• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel range-Doppler imaging algorithm with OFDM radar

    2016-11-23 08:05:45XiaYangSongZhiyongLuZaiqiFuQiang
    CHINESE JOURNAL OF AERONAUTICS 2016年2期

    Xia Yang,Song Zhiyong,Lu Zaiqi,Fu Qiang

    ATR Key Laboratory,National University of Defense Technology,Changsha 410073,China

    A novel range-Doppler imaging algorithm with OFDM radar

    Xia Yang*,Song Zhiyong,Lu Zaiqi,Fu Qiang

    ATR Key Laboratory,National University of Defense Technology,Changsha 410073,China

    Code symbols;Doppler effect;Estimation accuracy;Orthogonal frequency division multiplexing radar;Range-Doppler image;Single pulse

    Traditional pulse Doppler radar estimates the Doppler frequency by taking advantage of Doppler modulation over different pulses and usually it requires a few pulses to estimate the Doppler frequency.In this paper,a novel range-Doppler imaging algorithm based on single pulse with orthogonal frequency division multiplexing(OFDM)radar is proposed,where the OFDM pulse is composed of phase coded symbols.The Doppler frequency is estimated using one single pulse by utilizing Doppler modulation over different symbols,which remarkably increases the data update rate.Besides,it is shown that the range and Doppler estimations are completely independent and the well-known range-Doppler coupling effect does not exist.The effects of target movement on the performances of the proposed algorithm are also discussed and the results show that the algorithm is not sensitive to velocity.Performances of the proposed algorithm as well as comparisons with other range-Doppler algorithms are demonstrated via simulation experiments.

    1.Introduction

    Orthogonal frequency division multiplexing(OFDM)was originally proposed as a digital modulation technique in communication fields and later on introduced into radar community by Jankiraman et al.1The first investigations on the suitability of multicarrier waveforms for radar applications were published in 2000 by Levanon.2,3As a new broadband radar signal,OFDM signal has attracted much interest due to the flexibly available spectral resources and frequency diversity characteristics.A large amount of salient work has been done on OFDM radar such as target detection and tracking,4,5direction of arrival(DOA)estimation6and synthetic aperture radar(SAR)imaging7,8fields,etc.Besides,some research work indicated that OFDM waveform was suitable for simultaneously performing both data transmission and radar sensing.9An OFDM joint radar and communication(RadCom)system had been developed in automotive radar application.10,11

    Different OFDM radar signal processing methods have been developed in literature.The problem of target velocity estimation with OFDM radar was addressed in Ref.12,where MUSIC and rank reduction(RARE)algorithm were developed.A new approach based on discrete Fourier transform(DFT)for compressing the OFDM signal was proposed in Ref.13In Ref.14,the random starting phase of subcarriers was exploited to solve Doppler ambiguity.However,themethod was computationally expensive.A non-linear least squares approach was developed in Ref.15to estimate the range and velocity of a moving target using weighted OFDM(WOFDM)modulation scheme.A novel OFDM radar signal processing scheme which retrieved range and velocity information was derived in Ref.16,17However,the Doppler information was estimated over a few pulses and it had a low data update rate.

    In conventional pulsed Doppler radar,Doppler is estimated by utilizing the Doppler modulation over multiple pulses.Thus,there always exist two problems:one is the conflict between unambiguous range(which is proportional to pulse repetition interval(PRI))and unambiguous Doppler(which is inverse proportional to PRI).18The other is the sensitivity of range-Doppler image to velocity.The range-Doppler image would be distorted if target velocity is high and usually velocity compensation is demanded.19Besides,in order to improve Doppler resolution,the accumulation time is always long.Accordingly,the data update rate is reduced.

    In this paper,a novel range-Doppler imaging algorithm with OFDM pulse radar is proposed.The Doppler frequency is estimated within one single pulse by utilizing Doppler modulation over different symbols.First the received signal model of OFDM radar based on point target assumption is derived.Then a range-Doppler imaging algorithm which requires only one single pulse is derived.The proposed algorithm is compared with that in Ref.16and performance losses due to target movement are also discussed in detail.Finally,numerical examples are provided to demonstrate performances of the proposed algorithm.

    2.Received signal model with OFDM radar

    We consider a monostatic pulse radar transmitting only one single pulse which is composed ofKOFDM symbols.The advantage of this waveform scheme is the ability to avoid high value of peak to mean envelope power ratio(PMEPR).2Fig.1 shows the time and frequency structure of the OFDM pulsed waveform.

    Fig.1 Time and frequency structure of OFDM waveform.

    andf0accounts for the carrier frequency.an,krepresents the phase code applied on thekth symbol of thenth subcarrier.In this paper,the complex phase codes are assumed to have unit magnitude,i.e.|an,k|=1.

    ConsideringLpoint targets,Ri,0andvi(i=1,2,...,L)are the initial range and radial velocity.The received signal in a noise-free scenario can be written as

    where ρidenotes the complex scattering coefficient corresponding to theith target and τi=2(Ri,0+vit)/cis the roundtrip delay.cis the propagation speed.Substituting Eq.(1)into Eq.(3),after demodulation we get

    Without loss of generality,letL=1 and Eq.(4)is simplified to

    The sampling rate is assumed to befs=Band sampling time ist=p/Ntb+ktb(p=0,1,...N-1).Thus,the discrete form of the complex baseband OFDM signal echo is given by

    wherefd=2v/cf0denotes the Doppler frequency.

    3.Range-Doppler imaging algorithm

    3.1.Range-Doppler imaging algorithm based on single pulse

    In an OFDM radar system one single pulse is composed of several symbols and the Doppler modulation over different symbols can be utilized to estimate the Doppler frequency.This is similar to the conventional Doppler estimation method which utilizes Doppler modulation over different pulses.A detailed description of the proposed algorithm will be given in this section.

    In Eq.(6),the Doppler information is mainly concentrated on the term e-j2π(fd+nΔf2v/c)(ptb/N+ktb),which can be divided into two parts:Δ1=e-j2πf02v/c(ptb/N+ktb)represents Doppler modulation over the pulse and Δ2=e-j2πnΔf2v/c(p/Ntb+ktb)is the Doppler modulation of subcarriers over the pulse.The relationship between Δ1and Δ2is dependent on the bandwidth tolerated by the system and the carrier frequency.Taking X-band(10 GHz)radar for example,the Doppler frequency and maximum Doppler frequency of subcarrier(which can be calculated asB(2v/c))with different bandwidths and velocities are shown in Table 1.

    As shown in Table 1,nΔf(2v/c)?f0(2v/c)(n=0,1,...,N-1)ifB?f0is satisfied.In other words,the effect of Δ2can be ignored(Δ1·Δ2≈ Δ1).Thus,Eq.(6)is rewritten as

    In Eq.(7),e-j2πfd(ptb/N+ktb)can be divided into two parts:β1=e-j2πfdptb/Nrepresents Doppler effect within single symbol and β2=e-j2πfdktbrepresents Doppler effect over different symbols.Substitutingtb=1/Δfinto β1, β1is simplified to e-j2π(fd/Δf)p/N(p=0,1,...,N-1)which is dependent on Doppler frequency and subcarrier spacing.Here,we still take X-band(10 GHz)radar for example and the subcarrier frequency spacing is assumed to be 1 MHz.From Table 2 we know thatfd/Δf≈ 0 for low velocities,which results in β1≈ 1.Eq.(7)is simplified to

    From Eq.(8)we know that the range and Doppler information are completely independent and the well-known range-Doppler coupling effect does not exist.In order to extract range and Doppler information,we have to get rid of{wn}and{an,k}.For clarity Eq.(8)is organized into matrix form

    The various terms are given hereafter

    Table 1 Doppler frequency with different bandwidths.

    Table2fd and fd/Δfvarying with differentvelocities(Δf=1 MHz).

    In Eq.(11),F-1denotes the inverse discrete Fourier transform(IDFT)matrix.The range-Doppler imaging algorithm based on single pulse with OFDM radar is shown as follows.

    Step 1.Multiplying Eq.(9)with DFT matrix F yields

    Step 2.With the prior knowledge on the transmitted weights,premultiplying B-1on both sides of Eq.(19)yields

    Step 3.Let D= θXAΨ and according to Eqs.(13)–(18),the element in D can be calculated by

    Step 4.Taking element-wise division in Eq.(21)with[A]n,kwhere[A]n,k=an,k,we obtain

    Step 5.Applying a 2D-DFT withNr×Ndpoints on T,we can get the range–Doppler image of an OFDM radar scheme.

    3.2.Comparison with the algorithm in Ref.16

    In Ref.16,the authors exploited the phase of subcarriers and derived a signal processing scheme that retrieves an estimate of the range and the radial velocity with OFDM radar.However,the Doppler frequency was estimated by utilizing Doppler modulation over different pulses and it still belonged to the conventional way.Compared with the algorithm in Ref.16,our algorithm is able to estimate the Doppler frequency within one single pulse.In addition,the range and Doppler estimations are completely independent.We show range and Doppler resolutions of the two algorithms in Table 3,whereMandTrdenote the transmitted pulse number and pulse repetition interval,respectively.

    In Table 3 we know that the range resolution is the same in two methods for the bandwidth is the same.Though the Doppler resolution in Ref.16is better,the proposed algorithm has a larger unambiguous Doppler scope.Besides,it is noticeable that classical unambiguous range does not exist in the proposed algorithm,for only one single pulse is transmitted.

    Table 3 Rangeand Dopplerresolutionsofthe two algorithms.

    4.Performance analysis of the proposed algorithm

    In this section,we discuss performances of the proposed algorithm.We mainly focus on the performance loss including pulse compression loss and range estimation accuracy due to the target movement,which is equivalent to say that the OFDM pulse suffers from inter-carrier interference(ICI).20

    4.1.Pulse compression loss

    According to the proposed algorithm in Section 3.2,we know that the processing gain isG=N×K,which results from range and Doppler processing in Step 5.Besides,it is shown that the range and Doppler processing are completely independent and there is no gain loss in this step.The gain loss mainly results from Step 1 in the proposed algorithm.Specifically,takingNpoints DFT on the each column of Eq.(6)yields

    Fig.2 e1(ε)versus n and s when ε=0.1 dB.

    Fig.3 DFT gain loss versus the value of ε.

    where Θ =(1-2v/c)n-s-fd/Δf.If target velocity is not too high, Θ ?n-s-fd/Δfand the gain loss mainly results fromfd/Δf.Let ε=fd/Δfande1(n,s,ε)=|sin(π (n-s- ε))/sin(π /N(n-s- ε))|which represents the DFT gain.Fig.2 shows thate1(n,s,ε)varies withnandswhere ε is fixed to 0.1(The value is normalized in decibels).It is shown thate1(n,s,ε)reaches the maximum value whenn=s.However,the value ofe1(n,s,ε)dropsoffatabout0.14 dBduetotheDopplereffect.

    Furthermore,the relationship between DFT gain loss and ε is shown in Fig.3.DFT gain loss increases with the increase of the Doppler frequency.The DFT gain loss is less than 1 dB when ε< 0.26 while it reaches 3.92 dB when ε=0.5.Therefore,in practical applications the subcarrier spacing and the maximum Doppler frequency should satisfy Δf> 1/4|fd|maxsuch that the gain loss is less than 1 dB.

    4.2.Doppler effect on range estimation accuracy

    Letn=sand Eq.(23)is simplified to

    According to the algorithm described in Section 3.2,the terms{wn}and{an,k}are removed and the constant term is ignored.Thus Eq.(24)is simplified to

    TakingNrpoints IDFT on each column yields

    where Ω = Δfτ0+(2v/c)k-p/Nr.The error of range estimate is introduced by the term(2v/c)kwhich is proportional to the symbol number and target velocity.Moreover,|r(p,k)|=|sin(πNΩ)/sin(πΩ)|represents the range profile.Without loss of generality,letk=K-1.We show the range profile atv=100 m/s andv=3000 m/s in Fig.4(Target is located at 3030 m,K=100 andB=100 MHz).The curves show that the velocity has little impact on the range profile.

    Then we show the errors of range estimate versus velocities at different symbol numbers in Fig.5.The parameters are the same as that in Fig.4.The curves show that the symbol number has little effect on the errors of range estimate whenv≤1000 m/s.Although the error of range estimate increases with increasing the number of symbol whenv>1000 m/s,the error does notexceed one range resolution cell(Δr=1.5 m).Based on the results of Figs.4 and 5,it concludes that the error of range estimation is not sensitive to velocity and symbol number under certain conditions(Velocity is not too large.In this simulation experiment,velocity is thought to be less than 1000 m/s).

    Fig.4 Range profile with v=100 m/s and v=3000 m/s.

    Fig.5 Errors of range estimate versus velocities at different symbol numbers.

    5.Numerical results

    In this section,several numerical examples are presented to illustrate the performances of the proposed algorithm.The OFDM radar parameters are shown in Table 4.According to Table 3,the maximum Doppler frequency isfdmax=0.25-Δf=250 kHz and the corresponding maximum velocity is 3900 m/s,which is satisfied in most applications.

    5.1.Performance analysis of the proposed algorithm

    In this section,performances of the proposed algorithm are analyzed via several numerical examples.We mainly discuss the effects of DFT length,carrier frequency and symbol number on the performances of range-Doppler image.If not explicitly stated,simulation parameters are the same as in Table 4.

    We show effects of DFT length along the Doppler dimension on the range-Doppler image in Fig.6.The value of the image is normalized in dB and we restrict it to the range[-50 0]dB to display the image clearly(the following range-Doppler images are the same).The initialrange isR0=3030 m and target flees the radar with a velocity of 150 m/s.The DFT length is 256 in Fig.6(a)and 1024 in Fig.6(b).The results show that the range-Doppler image in Fig.6(b)is more precise than that in Fig.6(a).Besides,the estimate of Doppler frequency is-11.72 kHz in Fig.6(a)and-9.766 kHz in Fig.6(b).The corresponding velocities are-175.8 m/s and-146.49 m/s,respectively.Then,we show the errors of velocity estimate versus the DFT length at different velocities in Fig.7.It concludes that the accuracy of Doppler estimate can be improved through zero padding of DFT operation along the Doppler dimension.Besides,it is noticeable that the error of velocity estimate is less than 5 m/s whenNd≥1024.

    Moreover,we show the range and Doppler profile of Fig.6(b)in Fig 8.The peak values of range and Doppler sidelobe are-13.29 dB and-13.31 dB respectively.The peak values of sidelobe are high when targets exist with different backscattering strengths in a large dynamic area.Some techniques such as adding window may be used to suppress the sidelobe.However,adding window would decrease the resolution and widen the mainlobe.

    In Fig.9 we have analyzed the effect of carrier frequencyf0on the range-Doppler image.Target parameters are the same as in Fig.6.We setB/f0=0.2 in Fig.9(a)andB/f0=0.01 in Fig.9(b).The two figures seem to be little different.However,the estimate of Doppler frequency is-0.9766 kHz in Fig.9(a)and-9.766 kHz in Fig.9(b).The corresponding velocities are-292.8 m/s and-146.49 m/s,respectively.Moreover,Fig.10 shows that the errors of velocity estimate vary with different carrier frequencies.As shown in Figs.9 and 10,the error of velocity estimate decreases with increasing the carrier frequency.Thus,in real applicationsB/f0shouldbe selected as small as possible to estimate the Doppler accurately.

    Table 4 OFDM radar parameters.

    Fig.11 shows the effect of symbol numbers on the range-Doppler image.We setK=10 in Fig.11(a)andK=100 in Fig.11(b).Target parameters are the same as in Fig.6.The estimate of Doppler frequency is the same(-9.766 kHz)in both figures.However,the Doppler resolution in Fig.11(b)is much better than that in Fig.11(a)for the Doppler resolution is dependent on Δf/K(shown in Table 4).In order to acquire good Doppler resolution,the symbol number should be large.

    Fig.7 Errors of velocity estimate versus Ndat different velocities.

    Fig.8 Range and Doppler profile without windowing.

    5.2.Performance comparisons of the two algorithms

    In this section,performances of the proposed algorithm and that in Ref.16are compared.For the range resolution(bandwidth)is the same in two algorithms,we mainly focus on accuracy of Doppler estimation.The algorithm in Ref.16is based on multiple pulses and we set the symbol number and pulse repetition interval asK=5 andTr=200 μs respectively.The pulse number isM=30.For the proposed algorithm,the parameters are the same as that in Table 5.The Doppler and velocity resolutions of the two algorithms are shown in Table 5.

    In Figs.12 and 13,we show range-Doppler images of the two algorithms with target velocityv=20 m/s andv=750 m/s,respectively.The estimate of Doppler frequency is-1338 Hz in Fig.12(a)and-0.9766 kHz in Fig.12(b).The corresponding velocity is 20.07 m/s and 14.65 m/s respectively.Moreover,we show that the errors of velocity estimate vary with different velocities in Fig.14.It is shown that the accuracy of velocity estimate of the algorithm in Ref.16is better than that of the proposed algorithm,but we can increase the DFT length along Doppler dimension to improve the accuracy of Doppler estimation.

    Fig.9 Range-Doppler image with different carrier frequencies when bandwidth is fixed at 100 MHz.

    Fig.10 Errors of velocity estimate versus carrier frequency at different velocities.

    Fig.11 Range-Doppler image with different symbol numbers.

    Table5 Dopplerand velocity resolution ofthe two algorithms.

    In addition,the range-Doppler image(Fig.13(a))is distorted for the algorithm in Ref.16due to the high velocity.On the contrary,it has little impact on the range-Doppler image of the proposed algorithm and the estimation of velocity is 747 m/s which is close to the true value.The results show that compared with the algorithm in Ref.16,though the Doppler resolution and estimation accuracy of the proposed algorithm are not as good as that in Ref.16,it has a larger Doppler tolerance and can be applied in high speed scenarios without velocity compensation.

    Finally,Fig.15 shows range-Doppler images in multitarget scenario of the two algorithms.We consider that five targets and the scattering coefficients are all equal to 1.Initial range isR0=[3020,3020,3020,3030,3010]Tm and velocities arev=[30,200,-720,25,50]Tm/s.In Fig.15(a),only four targets are visible and the Doppler frequencies of target 2 and 3 are ambiguous for the maximum unambiguous velocity is 75 m/s.However,the five targets can all be identified in Fig.15(b)and the estimate of velocity is[14.65,219.75,-732.45,29.30,43.95]Tm/s.The proposed algorithm can be used in multi-target scenario due to the large unambiguous Doppler frequency and Doppler tolerance.

    Fig.12 Range-Doppler image of the two algorithms when v=20 m/s.

    Fig.13 Range-Doppler image of the two algorithms when v=750 m/s.

    Fig.14 Errors of velocity estimate versus velocities with two algorithms.

    Fig.15 Range-Doppler images of two proposed algorithm in multi-target scenarios.

    6.Conclusions

    In this paper,we have derived a novel range-Doppler imaging algorithm with OFDM pulsed radar.The proposed algorithm is able to estimate the Doppler frequency within a single pulse.The range and Doppler estimations are completely independent and the well-known range-Doppler coupling effect is avoided.We compared the proposed algorithm with other range-Doppler imaging algorithm(Ref.16)and showed that although the Doppler resolution of the proposed algorithm is not as well as that in Ref.16,our algorithm had a larger unambiguous Doppler frequency.Besides,we did not need conventional velocity compensation due to the high Doppler tolerance.We also analyzed the influences of target movement on the performances of the proposed algorithm and demonstrated that the target velocity had limited impact on the pulse compression gain and range profile if it was not too high.We showed that the accuracy of Doppler estimation could be improved through zero padding of DFT operations via simulation experiments.

    Acknowledgement

    This study was supported by the National Natural Science Foundation of China(No.61401475).

    1.Jankiraman M,Wessels BJ,Genderen PV.Design of a multifrequency FMCW radar.Proceedings of the 28th European microwave conference(EuMC);1998 Oct 5–9;Amsterdam,Netherlands.Piscataway,NJ:IEEE Press;1998.p.584–9.

    2.Levanon N.Multifrequency radar signals.Proceedings of IEEE 2000 international radar conference;2000 May 7–12;Alexandria,VA,USA.Piscataway,NJ:IEEE Press;2000.p.683–8.

    3.Levanon N.Multifrequency complementary phase-coded radar signal.IEEE Proc Radar Sonar Navigation2000;147(6):276–84.

    4.Sen S,Nehorai A.Adaptive OFDM radar for target detection in multipath scenarios.IEEE Trans Signal Process2011;59(1):78–90.

    5.Sen S,Nehorai A.OFDM MIMO radar with mutual-Information waveform design for low-grazing angle tracking.IEEE Trans Signal Process2010;58(6):3152–62.

    6.Wu XH,Kishk AA,Glisson AW.MIMO-OFDM radar for direction estimation.IET Radar Sonar Navig2010;4(1):28–36.

    7.Garmatyuk D,Brenneman M.Adaptive multicarrier OFDM SAR signal processing.IEEE Trans Geosci Remote Sens2011;49(10):3780–90.

    8.Zhang TT,Xia XG.OFDM synthetic aperture radar imaging with sufficient cyclic prefix.IEEE Trans Geosci Remote Sens2015;53(1):394–404.

    9.Sturm C,Wiesbeck W.Waveform design and signal processing aspects for fusion of wireless communications and radar sensing.Proc IEEE2011;99(7):1236–59.

    10.Sturm C,Braun M,Zwick T,Wiesbeck W.A multiple target Doppler estimation algorithm for OFDM based intelligent radar systems.Proceedings of the 2010 European radar conference(EuRAD);2010 Sep 30–Oct 1,Paris,France.Piscataway,NJ:IEEE Press;2010.p.73–6.

    11.Braun M,Sturm C,Niethammer A,Jondral F.Parametrization of joint OFDM-based radar and communication systems for vehicular applications.Proceedings of the 20th international symposium on personal,indoor and mobile radio communications(PIMRC);2009 Sep 13–16;Tokyo,Japan.Piscataway,NJ:IEEE Press;2009.p.3020–4.

    12.Vyacheslav AK,Evgeny AM.Target velocity estimation in OFDM radar based on subspace approaches.Proceedings of 14th international radar symposium(IRS);2013 June 19–21;Dresden,Germany.Piscataway,NJ:IEEE Press;2013.p.1061–6.

    13.Mohseni R,Sheikhi A,Masnadi-Shirazi MA.Compression of multicarrier phase-coded radar signals based on discrete Fourier transform(DFT).Progr Electromagn Res C2008;5:93–117.

    14.Tigrek R,De HJ,Genderen PV.OFDM signals as the radar waveform to solve Doppler ambiguity.IEEE Trans Aerospace Electron Syst2012;48(1):130–43.

    15.Turlapaty A,Jin YW,Xu Y.Range and velocity estimation of radar targets by weighted OFDM modulation.OFDM radar.Proceedings of 2014 IEEE radar conference;2014 May 19–23;Cincinnati,OH,USA.Piscataway,NJ:IEEE Press;2014.p.1358–62.

    16.Lellouch G,Mishra A,Inggs M.Impact of the Doppler modulation on the range and Doppler processing in OFDM radar.Proceedings of 2014 IEEE radar conference;2014 May 19–23;Cincinnati,OH,USA.Piscataway,NJ:IEEE Press;2014.p.803–8.

    17.Lellouch,G,Mishra A,Inggs M.Processing alternatives in OFDM radar.Proceedings of 2014 international radar conference;2014 Oct 13–17;Lille,France.Piscataway,NJ:IEEE Press;2014.p.1–6.

    18.Bassem RM,Atef ZE.Radar systems analysis and design using MATLAB.New York:Chapman&Hall/CRC;2004.p.72–80.

    19.Levanon N,Eli M.Radar principles.Hoboken,NJ:Wiley;1998.p.168–75.

    20.Armstrong J.Analysis of new and existing methods of reducing inter-carrier interference due to carrier frequency offset in OFDM.IEEE Trans Commun1999;47(3):365–9.

    16 June 2015;revised 18 December 2015;accepted 20 January 2016

    Available online 23 February 2016

    ?2016 Chinese Society of Aeronautics and Astronautics.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 731 84576401-0.

    E-mail address:xiayang2020@126.com(Y.Xia).

    Peer review under responsibility of Editorial Committee of CJA.

    Xia Yangreceived the M.S.degree from the National University of Defense Technology(NUDT)in 2009.He is currently a Ph.D.candidate at the ATR Key Laboratory,NUDT.His research interests include radar signal and data processing,target detection and tracking,radar imaging.

    Song Zhiyongreceived the Ph.D.degree in information and communication engineering from the National University of Defense Technology(NUDT)in 2012.He is currently a lecturer at the ATR Key Laboratory,NUDT.His research interests include radar signal processing,target detection and anti-jamming.

    Lu Zaiqireceived the Ph.D.degree in information and communication engineering from the National University of Defense Technology(NUDT)in 2002.He is currently an associate professor at the ATR Key Laboratory,NUDT.His research interests include radar signal processing,target tracking and information fusion.

    Fu Qiangreceived the Ph.D.degree in information and communication engineering from the National University of Defense Technology(NUDT)in 2004.He is currently a professor and doctoral supervisor at the ATR Key Laboratory,NUDT.His research interests include radar system design,precise guidance and automatic target recognition.

    亚洲欧美日韩无卡精品| 欧美精品亚洲一区二区| 特级一级黄色大片| 男人舔女人的私密视频| 久久精品影院6| 国产成人精品无人区| 99riav亚洲国产免费| 国产单亲对白刺激| 亚洲va日本ⅴa欧美va伊人久久| 精品人妻1区二区| 麻豆国产97在线/欧美 | 国内精品久久久久精免费| 在线十欧美十亚洲十日本专区| 午夜福利高清视频| 欧美性猛交黑人性爽| 欧美人与性动交α欧美精品济南到| 中文在线观看免费www的网站 | 久久午夜亚洲精品久久| 啦啦啦观看免费观看视频高清| 一级黄色大片毛片| 精品久久久久久,| 舔av片在线| 在线观看日韩欧美| 国产av麻豆久久久久久久| 日韩中文字幕欧美一区二区| 亚洲,欧美精品.| 中国美女看黄片| 精品久久久久久成人av| 国产精品免费视频内射| 日韩免费av在线播放| 日韩成人在线观看一区二区三区| 哪里可以看免费的av片| 女警被强在线播放| 亚洲国产日韩欧美精品在线观看 | 中文亚洲av片在线观看爽| 国产精品av视频在线免费观看| 亚洲欧美一区二区三区黑人| 国产精品久久电影中文字幕| 精品少妇一区二区三区视频日本电影| 国产免费av片在线观看野外av| 日本 欧美在线| www.精华液| 岛国在线观看网站| 在线永久观看黄色视频| a级毛片在线看网站| 亚洲国产中文字幕在线视频| 欧美精品亚洲一区二区| 欧美黑人欧美精品刺激| 国产av又大| 亚洲欧洲精品一区二区精品久久久| 老司机在亚洲福利影院| av欧美777| 欧美在线一区亚洲| 亚洲欧洲精品一区二区精品久久久| 在线观看66精品国产| 最好的美女福利视频网| 国内毛片毛片毛片毛片毛片| 欧美极品一区二区三区四区| 黑人巨大精品欧美一区二区mp4| 在线永久观看黄色视频| 久9热在线精品视频| 国产探花在线观看一区二区| 波多野结衣高清无吗| 露出奶头的视频| 亚洲人与动物交配视频| 老司机深夜福利视频在线观看| 欧美日本亚洲视频在线播放| 99国产精品一区二区蜜桃av| 婷婷丁香在线五月| 婷婷亚洲欧美| 18禁黄网站禁片免费观看直播| 91成年电影在线观看| 欧美成狂野欧美在线观看| 亚洲成人久久爱视频| 国产精品永久免费网站| 中文字幕久久专区| 国产精品综合久久久久久久免费| 欧美日韩亚洲综合一区二区三区_| 亚洲成a人片在线一区二区| 欧美日韩国产亚洲二区| 久久精品夜夜夜夜夜久久蜜豆 | 搡老熟女国产l中国老女人| av中文乱码字幕在线| 天天添夜夜摸| 国内久久婷婷六月综合欲色啪| 一二三四在线观看免费中文在| 欧美午夜高清在线| 久99久视频精品免费| 看片在线看免费视频| 91字幕亚洲| 亚洲狠狠婷婷综合久久图片| 成人亚洲精品av一区二区| 欧美日韩精品网址| 丰满的人妻完整版| 午夜免费激情av| 91老司机精品| 男女午夜视频在线观看| 久久人妻福利社区极品人妻图片| 亚洲国产精品久久男人天堂| 国产午夜福利久久久久久| 床上黄色一级片| 久久久精品国产亚洲av高清涩受| 成人高潮视频无遮挡免费网站| 午夜a级毛片| 中亚洲国语对白在线视频| 中文在线观看免费www的网站 | 亚洲一区高清亚洲精品| 久久香蕉精品热| 五月玫瑰六月丁香| 国产97色在线日韩免费| 韩国av一区二区三区四区| 大型黄色视频在线免费观看| 亚洲人成77777在线视频| 最新在线观看一区二区三区| av免费在线观看网站| 亚洲熟妇中文字幕五十中出| 久久中文字幕一级| 国产片内射在线| 国产99白浆流出| 18禁国产床啪视频网站| 91麻豆精品激情在线观看国产| 男女下面进入的视频免费午夜| 51午夜福利影视在线观看| 日韩欧美在线二视频| 一边摸一边做爽爽视频免费| 亚洲精品粉嫩美女一区| 亚洲av电影不卡..在线观看| 婷婷精品国产亚洲av| 国产成人系列免费观看| 亚洲性夜色夜夜综合| 久久久国产成人精品二区| 成年版毛片免费区| 亚洲精品粉嫩美女一区| 亚洲精品国产一区二区精华液| 精品不卡国产一区二区三区| 久久久久久久午夜电影| 日本三级黄在线观看| 久久香蕉精品热| 88av欧美| 久久久久国内视频| 国产成人精品久久二区二区免费| 久久精品国产亚洲av香蕉五月| 午夜精品在线福利| 久久久久久久久中文| 亚洲欧美日韩无卡精品| 精品欧美国产一区二区三| 亚洲午夜理论影院| 久久天堂一区二区三区四区| 日本一区二区免费在线视频| 可以在线观看毛片的网站| 国产精品久久久久久亚洲av鲁大| 在线观看午夜福利视频| 国产亚洲精品一区二区www| 久久人人精品亚洲av| 免费搜索国产男女视频| 看黄色毛片网站| 日韩 欧美 亚洲 中文字幕| 久久久国产精品麻豆| 黄片大片在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 激情在线观看视频在线高清| 国产一区二区在线av高清观看| 欧美黄色淫秽网站| 在线a可以看的网站| 天堂动漫精品| 老司机福利观看| 国产精品久久久久久久电影 | 亚洲成人中文字幕在线播放| 亚洲aⅴ乱码一区二区在线播放 | 亚洲成人久久性| 他把我摸到了高潮在线观看| 国产区一区二久久| 国产乱人伦免费视频| 天堂√8在线中文| 亚洲一区高清亚洲精品| 悠悠久久av| 国产黄色小视频在线观看| 久久人妻av系列| 波多野结衣高清无吗| 人成视频在线观看免费观看| 国产精品野战在线观看| 日韩欧美精品v在线| 日韩大码丰满熟妇| 国产免费男女视频| 九色成人免费人妻av| 亚洲第一欧美日韩一区二区三区| 日韩欧美 国产精品| 国产av不卡久久| 亚洲成a人片在线一区二区| 亚洲欧美精品综合一区二区三区| av在线天堂中文字幕| 亚洲第一电影网av| 亚洲专区中文字幕在线| 亚洲国产精品成人综合色| 黄色a级毛片大全视频| 亚洲自拍偷在线| 国产成人影院久久av| 中文字幕av在线有码专区| 国产一区在线观看成人免费| 热99re8久久精品国产| 激情在线观看视频在线高清| 国产精品爽爽va在线观看网站| 日本三级黄在线观看| 伊人久久大香线蕉亚洲五| 一个人观看的视频www高清免费观看 | 欧美色视频一区免费| 亚洲一区二区三区不卡视频| 久久精品影院6| 精品日产1卡2卡| 老汉色∧v一级毛片| 国产亚洲精品久久久久5区| 久久国产精品人妻蜜桃| 一a级毛片在线观看| 好男人在线观看高清免费视频| 好看av亚洲va欧美ⅴa在| 国产精品,欧美在线| 久久久久性生活片| 国产精品综合久久久久久久免费| 色播亚洲综合网| 一级毛片精品| 99热只有精品国产| 成人亚洲精品av一区二区| 欧美一区二区精品小视频在线| 大型av网站在线播放| 可以在线观看毛片的网站| 午夜a级毛片| 99热6这里只有精品| 国产亚洲av高清不卡| 极品教师在线免费播放| 黑人欧美特级aaaaaa片| 久久国产乱子伦精品免费另类| 中国美女看黄片| 亚洲一区二区三区不卡视频| 欧美日韩中文字幕国产精品一区二区三区| 91老司机精品| 他把我摸到了高潮在线观看| 亚洲av电影不卡..在线观看| 女人高潮潮喷娇喘18禁视频| 精品熟女少妇八av免费久了| 久热爱精品视频在线9| 床上黄色一级片| 亚洲第一电影网av| 国产不卡一卡二| 国产成人av教育| 久久国产精品影院| 久久久久久久精品吃奶| 女人爽到高潮嗷嗷叫在线视频| 国产精品免费一区二区三区在线| 国产v大片淫在线免费观看| 免费在线观看影片大全网站| 俺也久久电影网| 亚洲va日本ⅴa欧美va伊人久久| 国产精品九九99| 亚洲第一电影网av| avwww免费| 免费在线观看成人毛片| 天天躁夜夜躁狠狠躁躁| 制服诱惑二区| 国产精品亚洲一级av第二区| 夜夜爽天天搞| 亚洲国产日韩欧美精品在线观看 | 国产精品av视频在线免费观看| 亚洲人成伊人成综合网2020| 亚洲中文字幕一区二区三区有码在线看 | 69av精品久久久久久| 国产激情偷乱视频一区二区| 久久精品影院6| 国产在线观看jvid| 热99re8久久精品国产| 亚洲人成网站在线播放欧美日韩| 久久精品国产亚洲av高清一级| 黄色毛片三级朝国网站| 欧美黑人欧美精品刺激| 国产成人啪精品午夜网站| 国产精品久久久久久亚洲av鲁大| 操出白浆在线播放| 成人av一区二区三区在线看| 91国产中文字幕| 国产精品国产高清国产av| 九九热线精品视视频播放| 91大片在线观看| 国产一区二区在线观看日韩 | 成在线人永久免费视频| 天堂av国产一区二区熟女人妻 | 精品久久久久久成人av| 国产真人三级小视频在线观看| 一进一出抽搐动态| 午夜福利高清视频| 亚洲人成电影免费在线| 身体一侧抽搐| 男插女下体视频免费在线播放| 欧美不卡视频在线免费观看 | 三级男女做爰猛烈吃奶摸视频| 日韩欧美免费精品| 精品久久久久久久人妻蜜臀av| 免费在线观看完整版高清| 成人三级做爰电影| 美女大奶头视频| 午夜激情福利司机影院| 91字幕亚洲| tocl精华| 精品国产亚洲在线| 国产亚洲av嫩草精品影院| 国产精品国产高清国产av| 免费看美女性在线毛片视频| 久久久久免费精品人妻一区二区| 国产精品爽爽va在线观看网站| 中文字幕久久专区| АⅤ资源中文在线天堂| 欧美一级a爱片免费观看看 | 香蕉久久夜色| 亚洲人成77777在线视频| 国产精品电影一区二区三区| www.999成人在线观看| 国产片内射在线| 亚洲精品久久成人aⅴ小说| 可以免费在线观看a视频的电影网站| 久久久久亚洲av毛片大全| 成人手机av| 亚洲专区国产一区二区| 亚洲九九香蕉| 欧美绝顶高潮抽搐喷水| 男女之事视频高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色丝袜av网址大全| 国产真人三级小视频在线观看| 成年免费大片在线观看| 村上凉子中文字幕在线| 亚洲免费av在线视频| 好男人电影高清在线观看| 亚洲成av人片免费观看| 欧美日韩黄片免| 嫁个100分男人电影在线观看| 久久久久国产精品人妻aⅴ院| 免费观看人在逋| 久久久久久久久中文| 女生性感内裤真人,穿戴方法视频| 亚洲av成人精品一区久久| 欧美午夜高清在线| 精品第一国产精品| 国产私拍福利视频在线观看| 欧美久久黑人一区二区| 两个人免费观看高清视频| 婷婷丁香在线五月| 天天躁狠狠躁夜夜躁狠狠躁| 精品午夜福利视频在线观看一区| 啦啦啦免费观看视频1| 国产69精品久久久久777片 | 一个人免费在线观看电影 | 日韩精品青青久久久久久| 久久久国产成人免费| 人妻夜夜爽99麻豆av| tocl精华| 日本免费一区二区三区高清不卡| 日韩有码中文字幕| 久久国产精品影院| 嫁个100分男人电影在线观看| 精品不卡国产一区二区三区| 午夜福利视频1000在线观看| 国产午夜福利久久久久久| 久久性视频一级片| 身体一侧抽搐| 女警被强在线播放| 亚洲真实伦在线观看| 免费在线观看亚洲国产| 亚洲自拍偷在线| 又爽又黄无遮挡网站| 成人三级黄色视频| 一卡2卡三卡四卡精品乱码亚洲| 国产一区在线观看成人免费| 欧美国产日韩亚洲一区| 一进一出好大好爽视频| 一本精品99久久精品77| 亚洲熟妇中文字幕五十中出| 看片在线看免费视频| 亚洲无线在线观看| 在线国产一区二区在线| 国产一区二区激情短视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品一区av在线观看| 欧美日韩一级在线毛片| 大型黄色视频在线免费观看| e午夜精品久久久久久久| 最好的美女福利视频网| 欧美中文日本在线观看视频| 人人妻,人人澡人人爽秒播| 桃色一区二区三区在线观看| 五月伊人婷婷丁香| 法律面前人人平等表现在哪些方面| 久久久久亚洲av毛片大全| 国产视频内射| 国产精品久久久av美女十八| 国产激情久久老熟女| 国产av一区二区精品久久| 国产人伦9x9x在线观看| 中文字幕人妻丝袜一区二区| 黄色毛片三级朝国网站| 欧美日韩亚洲综合一区二区三区_| 特级一级黄色大片| 久久亚洲真实| 精品国产超薄肉色丝袜足j| 麻豆国产av国片精品| 国产高清视频在线播放一区| 97超级碰碰碰精品色视频在线观看| 午夜福利在线在线| 精品午夜福利视频在线观看一区| 在线永久观看黄色视频| 黑人欧美特级aaaaaa片| 亚洲av日韩精品久久久久久密| 丁香六月欧美| 女生性感内裤真人,穿戴方法视频| 在线国产一区二区在线| 亚洲七黄色美女视频| 日韩精品中文字幕看吧| 又大又爽又粗| 国产午夜福利久久久久久| 成人av在线播放网站| 欧美+亚洲+日韩+国产| 亚洲免费av在线视频| 啦啦啦免费观看视频1| 国产区一区二久久| 欧美黑人精品巨大| 精品第一国产精品| 色综合站精品国产| 国产亚洲精品一区二区www| 久久精品国产亚洲av高清一级| 色老头精品视频在线观看| 免费搜索国产男女视频| 一二三四在线观看免费中文在| 亚洲精品久久国产高清桃花| 久久香蕉精品热| 久9热在线精品视频| 久久久久亚洲av毛片大全| 久久草成人影院| 亚洲欧美精品综合一区二区三区| 禁无遮挡网站| 波多野结衣高清无吗| 少妇的丰满在线观看| 国产高清激情床上av| 亚洲av成人精品一区久久| 亚洲中文av在线| netflix在线观看网站| 少妇裸体淫交视频免费看高清 | 深夜精品福利| 人人妻人人看人人澡| 琪琪午夜伦伦电影理论片6080| 国产精品久久久久久久电影 | 亚洲无线在线观看| 中文资源天堂在线| 国产精品 国内视频| 国产午夜福利久久久久久| 99久久国产精品久久久| 巨乳人妻的诱惑在线观看| 国产片内射在线| АⅤ资源中文在线天堂| 国产伦一二天堂av在线观看| 精品久久久久久久末码| 国产午夜福利久久久久久| 无人区码免费观看不卡| 亚洲国产看品久久| 九色国产91popny在线| av有码第一页| 欧美绝顶高潮抽搐喷水| 午夜免费激情av| 91字幕亚洲| 国产v大片淫在线免费观看| 国产欧美日韩一区二区三| 亚洲欧美日韩高清在线视频| 久久久精品欧美日韩精品| 成人国产综合亚洲| 后天国语完整版免费观看| 嫩草影视91久久| 亚洲人与动物交配视频| 色噜噜av男人的天堂激情| 日本一本二区三区精品| 一个人免费在线观看的高清视频| 亚洲色图av天堂| 后天国语完整版免费观看| av中文乱码字幕在线| 午夜成年电影在线免费观看| 十八禁网站免费在线| 日韩欧美在线乱码| 亚洲国产欧美一区二区综合| 麻豆久久精品国产亚洲av| 国产视频内射| 国产精品av视频在线免费观看| 国产精品一区二区免费欧美| 一个人免费在线观看的高清视频| 777久久人妻少妇嫩草av网站| 好男人在线观看高清免费视频| 亚洲精品一区av在线观看| 日本三级黄在线观看| 亚洲精品美女久久av网站| 搡老熟女国产l中国老女人| a级毛片在线看网站| 日韩欧美 国产精品| 成年女人毛片免费观看观看9| 一进一出好大好爽视频| 色综合婷婷激情| 99久久无色码亚洲精品果冻| 悠悠久久av| 少妇的丰满在线观看| 他把我摸到了高潮在线观看| 午夜日韩欧美国产| 久久精品91无色码中文字幕| 97碰自拍视频| 午夜福利成人在线免费观看| 天堂√8在线中文| 老司机深夜福利视频在线观看| 午夜免费激情av| 欧美又色又爽又黄视频| 黄色丝袜av网址大全| 19禁男女啪啪无遮挡网站| 特级一级黄色大片| 给我免费播放毛片高清在线观看| 国产av在哪里看| 亚洲精品国产一区二区精华液| 国产欧美日韩精品亚洲av| 无限看片的www在线观看| 男人的好看免费观看在线视频 | 特大巨黑吊av在线直播| 亚洲男人天堂网一区| 成人精品一区二区免费| 99国产精品一区二区蜜桃av| 身体一侧抽搐| 成年人黄色毛片网站| 亚洲成人精品中文字幕电影| 国产在线精品亚洲第一网站| 丝袜美腿诱惑在线| 免费无遮挡裸体视频| 99精品久久久久人妻精品| www日本黄色视频网| 亚洲av成人精品一区久久| 午夜亚洲福利在线播放| 999精品在线视频| 久久久国产成人精品二区| 宅男免费午夜| 91在线观看av| 高清毛片免费观看视频网站| 女人高潮潮喷娇喘18禁视频| 天堂影院成人在线观看| 丝袜美腿诱惑在线| 国产99白浆流出| 国产v大片淫在线免费观看| 一二三四社区在线视频社区8| 天天一区二区日本电影三级| 国产真实乱freesex| 国产一区在线观看成人免费| 日日爽夜夜爽网站| 一级片免费观看大全| 天天躁夜夜躁狠狠躁躁| 高清在线国产一区| 俄罗斯特黄特色一大片| 久久久久久免费高清国产稀缺| 欧美中文日本在线观看视频| 亚洲精品美女久久久久99蜜臀| 特级一级黄色大片| 国产欧美日韩一区二区精品| 男女下面进入的视频免费午夜| 看片在线看免费视频| 男女视频在线观看网站免费 | 美女扒开内裤让男人捅视频| av有码第一页| 日本成人三级电影网站| 狂野欧美白嫩少妇大欣赏| 丰满的人妻完整版| 香蕉久久夜色| 1024手机看黄色片| avwww免费| 午夜日韩欧美国产| 亚洲五月婷婷丁香| 精华霜和精华液先用哪个| 可以在线观看毛片的网站| 母亲3免费完整高清在线观看| 身体一侧抽搐| 法律面前人人平等表现在哪些方面| or卡值多少钱| 在线观看www视频免费| 狂野欧美激情性xxxx| 免费高清视频大片| 国产成+人综合+亚洲专区| 最近最新免费中文字幕在线| 我的老师免费观看完整版| 夜夜夜夜夜久久久久| avwww免费| 怎么达到女性高潮| 国产精品自产拍在线观看55亚洲| 欧美性长视频在线观看| 国产精品 国内视频| 久久久久久免费高清国产稀缺| 热99re8久久精品国产| 巨乳人妻的诱惑在线观看| 色尼玛亚洲综合影院| 日本精品一区二区三区蜜桃| 国产成人精品久久二区二区免费| 国产亚洲精品久久久久5区| 国产精品免费视频内射| 麻豆国产av国片精品| 欧美日本亚洲视频在线播放| 可以免费在线观看a视频的电影网站| 久久99热这里只有精品18| 一级毛片女人18水好多| av在线天堂中文字幕| 婷婷精品国产亚洲av| 国产欧美日韩一区二区精品| 最好的美女福利视频网| 欧洲精品卡2卡3卡4卡5卡区| 国产欧美日韩精品亚洲av| 国产亚洲精品一区二区www| 精品久久久久久久末码| 少妇粗大呻吟视频| 国产成人欧美在线观看| 国产精品av视频在线免费观看| 日韩大尺度精品在线看网址| 我要搜黄色片|