• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel two-stage extended Kalman filter algorithm for reaction flywheels fault estimation

    2016-11-23 08:05:38ChenXueqinSunRuiJingWnchengJiQingxinZhngJinxiu
    CHINESE JOURNAL OF AERONAUTICS 2016年2期

    Chen Xueqin,Sun Rui,Jing Wncheng,Ji Qingxin,Zhng Jinxiu

    aResearch Center of Satellite Technology,Harbin Institute of Technology,Harbin 150080,ChinabSchool of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China

    A novel two-stage extended Kalman filter algorithm for reaction flywheels fault estimation

    Chen Xueqina,*,Sun Ruia,Jiang Wanchenga,Jia Qingxianb,Zhang Jinxiua

    aResearch Center of Satellite Technology,Harbin Institute of Technology,Harbin 150080,ChinabSchool of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China

    Fault estimation;Reaction flywheels;Satellite attitude control systems;Separate-bias principle;Two-stage extended Kalman filter

    This paper investigates the problem of two-stage extended Kalman filter(TSEKF)-based fault estimation for reaction flywheels in satellite attitude control systems(ACSs).Firstly,based on the separate-bias principle,a satellite ACSs with actuator fault is transformed into an augmented nonlinear discrete stochastic model;then,a novel TSEKF is suggested such that it can simultaneously estimate satellite attitude information and actuator faults no matter they are additive or multiplicative;finally,the proposed approach is respectively applied to estimating bias faults and loss of effectiveness for reaction flywheels in satellite ACSs,and simulation results demonstrate the effectiveness of the proposed fault estimation approach.

    1.Introduction

    The separate-bias estimation algorithm is used to estimate the state and constant bias of linear systems.The basic principle of this algorithm,which is also called two-stage Kalman filter(TSKF),is to estimate system states and constant biases separately,then obtain the optimal estimate using the coupling relationship between them.In 1969,Friedland firstly proposed the separate-bias estimation algorithm1and made a further investigation.2,3During the past four decades,many research achievements have been reported on this algorithm.At present,the main research on this topic is concerned with estimation of constant/time-varying bias and all kinds of engineering applications.

    Recently,many scholars have paid considerable attention to separate-bias estimation algorithm for linear systems.4–6Keller and Darouach4suggested an optimal solution of the TSKF,which can be used to estimate optimal state and optimal random bias,and further a two-stage optimal strategy was developed for discrete-time stochastic linear systems subject to intermittent unknown inputs.5Khabbazi and Esfanjani6proposed a constrained TSKF for tracking control problem in an uncertain linear system and its main advantage is the improvement of estimation accuracy.

    For fault/bias estimation of nonlinear systems,much progress has been made on EKF-based approaches.EKF-based sub-optimal algorithm was proposed in Ref.7.Zhou et al.investigated a pseudo separate-bias estimation algorithm for nonlinear time-varying stochastic systems.8,9In Ref.10,fuzzyKalman filter-based approach was proposed for nonlinear stochastic discrete time systems.

    Based on the general TSKF,Hsieh11proposed a general two-stage extended Kalman filter(GTSEKF)-based constant parameter estimation approach.In Ref.12,an adaptive TSEKF like Ref.11was proposed to estimate the closed-loop position and speed of sensorless control for permanent magnet synchronous motor.Kim13proposed an adaptive TSEKF for INS-GPS loosely coupled systems and its main advantage was it cost less computation time due to the introduction of the forgetting factor.In Ref.14,an adaptive TSEKF algorithm based on Ref.13was introduced to the application of geomagnetic aided inertial navigation filtering.By introducing strong tracking multiple fading factors and embedding EKF into an optimal TSKF,a novel robust filter-based bearings-only maneuvering target tracking problem was investigated,which can provide an optimal estimation of the target state and the unknown statistical parameters of virtual noises.15

    The faults of actuators and sensors in control systems can be represented as biases via separate-bias estimation algorithm.Fault estimation for dynamic systems has attracted considerable attention during the past two decades.When estimating the additive actuator/sensor faults,the algorithm can be implemented easily since the biases representing faults in these models have specific physical meanings and the principles are clear.16When estimating the multiplicative faults in actuators,it is necessary to use other parameters to represent the fault models,such as control effectiveness factors,which can be used to indicate the fault degree of control systems.By introducing forgetting factors into the optimal TSKF in Ref.4,an adaptive TSKF was exploited to estimate the abrupt reduction of control effectiveness in dynamic systems by Wu et al.17This algorithm is applied for the identification of impairment in its control surfaces in an aircraft model.In Refs.18–22,a further investigation on this algorithm was made and widely applied it on fault diagnosis and fault-tolerant control.In Ref.23,control effectiveness factor estimation was extended to the estimation of control distribution matrix elements,and the TSKF was applied to actuator/surface fault diagnosis and fault-tolerant control of F-16.In recent years,this method has been applied to the fault diagnosis and fault-tolerant control of sensors and actuators in satellite attitude control system.16,24–26The value of the effectiveness factors can be derived via this method and system fault degree can be analyzed to obtain biases for the fault-tolerant control purpose.In addition,to the best of our knowledge,separatebias principle never considers additive faults and multiplicative faults simultaneously.

    In view of this,this paper investigates TSEKF-based fault estimation for reaction flywheels in satellites.A novel TSEKF is suggested such that it can simultaneously estimate satellite attitude information and reaction flywheel faults no matter they are additive or multiplicative.It is respectively applied to estimating bias faults and loss of effectiveness for reaction flywheels in a satellite ACSs,and the simulation results demonstrate the effectiveness of the proposed fault estimation approach.

    2.System fault model

    Consider the following nonlinear discrete-time stochastic system with bias vector of unknown magnitude bk∈Rp:

    where xk∈Rnis the system state;yk∈Rmis the measurement vector;the noise sequence wbk,wxkand vkare zero-mean uncorrelated Gaussian random sequences with

    where Ak∈Rn×nand Ck∈Rm×nare state transition matrix and observation matrix,respectively,and we have

    where xk|kand bk|kdenote the optimal results of xkand bkrespectively.

    The vector function ω =[ωx, ωy, ωz]Trepresents the inertially referenced satellite angular rate vector of the satellite body relative to the inertial coordinate system and the corresponding Euler angles are φ, θ and ψ. Define x=[ωx, ωy, ωz, φ, θ, ψ]T,the state equation of satellite attitude control system based on the satellite attitude dynamics equation can be given as

    u(x)∈ Rlis the known control input vector;B ∈ Rn×lis the control input matrix;Isis the moment of inertial matrix of the satellite.

    Observation equation is

    where C=I6is the output matrix,and Inis ann×nidentity matrix.

    Discretize the combination of Eqs.(6)and(8),then the system model without fault is established like Eq.(1).

    (1)Additive fault model

    The bias bkrepresents additive faults of actuators,and the system model with additive faults of actuators can be described as

    where gk,Bk,ukand Ckare the corresponding discrete system matrices of Eqs.(6)and(8),the corresponding matrix of Eq.(1)is

    (2)Multiplicative fault model

    Here,bkrepresents the degree of the multiplicative faults of actuators,and the bias Λkukrepresents the multiplicative faults of actuators,in which diagonal matrix Λk=diag(bk).The system model with multiplicative faults of actuators can be described as

    the corresponding matrix of Eq.(1)is

    In Eq.(11),the vector function bkis also called the control effectiveness factors,representing the possible loss of control effectiveness in the model,21–23whose value is 0 in the absence of multiplicative faults.

    The objective of this paper is to design a TSEKF such that it can estimate actuator faults no matter they are additive or multiplicative.That is,it can give a solution for system Eq.(1)with the unknown bias and system states,a solution for additive fault system Eq.(9)with additive faults and system states,and also a solution for multiplicative fault system Eq.(11)with multiplicative faults and system states.

    3.TSEKF-based actuator fault estimation approach

    In this section,a novel TSEKF is designed to simultaneously estimate satellite attitude information and actuator faults.

    Theorem 1.A discrete-time TSEKF is given by the following coupled difference equations when the nonlinear discrete-time stochastic system with bias vector of unknown magnitude is given by Eq.(1).

    The unknown bias-free filter is

    The unknown bias filter is

    with the coupling equations

    To facilitate the derivations,the following notations are used:

    then the model Eq.(1)could be written as

    A common approach to estimate the system state of system Eq.(31)is using the following well-known KF:

    The one-step prediction value Xk+1|kis then transformed to promote the one-step prediction variance into a diagonal matrix.The orthogonal transformation matrix is chosen as

    Define new variables

    Then from Eqs.(38)and(41),we can get Eq.(29).Eq.(21)can be derived from Eq.(34)directly.From Eqs.(34)–(36)and Eq.(4),we have

    According to the rule of finding the inverse of partitioned matrix and Eq.(37),we can get

    Then it can be changed to Eq.(14),and in Eq.(45),we have

    From Eqs.(44)and(46),we can get Eq.(17).Eq.(27)can be derived from Eq.(47)directly.

    From Eqs.(43)and(45),Eq.(35)can be changed to

    Then Eq.(26)can be obtained from Eq.(51).

    Defining

    Substituting Eq.(51)into Eq.(50),we have

    Then Eq.(22)is obtained from Eqs.(54)and(23).Eq.(15)can be derived from Eq.(32)directly.From Eqs.(15)and(47),Eq.(55)can be simplified into Eq.(13).

    From Eq.(48),we have

    Eq.(25)can be derived from Eq.(29)directly.Eq.(24)is obtained by substituting Eq.(56)into Eq.(51).Eq.(42)is obtained by substituting Eq.(4)into Eq.(18).

    Remarks.

    (1)The TSEKF,which is given by Eqs.(13)–(29),is equivalent to the TSKF whenMk=0andNk=0in Eq.(5).

    (2)System states and bias of Eq.(1)can be estimated based on Theorem 1.

    (3)System states and additive faults of Eq.(9)can be estimated based on Theorem 1.

    (4)System states and multiplicative faults of Eq.(11)can be estimated based on Theorem 1.

    (5)The basic idea of this theorem is TSKF,so the TSEKF has the same advantages of low computational cost and high estimation precision as TSKF.

    (6)The TSEKF processes the nonlinear terms in system model Eq.(1)with the same way of EKF.This way can motivate the generalization of the linear TSKF to nonlinear systems.

    4.Fault simulation on closed-loop satellite attitude control systems

    Actuators in closed-loop ACSs are three reaction flywheels.Sensors in closed-loop ACSs are three gyros and two star sensors.Without loss of generality,we assume that the fault happens in the reaction flywheel alongxaxis.

    Here,we consider two simulation backgrounds:attitude stabilization control and attitude tracking control.The former is considered for additive faults estimation.The latter is mainly considered for multiplicative fault estimation.To estimate multiplicative fault for reaction flywheels,satellite ACSs must satisfy the persistent excitation condition.In other words,reaction flywheels should be activated to ensure satellite attitude maneuver or tracking.

    4.1.Faults conditions and simulation parameters

    The conditions of the additive faults and the multiplicative faults are given as follows.

    Condition 1.The first fault b1=[0.005, 0, 0]TN ·m exists during the time interval 200 s≤t1<400 s,and the second fault b2=[0.010, 0, 0]TN·m exists during the time interval 400 s≤t2<600 s.

    Condition 2.The control effectiveness factors of the first fault b1=[0.3, 0, 0]Texist during the time interval 200≤t1<400 s,and the control effectiveness factors of the second fault b2=[0.5, 0, 0]Texist during the time interval 400≤t2<600 s.

    The conditions of the simulation and initial values are chosen as follows.

    (1)Themaximum outputtorqueoftheflywheelsis 0.15 N·m and the maximum angular momentum is 15 N ·m ·s.

    (2)The moment of inertial of the satellite is Is=diag(200,100,300)kg˙s m2.

    (3)The PD controller is chosen with its gains:u=-[KP, KD](x-xd),with KD=[36 18 54]Tand KP=[2 1 3]T.

    (4)For attitude stabilization control,xd=06×1.

    (6)The initial state is x0=06×1.

    (7)The initial transfer matrix is P0=I6.

    (8)The process noise covariance matrix is W=diag(σ2ωI3,σ2ΦI3),where σω=2 × 10-4rad/s, σΦ=5×10-5rad.

    (9)The measurement noise covariance matrix is V=0.0012I6.

    (10)The sampling periodkis 0.01 s.

    4.2.Simulation results

    (1)Fault estimation under attitude stabilization control.

    The TSEKF algorithm proposed in this paper is applied for fault estimation of attitude stabilization under Condition 1.The simulation results are shown in Fig.1.

    For attitude stabilization control,the fault estimation results using TSEKF algorithm and TSKF algorithm are the same:0.005 N ·m and 0.010 N ·m.

    The estimation results of multiplicative faults cannot be obtained under the same attitude stabilization control background under Condition 2.That is,the precondition of estimating the multiplicative faults of actuators is that the control torque output of actuators must not be approximately equal to zeroes.So,we have to estimate the multiplicative faults of actuators under attitude tracking control with a persistent excitation.

    (2)Fault estimation under attitude tracking control.

    The system model of attitude tracking control is nonlinear,which makes the normal TSKF useless.The TSEKF algorithm proposed in this paper is applied to fault estimation of attitude maneuver under Condition 1 and Condition 2.The simulation results are shown in Figs.2 and 3.

    For attitude tracking control,the fault estimation results usingTSEKFalgorithmare0.005 N ·mand0.010 N ·m.When the fault occurs,the trough and peak of the attitude angle curve are-58.942°and 59.372°respectively,while the trough and peakoftheattitudeanglecurveare-59.085°and59.085°respectivelywithoutfaults.Thatis,after thefirstfaultoccurs,abiasof-0.143°isaddedtotheattitudeangle,andafterthesecondfault occurs,a bias of-0.287°is added to the attitude angle.

    For attitude tracking control,the estimation results of control effectiveness factors using TSEKF are 0.3 and 0.5 respectively,and the MSE is 7.8×10-4.

    According to the simulation results,there is no obvious difference between the TSEKF and the TSKF in fault estimation of linear system(such as attitude stabilization control).While in fault estimation of nonlinear system(such as attitude tracking control),in which the TSKF cannot be applied,we can get good performances on the basis of TSEKF.

    Fig.1 Simulation results of attitude stabilization under Condition 1.

    Fig.2 Simulation results of attitude tracking control under Condition 1.

    Fig.3 Simulation results of attitude tracking control under Condition 2.

    5.Conclusions

    This paper has investigated the problem of two-stage extended Kalman filter-based reaction flywheel fault estimation.

    (1)Based on the separate-bias principle,motivated by the optimal TSKF and EKF,employed EKF to process nonlinear terms in nonlinear system model,a novel TSEKF algorithm is designed such that it cannot only estimate satellite attitude angular rates and Euler angles,but also estimate reaction flywheel faults no matter they are bias ones or loss of effectiveness.

    (2)It is respectively applied to estimating bias faults and loss of effectiveness for reaction flywheels in a satellite ACSs.Simulation results validate the feasibility and effectiveness in the cases of both attitude stabilization and attitude tracking control.

    1.Friedland B.Treatment of bias in recursive filtering.IEEE Trans Autom Control1969;14(4):359–67.

    2.Friedland B.Recursive filtering in the presence of biases with irreducible uncertainty.IEEE Trans Autom Control1976;21(5):789–90.

    3.Friedland B.Notes on separate-bias estimation.IEEE Trans Autom Control1978;23(4):735–8.

    4.Keller JY,Darouach M.Optimal two-stage Kalman filter in the presence random bias.Automatica1997;33(9):1745–8.

    5.Keller JY,Sauter D.Kalman filter for discrete-time stochastic linear systems subject to intermittent unknown inputs.IEEE Trans Autom Control2013;58(7):1882–7.

    6.Khabbazi MR,Esfanjani RM.Constrained two-stage Kalman if lter for target tracking.In:Proceedings of the 4th international conference on computer and knowledge engineering(ICCKE);2014 Oct 29–30;Mashhad.Piscataway(NJ):IEEE Press;2014.p.393–7.

    7.Caglayan AK.A separated bias identification and state estimation algorithm for nonlinear systems.Automatica1983;19(5):561–70.

    8.Zhou DH,Sun YX,Xi YG,Zhang ZJ.A pseudo separate-bias estimation algorithm for input and output bias of a class of nonlinear systems.Control Decis1992;7(3):217–20[Chinese].

    9.Zhou DH,Sun YX,Zhang ZJ.Extension of Friedland’s separatebias estimation to randomly time-varying bias of nonlinear systems.IEEE Trans Autom Control1993;38(8):1270–3.

    10.Talel B,Ben Hmida F.Fuzzy Kalman filter for nonlinear stochastic systems.In:Proceedings of 2013 10th international multi-conference on systems,signals&devices(SSD);2013 Mar 18– 21;Hammamet.Piscataway(NJ):IEEE Press;2013.p.1–7.

    11.Hsieh CS.General two-stage extended Kalman filters.IEEE Trans Autom Control2003;48(2):289–93.

    12.Yi B,Kang L,Tao S,Zhao X,Jing Z.Adaptive two-stage extended Kalman filter theory in application of sensorless control for permanent magnet synchronous motor.Math Prob Eng2013;2013,974974-1-13.

    13.Kim KH,Lee JG,Chan GP.Adaptive two-stage extended Kalman filter for a fault-tolerant INS-GPS loosely coupled system.IEEE Trans Aerosp Electron Syst2009;45(1):125–37.

    14.Liu M,Wang HJ,Guo QY,Feng JX.Application of the adaptive two-stage EKF algorithm in geomagnetic aided inertial navigation.In:Proceedings of the 2nd international conference on intelligent control and information processing(ICICIP);2011 Jul 25– 28;Harbin.Piscataway(NJ):IEEE Press;2011.p.697–701.

    15.Yang J,Ji H.A novel robust two-stage extended Kalman filter for bearings-only maneuvering target tracking.Int J Phys Sci2011;6(5):987–91.

    16.Li DB,Chen XQ,Li CL.Fault diagnosis of satellite actuator based on bias-separated theory.Syst Eng Electron2015;37(3):606–12[Chinese].

    17.Wu NE,Zhang YM,Zhou KM.Control effectiveness estimation using an adaptive Kalman estimator.In:Proceedings of the IEEE international symposium on computational intelligence in robotics and atutomation;1998 Sep 14–17;Gaithersburg(MD).Piscataway(NJ):IEEE Press;1998.p.181–6.

    18.Wu NE,Zhang YM,Zhou KM.Detection,estimation,and accommodation of loss of control effectiveness.Int J Adapt Control Signal Processs2000;14(7):775–95.

    19.Zhang YM,Zhang HC,Dai GZ.A new bias partitioned squareroot information filter and smoother for aircraft state and parameter estimation.In:Proceedings of the 31st IEEE conference on decision and control;1992 Dec 16–18;Tucson(AZ).Piscataway(NJ):IEEE Press;1992.p.741–2.

    20.Yu X,Jiang J.Hybrid fault-tolerant flight control system design against partial actuator failures.IEEE Trans Control Syst Technol2012;20(4):871–86.

    21.Zhang YM,Jiang J.Integrated design of reconfiguration faulttolerant control systems.J Guid Control Dyn2000;1(24):133–6.

    22.Fan JF,Zhang YM,Zheng ZQ.Robust fault-tolerant control against time-varying actuator faults and saturation.IET Control Theory Appl2012;6(14):2198–208.

    23.Hajiyev C.Two-stage Kalman filter-based actuator/surface fault identification and reconfigurable control applied to F-16 fighter dynamics.Int J Adapt Control Signal Process2013;27(9):755–70.

    24.Chen XQ,Ma YH,Wang F,Geng Y.Research on improved integrated FDD/FTC with effectiveness factors.J Syst Eng Electron2012;23(5):768–74.

    25.Chen XQ,Zhang YC,Geng YH,Li HY.Satellite attitude control system on-orbit reconfigurable fault-tolerant control based on the control effectiveness factor.J Astronaut2007;28(1):94–8[Chinese].

    26.Chen XQ,Wang F,Zhang YC,Geng Y.Application of effectiveness factors to integrated FDD and FTC of satellite attitude control systems.Acta Aeronaut Astronaut Sin2009;30(3):476–83[Chinese].

    8 July 2015;revised 27 November 2015;accepted 15 December 2015

    Available online 23 February 2016

    ?2016 Chinese Society of Aeronautics and Astronautics.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 451 86402357.

    E-mail address:cxqhit@163.com(X.Chen).

    Peer review under responsibility of Editorial Committee of CJA.

    Chen Xueqinreceived her B.S.degree in Automation,M.S.degree in Spacecraft Design and Ph.D degree in Control Science&Engineering from Harbin Institute of Technology in 2003,2005 and 2008,respectively,and now she is an associate professor there.Her main research interests are fault diagnosis and fault-tolerant control.

    Zhang Jinxiureceived his B.S.and M.S.degree in Spacecraft Design and Ph.D degree in Aerospace Science and Technology from Harbin Institute of Technology in 2001,2003 and 2006,respectively.He worked from 2008 to 2013 as an associate professor there.From 2014 to 2015,he visited in école polytechnique fédérale de Lausanne(EPFL)Swiss Space Center.Now he is a professor of Harbin Institute of Technology from 2013.His main research interests are dynamics and control of formation flying or satellite swarm.

    欧美日本亚洲视频在线播放| 99精品久久久久人妻精品| 丁香欧美五月| 美国免费a级毛片| 性欧美人与动物交配| 精品免费久久久久久久清纯| 午夜福利欧美成人| 亚洲专区中文字幕在线| 麻豆一二三区av精品| 日本一区二区免费在线视频| 天天添夜夜摸| 免费看a级黄色片| 国产精品亚洲美女久久久| 免费看日本二区| 欧美黑人巨大hd| 亚洲av美国av| 久久精品人妻少妇| 久久国产亚洲av麻豆专区| 精品卡一卡二卡四卡免费| 可以在线观看毛片的网站| 别揉我奶头~嗯~啊~动态视频| 国产三级黄色录像| 久久久国产欧美日韩av| 激情在线观看视频在线高清| 日韩欧美国产在线观看| 国产av又大| 天天添夜夜摸| 日韩欧美一区视频在线观看| 亚洲熟女毛片儿| 看片在线看免费视频| 国产成人欧美在线观看| 日本 欧美在线| 波多野结衣高清作品| 99国产极品粉嫩在线观看| 欧美不卡视频在线免费观看 | 国产97色在线日韩免费| 免费人成视频x8x8入口观看| 亚洲精品色激情综合| 午夜福利在线在线| 美女国产高潮福利片在线看| 精品第一国产精品| 女警被强在线播放| 最近最新中文字幕大全免费视频| 亚洲第一青青草原| 久久精品人妻少妇| 国产黄片美女视频| 亚洲 欧美一区二区三区| 在线av久久热| 国产成人影院久久av| 视频区欧美日本亚洲| 99re在线观看精品视频| 亚洲一区二区三区色噜噜| 国产精品亚洲美女久久久| 亚洲天堂国产精品一区在线| 操出白浆在线播放| 亚洲国产精品成人综合色| 亚洲久久久国产精品| 精品久久久久久,| 亚洲 欧美 日韩 在线 免费| 亚洲国产欧美网| 欧洲精品卡2卡3卡4卡5卡区| 麻豆国产av国片精品| 制服丝袜大香蕉在线| 91麻豆精品激情在线观看国产| 婷婷精品国产亚洲av在线| 又紧又爽又黄一区二区| 黄色毛片三级朝国网站| 人妻久久中文字幕网| 久久午夜亚洲精品久久| 国产精品av久久久久免费| 亚洲激情在线av| av天堂在线播放| 亚洲中文字幕日韩| 在线观看舔阴道视频| xxx96com| 国产精品亚洲av一区麻豆| 给我免费播放毛片高清在线观看| 国产精品自产拍在线观看55亚洲| 免费av毛片视频| 亚洲真实伦在线观看| 亚洲人成网站在线播放欧美日韩| 黑人操中国人逼视频| 国产精品一区二区免费欧美| 亚洲一区高清亚洲精品| 男人操女人黄网站| 久久精品国产亚洲av高清一级| 久久久水蜜桃国产精品网| 男人舔女人下体高潮全视频| 97碰自拍视频| 欧美成人午夜精品| 无限看片的www在线观看| 91老司机精品| netflix在线观看网站| 中文字幕精品亚洲无线码一区 | 国产精品av久久久久免费| 99久久久亚洲精品蜜臀av| 午夜激情av网站| 9191精品国产免费久久| 国产aⅴ精品一区二区三区波| 欧美丝袜亚洲另类 | 免费在线观看成人毛片| 日本在线视频免费播放| 国产人伦9x9x在线观看| x7x7x7水蜜桃| 亚洲五月婷婷丁香| 亚洲一码二码三码区别大吗| 亚洲av电影在线进入| 亚洲国产欧洲综合997久久, | 久久精品国产99精品国产亚洲性色| 精品欧美国产一区二区三| 啪啪无遮挡十八禁网站| 亚洲狠狠婷婷综合久久图片| 亚洲成人国产一区在线观看| 亚洲自拍偷在线| 国产高清视频在线播放一区| 一边摸一边做爽爽视频免费| www日本在线高清视频| 9191精品国产免费久久| 一级毛片女人18水好多| 久久伊人香网站| 在线av久久热| 久久这里只有精品19| 香蕉国产在线看| 久久久久九九精品影院| a级毛片在线看网站| 中文字幕另类日韩欧美亚洲嫩草| 国产三级黄色录像| www.999成人在线观看| 国产欧美日韩一区二区三| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲国产精品合色在线| 一本大道久久a久久精品| 午夜日韩欧美国产| 免费一级毛片在线播放高清视频| 高潮久久久久久久久久久不卡| 亚洲天堂国产精品一区在线| 色尼玛亚洲综合影院| 成熟少妇高潮喷水视频| 久久久久国产一级毛片高清牌| 国内精品久久久久久久电影| 三级毛片av免费| 99久久国产精品久久久| 亚洲成人久久爱视频| 中文字幕人妻熟女乱码| 国产熟女午夜一区二区三区| 亚洲色图 男人天堂 中文字幕| 91国产中文字幕| 久久九九热精品免费| 高清在线国产一区| 欧美绝顶高潮抽搐喷水| 男女下面进入的视频免费午夜 | 色精品久久人妻99蜜桃| 色av中文字幕| 超碰成人久久| 日韩精品免费视频一区二区三区| 日本免费a在线| e午夜精品久久久久久久| 国产精品野战在线观看| 妹子高潮喷水视频| 久久天堂一区二区三区四区| a级毛片在线看网站| 精品久久久久久成人av| 女性被躁到高潮视频| 久久精品91蜜桃| 久久狼人影院| 久久中文字幕人妻熟女| 亚洲人成电影免费在线| 观看免费一级毛片| 99国产精品一区二区三区| 国产一区二区三区视频了| 99热只有精品国产| 国产一区二区激情短视频| 好男人在线观看高清免费视频 | 一区二区日韩欧美中文字幕| 女性生殖器流出的白浆| 亚洲中文字幕日韩| 99精品欧美一区二区三区四区| 别揉我奶头~嗯~啊~动态视频| 国产99久久九九免费精品| 神马国产精品三级电影在线观看 | 午夜免费观看网址| 亚洲成av人片免费观看| 精品熟女少妇八av免费久了| 久久久久久久久免费视频了| 日本黄色视频三级网站网址| 亚洲,欧美精品.| 国产精品久久视频播放| 国产片内射在线| 妹子高潮喷水视频| 久99久视频精品免费| 一进一出抽搐动态| 日日爽夜夜爽网站| 悠悠久久av| 一a级毛片在线观看| 亚洲一码二码三码区别大吗| 国产亚洲欧美98| 99久久99久久久精品蜜桃| 欧美一区二区精品小视频在线| 精品乱码久久久久久99久播| 亚洲国产欧美一区二区综合| 久久久国产成人精品二区| 黑人操中国人逼视频| 亚洲真实伦在线观看| or卡值多少钱| 99精品久久久久人妻精品| 怎么达到女性高潮| 12—13女人毛片做爰片一| 黄片小视频在线播放| 色精品久久人妻99蜜桃| 精品久久久久久成人av| 日韩精品中文字幕看吧| 精品国产一区二区三区四区第35| 国产成人精品久久二区二区91| 男女那种视频在线观看| 美女午夜性视频免费| 麻豆国产av国片精品| 欧美性长视频在线观看| 亚洲第一青青草原| 中出人妻视频一区二区| 国产99白浆流出| 香蕉丝袜av| 亚洲天堂国产精品一区在线| 搡老岳熟女国产| 后天国语完整版免费观看| 亚洲专区字幕在线| www.999成人在线观看| 老司机午夜福利在线观看视频| 色哟哟哟哟哟哟| 搡老妇女老女人老熟妇| 热re99久久国产66热| 国产欧美日韩一区二区三| 免费在线观看亚洲国产| 亚洲中文字幕一区二区三区有码在线看 | www日本黄色视频网| 国产精品二区激情视频| 欧美成狂野欧美在线观看| 日本在线视频免费播放| 欧美日韩精品网址| 男人舔女人下体高潮全视频| 欧美在线一区亚洲| 老司机福利观看| www日本在线高清视频| 国产免费av片在线观看野外av| 搡老妇女老女人老熟妇| www国产在线视频色| 岛国在线观看网站| 欧美又色又爽又黄视频| a级毛片a级免费在线| 中文字幕人妻熟女乱码| 人妻丰满熟妇av一区二区三区| 美国免费a级毛片| www.自偷自拍.com| 极品教师在线免费播放| 久久久精品国产亚洲av高清涩受| 久久人妻av系列| 亚洲av五月六月丁香网| 欧美黑人欧美精品刺激| 欧美日韩一级在线毛片| 久久久久久久久免费视频了| 国产精品亚洲美女久久久| 日韩 欧美 亚洲 中文字幕| 午夜福利在线观看吧| 欧美久久黑人一区二区| 国产精品一区二区精品视频观看| 国产精品香港三级国产av潘金莲| 国产高清有码在线观看视频 | 波多野结衣高清作品| 母亲3免费完整高清在线观看| 色综合欧美亚洲国产小说| 中文字幕精品免费在线观看视频| 中文字幕人成人乱码亚洲影| 免费人成视频x8x8入口观看| 成人18禁高潮啪啪吃奶动态图| 国产精品1区2区在线观看.| 亚洲精品久久成人aⅴ小说| 大型av网站在线播放| 免费看日本二区| 欧美性长视频在线观看| 美女大奶头视频| 国内毛片毛片毛片毛片毛片| 日本撒尿小便嘘嘘汇集6| 成人三级做爰电影| 亚洲欧美日韩高清在线视频| 亚洲三区欧美一区| 亚洲av成人av| 在线观看日韩欧美| 丁香六月欧美| 亚洲美女黄片视频| 亚洲第一青青草原| 好男人在线观看高清免费视频 | 亚洲av美国av| 给我免费播放毛片高清在线观看| 欧美大码av| 成人国产综合亚洲| 最好的美女福利视频网| 国产亚洲精品久久久久5区| 欧美国产日韩亚洲一区| 999久久久精品免费观看国产| 亚洲成av片中文字幕在线观看| 久9热在线精品视频| 国产又黄又爽又无遮挡在线| 国产高清视频在线播放一区| 成人亚洲精品一区在线观看| 狂野欧美激情性xxxx| 国产黄片美女视频| 国产精品,欧美在线| 后天国语完整版免费观看| 日韩大尺度精品在线看网址| 最好的美女福利视频网| 黄频高清免费视频| 久久午夜综合久久蜜桃| 欧美一区二区精品小视频在线| 88av欧美| 亚洲免费av在线视频| 国产乱人伦免费视频| 久热这里只有精品99| 满18在线观看网站| 两人在一起打扑克的视频| 国产亚洲精品av在线| 国产人伦9x9x在线观看| 欧美三级亚洲精品| 亚洲国产欧洲综合997久久, | 中文字幕av电影在线播放| 人人妻,人人澡人人爽秒播| 亚洲七黄色美女视频| 日本在线视频免费播放| 亚洲电影在线观看av| 精品久久久久久久毛片微露脸| e午夜精品久久久久久久| 免费在线观看视频国产中文字幕亚洲| 精品人妻1区二区| 亚洲黑人精品在线| 国产激情久久老熟女| 熟妇人妻久久中文字幕3abv| 国产主播在线观看一区二区| 午夜精品久久久久久毛片777| 精品高清国产在线一区| 免费在线观看影片大全网站| 欧美性猛交黑人性爽| 国产日本99.免费观看| 美女国产高潮福利片在线看| 国产精品久久久人人做人人爽| 十八禁人妻一区二区| 黑人欧美特级aaaaaa片| 天天躁夜夜躁狠狠躁躁| 精品免费久久久久久久清纯| 日本在线视频免费播放| 精品一区二区三区视频在线观看免费| 在线永久观看黄色视频| 国产精品 国内视频| 亚洲国产中文字幕在线视频| 亚洲精品在线美女| 亚洲中文av在线| 国产精品美女特级片免费视频播放器 | 白带黄色成豆腐渣| 在线视频色国产色| 老鸭窝网址在线观看| 精品一区二区三区av网在线观看| 国产一级毛片七仙女欲春2 | 精品高清国产在线一区| 香蕉av资源在线| 成年免费大片在线观看| 黑人巨大精品欧美一区二区mp4| 国产一区二区在线av高清观看| 精品久久蜜臀av无| 国产99白浆流出| 满18在线观看网站| 色综合婷婷激情| 婷婷六月久久综合丁香| 高清毛片免费观看视频网站| 亚洲午夜理论影院| 男女床上黄色一级片免费看| 97超级碰碰碰精品色视频在线观看| 黄网站色视频无遮挡免费观看| 免费女性裸体啪啪无遮挡网站| 精品久久久久久久久久久久久 | 精品国产美女av久久久久小说| 最近在线观看免费完整版| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品久久成人aⅴ小说| 欧美日韩一级在线毛片| 亚洲午夜精品一区,二区,三区| 国产一区二区激情短视频| 国内久久婷婷六月综合欲色啪| 色哟哟哟哟哟哟| 欧美+亚洲+日韩+国产| 国产精品久久久人人做人人爽| 久久草成人影院| 国内少妇人妻偷人精品xxx网站 | 婷婷亚洲欧美| av有码第一页| 美女扒开内裤让男人捅视频| 国产爱豆传媒在线观看 | 成在线人永久免费视频| 亚洲欧洲精品一区二区精品久久久| 亚洲av成人不卡在线观看播放网| 夜夜爽天天搞| 国产亚洲精品综合一区在线观看 | 亚洲狠狠婷婷综合久久图片| 高清在线国产一区| 88av欧美| 看片在线看免费视频| 淫秽高清视频在线观看| 超碰成人久久| 啪啪无遮挡十八禁网站| 久久精品91蜜桃| 99在线视频只有这里精品首页| 老熟妇仑乱视频hdxx| 非洲黑人性xxxx精品又粗又长| 欧美又色又爽又黄视频| 亚洲第一欧美日韩一区二区三区| 一区福利在线观看| 国产精品永久免费网站| 一进一出好大好爽视频| 亚洲人成网站高清观看| 亚洲av日韩精品久久久久久密| 亚洲中文日韩欧美视频| 免费女性裸体啪啪无遮挡网站| 又黄又爽又免费观看的视频| 久久精品91无色码中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 18禁国产床啪视频网站| 黄片播放在线免费| 女性生殖器流出的白浆| 日韩国内少妇激情av| 日韩av在线大香蕉| 国产精品一区二区精品视频观看| 成人手机av| 天天躁夜夜躁狠狠躁躁| 国产单亲对白刺激| 免费av毛片视频| 精品一区二区三区av网在线观看| 久久久国产精品麻豆| 无限看片的www在线观看| 久久久久久久精品吃奶| 国产午夜福利久久久久久| 别揉我奶头~嗯~啊~动态视频| 男人舔奶头视频| 老司机午夜福利在线观看视频| 久久精品夜夜夜夜夜久久蜜豆 | 成人精品一区二区免费| 免费观看人在逋| 老熟妇乱子伦视频在线观看| 一区二区三区精品91| 少妇粗大呻吟视频| 国产私拍福利视频在线观看| 亚洲欧洲精品一区二区精品久久久| 美女高潮喷水抽搐中文字幕| 亚洲国产欧美网| 性色av乱码一区二区三区2| 婷婷亚洲欧美| 一区二区三区精品91| 老熟妇仑乱视频hdxx| 欧美色欧美亚洲另类二区| www日本黄色视频网| 亚洲天堂国产精品一区在线| 美女高潮到喷水免费观看| 久久九九热精品免费| 亚洲全国av大片| 国产精品亚洲av一区麻豆| 亚洲精品久久成人aⅴ小说| 国产精品亚洲av一区麻豆| 亚洲精品在线观看二区| 97超级碰碰碰精品色视频在线观看| 无遮挡黄片免费观看| 老司机午夜十八禁免费视频| 国产亚洲av高清不卡| 在线观看日韩欧美| 亚洲国产精品sss在线观看| 在线播放国产精品三级| 黄色视频不卡| 欧美 亚洲 国产 日韩一| 亚洲精品久久国产高清桃花| 亚洲 国产 在线| 成年女人毛片免费观看观看9| 久久精品aⅴ一区二区三区四区| 久久久久久久久免费视频了| 天天添夜夜摸| 黄色成人免费大全| 亚洲色图 男人天堂 中文字幕| 波多野结衣高清无吗| 校园春色视频在线观看| 深夜精品福利| 一本综合久久免费| 丝袜人妻中文字幕| www.自偷自拍.com| 美女扒开内裤让男人捅视频| 精品国产一区二区三区四区第35| 久久精品国产99精品国产亚洲性色| 午夜福利18| 91麻豆精品激情在线观看国产| 男女视频在线观看网站免费 | 久久国产精品人妻蜜桃| 午夜福利一区二区在线看| 午夜久久久在线观看| 亚洲国产精品sss在线观看| 午夜老司机福利片| 欧美+亚洲+日韩+国产| 国产极品粉嫩免费观看在线| 动漫黄色视频在线观看| 久久性视频一级片| 国产亚洲精品久久久久久毛片| 亚洲国产欧美一区二区综合| 熟女电影av网| 无人区码免费观看不卡| 亚洲片人在线观看| 国产99久久九九免费精品| 精品免费久久久久久久清纯| 国产午夜福利久久久久久| 国产区一区二久久| 亚洲成人国产一区在线观看| 好看av亚洲va欧美ⅴa在| 亚洲精品久久国产高清桃花| 亚洲精品在线观看二区| 欧美国产日韩亚洲一区| a级毛片a级免费在线| 国产黄片美女视频| 国产成人av教育| 亚洲精品久久成人aⅴ小说| 国产激情欧美一区二区| 性色av乱码一区二区三区2| 国产亚洲av高清不卡| 热99re8久久精品国产| 国产真人三级小视频在线观看| 人人澡人人妻人| 国内毛片毛片毛片毛片毛片| 在线观看www视频免费| 成年免费大片在线观看| 18禁国产床啪视频网站| 女人爽到高潮嗷嗷叫在线视频| 日本 欧美在线| 亚洲专区中文字幕在线| www.精华液| 成人免费观看视频高清| 亚洲精品一卡2卡三卡4卡5卡| 黄色片一级片一级黄色片| 国内揄拍国产精品人妻在线 | 国产欧美日韩一区二区三| 亚洲av成人一区二区三| 在线观看午夜福利视频| 人人妻,人人澡人人爽秒播| 亚洲欧洲精品一区二区精品久久久| 久久久久久大精品| 一级黄色大片毛片| 夜夜夜夜夜久久久久| 宅男免费午夜| 熟妇人妻久久中文字幕3abv| 制服诱惑二区| 巨乳人妻的诱惑在线观看| 啦啦啦韩国在线观看视频| 国产高清有码在线观看视频 | av天堂在线播放| 制服人妻中文乱码| 免费看美女性在线毛片视频| 亚洲一区二区三区色噜噜| 精品欧美一区二区三区在线| 亚洲精品美女久久av网站| 手机成人av网站| 国产麻豆成人av免费视频| 丰满的人妻完整版| 黑人操中国人逼视频| 丝袜人妻中文字幕| 亚洲欧美日韩无卡精品| 中文字幕久久专区| 母亲3免费完整高清在线观看| 神马国产精品三级电影在线观看 | 久久香蕉精品热| av片东京热男人的天堂| 亚洲,欧美精品.| 国产成+人综合+亚洲专区| 1024手机看黄色片| 久久精品夜夜夜夜夜久久蜜豆 | 搞女人的毛片| 国产真实乱freesex| 亚洲精品久久成人aⅴ小说| 精品卡一卡二卡四卡免费| 十八禁人妻一区二区| 97人妻精品一区二区三区麻豆 | 黄色女人牲交| 在线观看舔阴道视频| 欧美乱妇无乱码| 亚洲国产看品久久| 波多野结衣巨乳人妻| 最近最新免费中文字幕在线| 久久久久亚洲av毛片大全| 中文在线观看免费www的网站 | 在线av久久热| 国产欧美日韩精品亚洲av| 午夜激情av网站| 国产视频内射| АⅤ资源中文在线天堂| 色老头精品视频在线观看| 精品无人区乱码1区二区| 日韩欧美三级三区| 色老头精品视频在线观看| 久久久国产成人免费| 亚洲精品久久成人aⅴ小说| 亚洲中文日韩欧美视频| 亚洲五月婷婷丁香| 一a级毛片在线观看| 亚洲在线自拍视频| 欧美性猛交黑人性爽| 亚洲av成人一区二区三| 在线观看免费视频日本深夜| 麻豆av在线久日| 国产高清视频在线播放一区| 精品久久蜜臀av无| 香蕉av资源在线| 国产精品一区二区免费欧美| 男女床上黄色一级片免费看| 一区二区三区国产精品乱码| 久久香蕉国产精品| 欧美乱码精品一区二区三区| 欧美日韩乱码在线| 侵犯人妻中文字幕一二三四区|