xiàn)代化運(yùn)用
    電子制作(2017年2期)2017-05-17 03:55:01
    重慶第二師范學(xué)院計(jì)算機(jī)科學(xué)與技術(shù)專(zhuān)業(yè)簡(jiǎn)介
    《廣州大學(xué)學(xué)報(bào)( 社會(huì)科學(xué)版) 》2016 年( 第15 卷) 總目次
    App Store中兒童教育軟件的現(xiàn)狀分析與對(duì)策研究
    淺談在計(jì)算機(jī)科學(xué)中的創(chuàng)新精神
    河南科技(2014年23期)2014-02-27 14:19:15
    中國(guó)心情
    海峽影藝(2012年1期)2012-11-30 08:16:54
    亚洲精品乱码久久久v下载方式| 久久久色成人| 美女国产视频在线观看| 2021天堂中文幕一二区在线观| 黄色一级大片看看| 中文在线观看免费www的网站| 国产日韩欧美在线精品| 国内久久婷婷六月综合欲色啪| 久久久久久久久久久丰满| 高清毛片免费看| av在线老鸭窝| 国产精品伦人一区二区| 非洲黑人性xxxx精品又粗又长| 免费人成视频x8x8入口观看| 嫩草影院新地址| 舔av片在线| 综合色丁香网| 精品免费久久久久久久清纯| 嫩草影院新地址| 久久国内精品自在自线图片| 春色校园在线视频观看| 一本精品99久久精品77| 天堂中文最新版在线下载 | 99在线视频只有这里精品首页| 午夜久久久久精精品| 特级一级黄色大片| 成人毛片60女人毛片免费| 国产女主播在线喷水免费视频网站 | 免费看日本二区| 中文字幕人妻熟人妻熟丝袜美| 伦精品一区二区三区| 你懂的网址亚洲精品在线观看 | av天堂在线播放| 亚洲综合色惰| 狂野欧美激情性xxxx在线观看| 国产精华一区二区三区| 国内久久婷婷六月综合欲色啪| 欧美+日韩+精品| 我的老师免费观看完整版| 中文欧美无线码| 天堂√8在线中文| 久久久久久国产a免费观看| 日韩强制内射视频| 性插视频无遮挡在线免费观看| 夜夜爽天天搞| 春色校园在线视频观看| 女的被弄到高潮叫床怎么办| 亚洲欧美日韩高清在线视频| 日韩大尺度精品在线看网址| 日本熟妇午夜| 久久精品人妻少妇| www.色视频.com| 欧美精品国产亚洲| 丰满乱子伦码专区| 狂野欧美激情性xxxx在线观看| 一级毛片我不卡| 欧美成人精品欧美一级黄| 欧美一级a爱片免费观看看| 亚洲久久久久久中文字幕| 女人被狂操c到高潮| 午夜福利在线观看免费完整高清在 | 国产在线精品亚洲第一网站| 韩国av在线不卡| 六月丁香七月| 日日干狠狠操夜夜爽| 丝袜美腿在线中文| 成人漫画全彩无遮挡| 欧美精品国产亚洲| 日韩强制内射视频| 老司机影院成人| 国产人妻一区二区三区在| 国产精品一区www在线观看| 亚洲一区高清亚洲精品| 国产v大片淫在线免费观看| 级片在线观看| 中文字幕av在线有码专区| 亚洲成人av在线免费| 麻豆久久精品国产亚洲av| 色综合色国产| 久久精品91蜜桃| 三级国产精品欧美在线观看| 大香蕉久久网| 久久久午夜欧美精品| 久久亚洲精品不卡| 婷婷六月久久综合丁香| 国产精品国产三级国产av玫瑰| 男女边吃奶边做爰视频| 欧美一区二区亚洲| 一个人观看的视频www高清免费观看| 可以在线观看的亚洲视频| 蜜桃亚洲精品一区二区三区| 精品久久久久久久久久免费视频| 91狼人影院| 九九在线视频观看精品| 亚洲精品自拍成人| 99久久精品热视频| 激情 狠狠 欧美| 国产精华一区二区三区| 啦啦啦韩国在线观看视频| ponron亚洲| 噜噜噜噜噜久久久久久91| a级毛色黄片| 日韩国内少妇激情av| 黄片wwwwww| 天天躁日日操中文字幕| 国产久久久一区二区三区| 伦精品一区二区三区| 特级一级黄色大片| 欧美极品一区二区三区四区| 尤物成人国产欧美一区二区三区| 晚上一个人看的免费电影| 亚洲天堂国产精品一区在线| 成人永久免费在线观看视频| 变态另类成人亚洲欧美熟女| 久久精品人妻少妇| eeuss影院久久| 又粗又硬又长又爽又黄的视频 | 69av精品久久久久久| 插阴视频在线观看视频| 简卡轻食公司| 日韩欧美国产在线观看| 欧美高清成人免费视频www| 全区人妻精品视频| 99久久九九国产精品国产免费| 国产伦在线观看视频一区| 日韩一本色道免费dvd| 亚洲av.av天堂| 亚洲四区av| 少妇的逼水好多| 2021天堂中文幕一二区在线观| 狠狠狠狠99中文字幕| 精品99又大又爽又粗少妇毛片| 国产精品.久久久| 久久久久久久久大av| 国产淫片久久久久久久久| 免费一级毛片在线播放高清视频| 成人三级黄色视频| 99在线视频只有这里精品首页| 亚洲成av人片在线播放无| 91aial.com中文字幕在线观看| 91在线精品国自产拍蜜月| 亚洲av电影不卡..在线观看| 日本-黄色视频高清免费观看| 有码 亚洲区| a级毛色黄片| 亚洲色图av天堂| 国产精品免费一区二区三区在线| 成人鲁丝片一二三区免费| 97超碰精品成人国产| 国产 一区精品| 亚洲aⅴ乱码一区二区在线播放| 国产av一区在线观看免费| 日韩欧美 国产精品| 嫩草影院精品99| 人妻久久中文字幕网| 精品熟女少妇av免费看| 一个人免费在线观看电影| 午夜福利成人在线免费观看| 在线观看av片永久免费下载| 欧美一区二区亚洲| 中文字幕久久专区| 亚洲欧美精品专区久久| 禁无遮挡网站| 欧美日本视频| www日本黄色视频网| videossex国产| 国产伦精品一区二区三区四那| 精品人妻视频免费看| 嫩草影院入口| 免费人成在线观看视频色| 国产精品福利在线免费观看| 毛片女人毛片| 午夜免费男女啪啪视频观看| 日韩欧美三级三区| 日本一二三区视频观看| 午夜激情福利司机影院| 色吧在线观看| 久久婷婷人人爽人人干人人爱| 久久精品夜色国产| 亚洲av不卡在线观看| 蜜桃亚洲精品一区二区三区| 天堂av国产一区二区熟女人妻| 日本熟妇午夜| 久久99精品国语久久久| 国产精品爽爽va在线观看网站| 欧美成人免费av一区二区三区| 高清午夜精品一区二区三区 | 国产美女午夜福利| 久久久a久久爽久久v久久| 黄色配什么色好看| 日本五十路高清| 99在线人妻在线中文字幕| 成人无遮挡网站| 国产av一区在线观看免费| 亚洲色图av天堂| 国内揄拍国产精品人妻在线| 在线免费十八禁| 成人高潮视频无遮挡免费网站| 99久久中文字幕三级久久日本| 一进一出抽搐动态| 精品不卡国产一区二区三区| 18禁在线播放成人免费| 黄色欧美视频在线观看| 日韩制服骚丝袜av| 国产亚洲欧美98| 精品不卡国产一区二区三区| 国产黄片视频在线免费观看| 亚洲人成网站在线播| 国内精品一区二区在线观看| 国产av不卡久久| 国产视频内射| 国产精品.久久久| 色哟哟·www| 麻豆精品久久久久久蜜桃| 国产伦在线观看视频一区| 日韩精品青青久久久久久| 亚洲内射少妇av| 亚洲成人久久爱视频| 国产探花在线观看一区二区| 身体一侧抽搐| 九色成人免费人妻av| 国产精品伦人一区二区| 黄色一级大片看看| 国产一区二区在线观看日韩| 狠狠狠狠99中文字幕| 老司机福利观看| 少妇熟女aⅴ在线视频| 久久精品久久久久久噜噜老黄 | 色播亚洲综合网| 国产综合懂色| 日本-黄色视频高清免费观看| 欧美精品国产亚洲| 六月丁香七月| 寂寞人妻少妇视频99o| av免费在线看不卡| 成人av在线播放网站| 久久久欧美国产精品| 看非洲黑人一级黄片| 性色avwww在线观看| 亚洲在线观看片| 人妻夜夜爽99麻豆av| 18禁在线播放成人免费| 99热这里只有精品一区| 久久久久国产网址| 亚洲精品色激情综合| 国产中年淑女户外野战色| 亚洲,欧美,日韩| 久久99热这里只有精品18| 亚洲四区av| 国产成人freesex在线| 亚州av有码| 久久久国产成人精品二区| 免费无遮挡裸体视频| 日韩三级伦理在线观看| 日韩亚洲欧美综合| 精品久久久久久久人妻蜜臀av| 亚洲精品成人久久久久久| 给我免费播放毛片高清在线观看| 在线播放无遮挡| 国内揄拍国产精品人妻在线| 最后的刺客免费高清国语| av专区在线播放| 22中文网久久字幕| 日韩强制内射视频| 国产乱人偷精品视频| 色哟哟哟哟哟哟| 深爱激情五月婷婷| 九九爱精品视频在线观看| 99久久久亚洲精品蜜臀av| 99九九线精品视频在线观看视频| 婷婷色av中文字幕| .国产精品久久| 国产精品人妻久久久影院| 亚洲欧美中文字幕日韩二区| 小蜜桃在线观看免费完整版高清| 此物有八面人人有两片| av在线天堂中文字幕| 校园春色视频在线观看| 在线天堂最新版资源| 国产黄a三级三级三级人| 国产视频内射| 黄色一级大片看看| 亚洲国产欧洲综合997久久,| 在线免费十八禁| 内射极品少妇av片p| 精华霜和精华液先用哪个| 国产中年淑女户外野战色| 日本黄大片高清| videossex国产| 久久久久免费精品人妻一区二区| 久久精品国产自在天天线| 欧美色视频一区免费| 韩国av在线不卡| 美女被艹到高潮喷水动态| 国产真实伦视频高清在线观看| 亚洲aⅴ乱码一区二区在线播放| 直男gayav资源| 波野结衣二区三区在线| 18+在线观看网站| 国产 一区精品| 能在线免费看毛片的网站| 99热这里只有是精品50| 亚洲电影在线观看av| 最新中文字幕久久久久| 人妻少妇偷人精品九色| 久久鲁丝午夜福利片| 午夜a级毛片| 精品人妻熟女av久视频| 亚洲在久久综合| 国产精品av视频在线免费观看| 午夜精品在线福利| 国产精品乱码一区二三区的特点| 久久久久久久久久黄片| 国产视频内射| 一进一出抽搐gif免费好疼| 美女cb高潮喷水在线观看| 老熟妇乱子伦视频在线观看| 一个人观看的视频www高清免费观看| 国产一区二区在线av高清观看| 久久久久久久久久久丰满| 3wmmmm亚洲av在线观看| 中文字幕免费在线视频6| 日韩精品青青久久久久久| 亚洲欧美中文字幕日韩二区| 22中文网久久字幕| 人妻少妇偷人精品九色| 大香蕉久久网| 国产伦精品一区二区三区视频9| 亚洲自偷自拍三级| 美女黄网站色视频| 成人av在线播放网站| 欧美高清成人免费视频www| 五月伊人婷婷丁香| 最近视频中文字幕2019在线8| 熟女人妻精品中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲欧美日韩无卡精品| 欧美在线一区亚洲| 亚洲人成网站高清观看| 日本与韩国留学比较| 性色avwww在线观看| 青春草视频在线免费观看| 婷婷六月久久综合丁香| 一本久久精品| 99国产精品一区二区蜜桃av| 成人亚洲精品av一区二区| av福利片在线观看| 少妇的逼好多水| 午夜精品在线福利| 亚洲欧美精品综合久久99| 久久久久久久久中文| 美女cb高潮喷水在线观看| 欧美一级a爱片免费观看看| 国产午夜精品久久久久久一区二区三区| 欧美日韩乱码在线| 久久久精品大字幕| 深夜a级毛片| 日本一二三区视频观看| 国产伦一二天堂av在线观看| 久久中文看片网| 桃色一区二区三区在线观看| 寂寞人妻少妇视频99o| 超碰av人人做人人爽久久| 亚洲不卡免费看| 人妻夜夜爽99麻豆av| 我要看日韩黄色一级片| 如何舔出高潮| 成人毛片60女人毛片免费| 欧美日韩乱码在线| 亚洲三级黄色毛片| 婷婷色综合大香蕉| 国产真实乱freesex| 夫妻性生交免费视频一级片| 麻豆国产97在线/欧美| 极品教师在线视频| 国产一区二区在线观看日韩| 久久精品国产鲁丝片午夜精品| 久久这里只有精品中国| 精品久久久久久久久久久久久| 日日撸夜夜添| 国产色爽女视频免费观看| 国产私拍福利视频在线观看| 日韩大尺度精品在线看网址| 99在线人妻在线中文字幕| 国产欧美日韩精品一区二区| 色综合站精品国产| 久久久久久久久久成人| 91久久精品国产一区二区成人| 日韩,欧美,国产一区二区三区 | 精品免费久久久久久久清纯| 伦理电影大哥的女人| 91久久精品国产一区二区成人| 少妇高潮的动态图| 99久久无色码亚洲精品果冻| 亚洲中文字幕日韩| 人妻少妇偷人精品九色| 人人妻人人澡欧美一区二区| 一级av片app| 少妇被粗大猛烈的视频| 级片在线观看| 精品午夜福利在线看| 国内精品久久久久精免费| 国产男人的电影天堂91| 国产激情偷乱视频一区二区| 最近视频中文字幕2019在线8| 欧美日韩国产亚洲二区| 少妇猛男粗大的猛烈进出视频 | 国产精品一区www在线观看| 男女啪啪激烈高潮av片| 久久99热6这里只有精品| 亚洲精品日韩av片在线观看| 免费黄网站久久成人精品| 日韩欧美一区二区三区在线观看| 亚洲欧美日韩高清在线视频| 国产一区二区三区在线臀色熟女| 黄色配什么色好看| 亚洲精品国产av成人精品| 久久精品91蜜桃| 国产精品久久久久久精品电影小说 | 老熟妇乱子伦视频在线观看| 男插女下体视频免费在线播放| 成年女人看的毛片在线观看| 亚洲国产精品成人久久小说 | 九九爱精品视频在线观看| 久久久久久伊人网av| 国产成人a区在线观看| 国产成人精品婷婷| 国产亚洲精品av在线| 在线观看美女被高潮喷水网站| 不卡视频在线观看欧美| 一边摸一边抽搐一进一小说| 边亲边吃奶的免费视频| 美女高潮的动态| 色噜噜av男人的天堂激情| 又爽又黄a免费视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91aial.com中文字幕在线观看| 午夜福利成人在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 看非洲黑人一级黄片| 在线播放国产精品三级| 在线免费观看的www视频| 国产成人精品一,二区 | 99久久九九国产精品国产免费| 亚洲av一区综合| 赤兔流量卡办理| 色哟哟·www| 丝袜喷水一区| 成人国产麻豆网| 亚洲一区高清亚洲精品| 91久久精品电影网| 春色校园在线视频观看| 亚洲av免费高清在线观看| 午夜激情福利司机影院| 国产高潮美女av| 日韩高清综合在线| 婷婷亚洲欧美| 亚洲七黄色美女视频| 国产午夜精品一二区理论片| 久久人人爽人人爽人人片va| 校园春色视频在线观看| 美女大奶头视频| 桃色一区二区三区在线观看| 91久久精品电影网| 晚上一个人看的免费电影| 白带黄色成豆腐渣| 在线观看午夜福利视频| 中文字幕av成人在线电影| 一级av片app| 丰满的人妻完整版| 成人一区二区视频在线观看| 精品免费久久久久久久清纯| 精品不卡国产一区二区三区| 亚洲人与动物交配视频| 久久精品国产自在天天线| 久久久a久久爽久久v久久| 一级毛片电影观看 | 麻豆成人av视频| 色播亚洲综合网| 不卡一级毛片| 亚洲成a人片在线一区二区| 日韩中字成人| 日韩大尺度精品在线看网址| 午夜亚洲福利在线播放| 亚洲国产高清在线一区二区三| 中文字幕精品亚洲无线码一区| 精品久久久久久久久亚洲| 中文字幕人妻熟人妻熟丝袜美| 成年女人永久免费观看视频| 国产成人freesex在线| 午夜免费激情av| 在线观看av片永久免费下载| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久大av| 精品久久久久久久人妻蜜臀av| 两个人视频免费观看高清| 免费观看在线日韩| 在线免费十八禁| 一进一出抽搐gif免费好疼| 最近2019中文字幕mv第一页| 日韩精品有码人妻一区| 国产乱人偷精品视频| 亚洲综合色惰| 日本一本二区三区精品| 久久综合国产亚洲精品| 国产精品久久久久久久电影| 久久99热6这里只有精品| www.色视频.com| 天堂av国产一区二区熟女人妻| 亚洲av熟女| 国产精品一区二区性色av| 婷婷色av中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产不卡一卡二| 丝袜喷水一区| 免费观看人在逋| 亚洲中文字幕日韩| 国产69精品久久久久777片| 久久久成人免费电影| 一级毛片aaaaaa免费看小| 欧美一区二区亚洲| 日本黄色视频三级网站网址| 干丝袜人妻中文字幕| 日韩欧美三级三区| 特级一级黄色大片| 在现免费观看毛片| av免费观看日本| 一本精品99久久精品77| 欧美性感艳星| 久久精品91蜜桃| 又爽又黄无遮挡网站| 我的女老师完整版在线观看| 欧美日韩国产亚洲二区| 毛片女人毛片| av国产免费在线观看| 久久久久久久亚洲中文字幕| 国产精品女同一区二区软件| 国内精品一区二区在线观看| 国模一区二区三区四区视频| 国产黄片美女视频| 最近视频中文字幕2019在线8| 一级毛片我不卡| 内射极品少妇av片p| 丝袜美腿在线中文| 不卡视频在线观看欧美| av在线播放精品| 欧美区成人在线视频| 男人和女人高潮做爰伦理| 男的添女的下面高潮视频| 1024手机看黄色片| 在线观看66精品国产| 99riav亚洲国产免费| 国产成人精品久久久久久| 日本欧美国产在线视频| 国产女主播在线喷水免费视频网站 | 亚洲欧美精品综合久久99| 热99在线观看视频| 国产大屁股一区二区在线视频| 国产成年人精品一区二区| 天天一区二区日本电影三级| 成人性生交大片免费视频hd| 最新中文字幕久久久久| 久久久欧美国产精品| 18禁裸乳无遮挡免费网站照片| 国产亚洲5aaaaa淫片| 亚洲人成网站高清观看| 亚洲欧美日韩卡通动漫| 亚洲激情五月婷婷啪啪| 国产精品永久免费网站| 18禁在线播放成人免费| 色哟哟哟哟哟哟| 精品久久久久久成人av| 噜噜噜噜噜久久久久久91| 欧美日韩一区二区视频在线观看视频在线 | 欧美变态另类bdsm刘玥| 亚洲精品影视一区二区三区av| 2022亚洲国产成人精品| 中文在线观看免费www的网站| 免费观看人在逋| 国产高潮美女av| 日本在线视频免费播放| 嫩草影院精品99| 永久网站在线| 蜜桃久久精品国产亚洲av| 久久久精品欧美日韩精品| 国产午夜福利久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 91久久精品国产一区二区三区| 你懂的网址亚洲精品在线观看 | 亚洲色图av天堂| 麻豆精品久久久久久蜜桃| 国产高清视频在线观看网站| 免费无遮挡裸体视频| 久久精品国产亚洲网站| 亚洲国产欧洲综合997久久,| h日本视频在线播放| 日本黄色片子视频| 一边亲一边摸免费视频| 婷婷精品国产亚洲av| 久久精品久久久久久久性| 国产成人福利小说| 99视频精品全部免费 在线| 免费看av在线观看网站| 国产国拍精品亚洲av在线观看| 亚洲色图av天堂| 美女高潮的动态| 亚洲欧洲日产国产| 高清午夜精品一区二区三区 | 国产成人精品婷婷| 欧美最新免费一区二区三区| 桃色一区二区三区在线观看| 国产国拍精品亚洲av在线观看| 在线a可以看的网站| 极品教师在线视频| 亚洲最大成人av|