• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Containment ability and groove depth design of U type protection ring

    2016-11-23 08:05:25BiCongerXunHijunHungXinninHeZeknHongWeirong
    CHINESE JOURNAL OF AERONAUTICS 2016年2期

    Bi Conger,Xun Hijun,*,Hung Xinnin,He Zekn,Hong Weirong

    aHigh-speed Rotating Machinery Laboratory,Institute of Chemical Machinery,Department of Chemical Engineering,Zhejiang University,Hangzhou 310027,China

    bCollaborative Innovation Center for Advanced Aero-engine,Beijing 100083,China

    Containment ability and groove depth design of U type protection ring

    Bai Congera,b,Xuan Haijuna,b,*,Huang Xianniana,b,He Zekana,b,Hong Weironga

    aHigh-speed Rotating Machinery Laboratory,Institute of Chemical Machinery,Department of Chemical Engineering,Zhejiang University,Hangzhou 310027,China

    bCollaborative Innovation Center for Advanced Aero-engine,Beijing 100083,China

    Disk fragments containment;High energy rotor;Numerical analysis;Protection ring;Verification test

    High-energy rotor uncontained failure can cause catastrophic damage effects to aircraft systems if not addressed in design.In this paper,numerical simulations of three high-energy rotor disk fragments impacting on U type protection rings are carried out using LS-DYNA.Protection rings with the same mass and different groove depths are designed to study the influence of the groove depth.Simulation results including kinetic energy and impact force variation of single fragment are presented.It shows that the groove depth infects both the axial containment ability of the protection ring and the transfer process of energy.The depth of groove ought to be controlled to an appropriate value to meet both the requirement of axial containment and higher safety factor.Verification test on high-speed spin tester has been conducted and shows that protection ring with appropriate U structure can resist the impact of the disk burst fragments.The ring is inflated from a circular to an oval-triangle shape.The corresponding simulation shows good agreement with the test.

    1.Introduction

    In turbine cooler of environment control system(ECS),auxiliary power unit(APU)and air turbine starter in aircraft,failed high speed rotor can be released as high-energy fragments,affecting flying performance in a number of direct and indirect ways and even leading to the loss of airplane.1With a more stringent working condition of higher temperature and rotational velocity,degradation and burst failure are more likely to occur,especially on the critical disks.Even though disk burst accidents happen infrequently nowadays,they are not completely avoidable.2Due to the catastrophic results,specific provisions are established for containment ability in both civil and military airplane specifications.Federal Aviation Administration(FAA)Federal Aviation Regulations(FARs)set requirements for equipment containing high-energy rotors oftransport category airplane in Part 25.3Corresponding technical standards for APU are also put forward in TSO-C77b,gas turbine auxiliary power units by FAA.4

    An available practice for studying the containing process is the combination of experimental tests and numerical simulations.With the advent of computer non-linear finite element codes,numerical simulations have become an important means for researchers to conduct their studies.A number of investigations have included experiments and numerical simulations of high-energy disk fragments containment.Hagg and Sankey5carried out tests which showed that containment of missile-like disk quarter fragments by a steel cylindrical shell is a continuous two-stage process.In Stage 1,the main objects to be considered are the loss in kinetic energy of system and the energy dissipated in plastic compression and shear strain.For non-perforation,the process enters Stage 2,which mainly involves dissipation of energy in plastic tension strain.The effects of mesh refinement on numerical simulations of uncontained engine debris impact on thin plates were studied by Norman Jr.6and Ambur7et al.In their studies,it was concluded that very fine mesh should be used to predict damage similar to that obtained from experimental results.Eric and Steven8proposed a simulation method of using ANSYS/LSDYNA to develop an analysis method that could provide more accurate predictions of containment failure limits for a wider range of disk and containment geometries.Li et al.9carried out aeroengine turbine blade and disk containment tests respectively and analyzed them using numerical simulations with ANSYS/LS-DYNA.He et al.10conducted numerical study of an aeroengine fan blade/casing impact process and the effects of stress initialization on simulation are assessed.Liu et al.11studied compressor disk containment of aircraft cooling turbine used in aircraft environment control system.The disk burst into 3 pieces and containment process was investigated in combination of experimental results and numerical results.In this paper,numerical models are established first to predict the containment ability and loads.Then,simulation results are validated through test data.Detailed data obtained from numerical results are used to analyze the variation of the energy,the force,etc.

    For protection rings,U structure seems to be an optimal design for disk bursting containment of high-energy rotor.In order to meet the requirement of containment,the protection rings must have enough thickness and U groove depth to resist the high-energy fragments.But excessive thickness results in excessive weight.To achieve a minimum weight of the casing which can offer enough containment strength,reasonable structural designs for the casing are expected.In this paper,containment ability and groove depth design of U type protection ring are studied.

    This paper consists of five sections.Following this introduction,numerical simulations of fan impeller fragments in air turbine cooler impacting on the U type protection rings appears in Section 2.The containment ability of rings with different U-groove depths is studied using ANSYS/LS-DYNA.Section 3 shows a verification containment test on highspeed spin tester with the optimal protection ring chosen from the simulations.Section 4 describes the simulation of containment process under the test condition.Comparisons between the test and the simulation results are discussed.The last section presents the conclusions.

    2.Containment ability of different U geometries

    With the aim of saving costs and improving efficiency of research,a series of numerical simulations is carried out to study the effect of U geometry to the containment ability using ANSYS/LS-DYNA.

    2.1.Design objective

    Containment ability is studied through the simulation of fan impeller disk fragments in air turbine cooler impacting on the protection casing.In practical situation,fan protection casing consists of three components,among which the pipe and the protection ring play a major role of protection.Thus,the model in simulation is built without the outer shell(see Fig.1).The installation position of the protection ring is designed(see Fig.2).

    Referring to SAE Aerospae-ARP-85F12,the containment speed is defined 125%of the maximum speed resulting from normal operating condition.According to the design parameter of the air turbine cooler,the fan disk is supposed to burst with the speed of 70,069 r/min.The main design parameters are listed in Table 1.It should be noted that 2Cr13,the material of the protection ring,is a common material used in aerospace for its good corrosion resistance to the atmosphere.Available material parameters for simulation and fine machinability lead the choice.

    2.2.Failure mode

    According to FARs,it must be shown by test that high-energy rotor equipment can contain any failure of a high energy rotor that occurs at the highest speed obtainable with the normal speed control devices inoperative.TSO-C77b also puts forward provision that containment must be substantiated in accordance with the condition of hub containment in APU.4In advisory circular(AC)20-128A of FAA,engine and APU failure model include single one-third disc fragment,intermediate fragment,fan blade fragment,etc.13Before the test,the most dangerous bursting mode must be determined.In order to simplify the question,the impeller is assumed to be a disk with a radius ofr.Therefore,the rotational kinetic energy(Ec)of the disk can be calculated as

    wheremis the total mass of the impeller and ω the disk rotating/burst speed.

    During the process of impacting,translational kinetic energy(Et)plays a leading role among all the types of the energy of fragment.Assume the disk bursts intonequal parts.Thus,the centroid radius(rm)andEtof a fragment can be defined as

    The ratio ofEttoEcis presented as

    Fig.1 Geometric model of test components.

    Fig.3 shows a drawing of energy ratio according to Eq.(4).It is possible to conclude that for a certain disk,the maximum translational kinetic energy of a single fragment occurs when the disk bursts into three parts.

    Fig.2 Schematic of fan components.

    Table 1 Main design parameters of components.

    Fig.3 Ratio of translational kinetic energy(Et)of the fragment to kinetic energy of the disk(Ec).

    2.3.Different U protection rings

    Five protection rings with the same mass are studied in the simulation.The heights of rings are certain because of the overall structure.Fig.4(a)presents four ring structures of different U-groove depths,among which Type I has the deepest U-groove of 17 mm,half height of the ring.U-groove depth is successively and uniformly decreased from Type I to Type IV.A straight cylinder is used in Type V for comparison with U geometries(see Fig.4(b)).To obtain a more obvious contrast,thickness of Type II is set to approach a critical state.

    It should be noted that the five rings are controlled to be of the same mass of 0.57 kg.The corresponding wall thicknesses are designed using UG,listed in Table 2.

    2.4.Finite element model

    To improve simulation efficiency,geometric characteristics that make few effects of containment are simplified.Finite element models are shown in Fig.5.To capture the detailed behavior of the case,at least three elements through the thickness of the case are set.All elements are set to be 8-node solid element which can observe the failure mode through the thickness while other element types such as the shell element cannot easily obtain the message.14

    Material model is a key factor affecting the accuracy of results from a nonlinear finite element simulation.In this paper,the Johnson–Cook(JC)model is chosen for the reason shown in Refs.9,15and has already been described def initely.16,17The material parameters used in this paper are listed in Table 3 and taken from Refs.18–20.In Table 3,Ais the yield stress,Bandnrepresent the effects of strain hardening,Cis the strain rate constant andmrepresents the temperature constant in constitutive model.16For fracture model,D1,D2,D3,D4,D5are failure constants determined by material tests.17

    Fig.4 Five cross-sections of protection ring.

    Table 2 Geometries of five protection rings.

    Fig.5 Finite element models.

    The elements of impeller fragments are given an initial angular velocity.Surface to surface contact between the disk fragment and the containment structure is modeled using a kinematic contact algorithm.The contact stiffness scale factor is defined as 1.0 and the friction coefficient is defined as typical values of 0.15.9

    2.5.Comparison and analysis

    Fig.6 shows the simulation results of different protection rings.It can be observed that Type I protection ring is torn by one fragment and a piece of breach appears.Fragments are contained within Type II.Since the outside surface of the ring damaged slightly,it can be defined as a critical state.For Types III–V,damage of the rings does not occur,but the fragments fly out in axial direction.

    It is shown that smaller depth of the groove leads to less obvious deformation of the protection ring.However,the fragments are more likely to run out of the covered range of ring and fragments flying along axial-direction may cause damage to other components.High energy disk fragments containment should be defined to capture the fragments within the ring,so Type II protection ring,which successfully contains the fragments in both radial and axial direction,shows greater fitness.

    From the forgoing it follows that U structure performs better than straight cylinder in containing the fragments.Under the condition of a constant mass of ring,greater depth of the groove leads to smaller thickness of the impacting zone,which indicates the reduction of safety factor of the protection ring.As shown in Fig.6(a),ring penetration happens.When designing protection rings,the depth of groove ought to be controlled to an appropriate value.

    The above analysis shows that U-groove depth plays an essential role for containment.In addition,it has influence on other aspects.On the one hand,the protection ring requires sufficient stiffness which is directly related to the groove depth.On the other hand,U-groove depth has an effect on the energy transfer process between the fragment and ring.Fig.7 and Table 4 show the kinetic energy variation of the fragments.With the groove depth decreasing,the residual kinetic energy(after impacting)of the fragments increases slightly.Axial deviation of fragments emerges due to the interaction of themselves,for they rebound from the casing with certain kinetic energy.It is shown that the impacting force of the fragments tends to have a lower maximum value and a longer duration with a deeper U-groove,as Fig.8 presents.The maximum impact force is also carried backward as the groove depth increases.

    Fig.6 Simulation results of different protection rings.

    Table 3 J-C constitutive relation and fracture criterion constant of TC4,2A12 and 2Cr13.

    It is possible to conclude that appropriate U-groove depth helps to buffer the impact of fragments,leading to an adequate interaction and energy transfer.Rebounding fragments with less kinetic energy and the obstruction of U-groove are conducive to axial containment.However,considering the requirement of less weight and volume,it is also unsuitable for an excessive depth.The present results serve to illustrate that Type II protection ring,with a more suitable U-groove depth,can meet both the requirement of axial containment and higher safety factor.

    3.Verification test and results

    Component level containment test using high-speed spin tester is an appropriate method to study the behavior of fragments/casing impact,penetration and perforation.21Containment ability studied above was verified through a test.Since tests are relatively expensive,they were carried out only for once.

    3.1.Test arrangement

    Protection case used in the test includes a U type protection ring,a pipe and the outer shell.According to the analysis in Section 2,Type II protection ring,with a relatively suitable U-groove depth of 13 mm,was chosen to be tested.Considering the expected result of containment and the limited cost,thickness is redesigned to 2.3 mm,with a safety factor of 1.1.

    The test was conducted on the ZUST1 rotor high-speed spin tester in High-Speed Rotating Machinery Laboratory in Zhejiang University.Parameters of this spin facility are presented in Ref.21.For the requirement of a fan disk burst in speed ranging from 70069 to(75069±50)r/min,a speed increasing gear box with ratio of 4.07 is added to attain a secondary acceleration with a final output maximum speed up to 96000 r/min.The experiment was conducted at room temperature.Fig.9 presents the sketch of the testing rig and pretest photo in testing chamber.

    Fig.7 Kinetic energy variation of single fragment.

    Table 4 Residual kinetic energy of single fragment.

    3.2.Impeller bursting method

    Before test,the fan impeller is supposed to be notched along radial direction at three symmetrical positions circumferentially with the aim of bursting into 3 pieces at target speed range along the direction of presented crack(see Fig.10).In Fig.10(a),area without the section line is supposed to be cut,thus,rcrepresents the distance from center to terminal of the crack andLis the remaining length along the crackdirection.Fracture occurs in the notched cross-section at which the localized plastic zone expands with the increase of rotating speed.When the circumferential stress at the crosssection is beyond the ultimate tensile strength of the material,the impeller bursts with a certain kinetic energy.The average stress method is used to calculate the notched cross-section circumferential stress roughly and provides guidance for cutting.In order to be workable,the process of notching is supposed to be conducted in multiple steps.

    3.3.Results and analysis

    Conservatively,the initial remaining length of the impeller(L)was 9.5 mm and impeller burst did not occur at the highest speed,75069 r/min.The same procedure was carried out until the remaining length reduced to 7.0 mm,with the burst speed of 75069 r/min which is in accordance with simulations.

    The first testing site is presented in Fig.11.It is shown that the casing can resist the impact of three high-energy disk fragments.Blades at three impacting points wore seriously and missed;the pipe was penetrated and the disk fragments were successfully contained within the protection ring.The U type protection ring deformed from a circular to an oval-triangle shape.The test result indicates that the analysis of U type protection ring is conductive.

    4.Numerical simulation of test

    Since the actual bursting speed is 5000 r/min more than that in the simulation before,numerical simulation of the test is conducted with the aim of further verification and better understanding of the impact process.

    Fig.10 Impeller notching pattern.

    Fig.11 The first testing site.

    Geometric configurations of the disk and the protection ring are the same as those used in the test.Simulation method follows that in Section 2.

    Simulation results indicate that the main failure modes of blades include crispation,wear of main impact zone and fracture of the root.It is found that the fragments breach the pipe and cause dishing deformation on the ring.Bulge deformation occurs at the impact region of the protection ring,and because of the three impact points from the disks’fragments,the ring deformed from a circular to an oval-triangle shape.

    The combined disk fragments of simulation show good agreement with the test.Comparison is shown in Fig.12.Fig.13(a)presents the whole containment components in the test.Pipe and protection ring in Figs.13(b)and(c)also accurately reveal the failure characteristics.According to the high concordance between the simulation and the test in Section 3,the simulation method can be regarded reliable.

    Fig.14 shows the von Mises stress contour plots at 8 different time points.The fragments are released after they separate from each other.The blade tip firstly impacts the pipe and bends due to extrusion,and an impact force peak occurs at 0.06 ms(see Fig.15).As a result,for each disk fragment,blades on one side are subjected to severe extrusion while slight impacts occur on the other side.The pipe is perforated firstly at the time of 0.21 ms,meanwhile the impact force reaches the maximum.Contact of the protection ring and the fragments occurs at 0.30 ms,at this point,the pipe is severely deformed and damaged.Hereafter,a part of the fragment proceeds to tear the pipe,and other part impacts the ring.The third impact force peak in Fig.15 at time 0.39 ms is the result from the impact of the fragment and the protection ring.After the time of 3 ms,most of the initial kinetic energy of the fragments is consumed.

    Fig.12 Comparison between test and simulation of impeller.

    Fig.13 Comparison between test and simulation of casing.

    Fig.14 Containment simulation results.

    Fig.15 Impact force progress.

    5.Conclusions

    In this paper,numerical simulations of high-energy rotor disk fragments impacting on different U-type protection ring are carried out using LS-DYNA.Verification test and the correspondingsimulation werealso performed.Comparisons between the experimental and the numerical results show that the numerical simulations are in fitness.Based on the simulation observations and test results presented,the following conclusions were drawn:

    (1)While containing fragment of 1/3 disk,the U structure performs better than straight cylinder in protection ring design.U-groove depth infects both the axial containment ability and the energy transfer process between fragments and rings.The depth of groove ought to be controlled to an appropriate value to meet both the requirement of axial containment and higher safety factor.

    (2)Containment test shows that the fragments perforate the pipe and cause inflation of the U type protection ring.The ring is inflated from a circular to an oval-triangle shape.The test result indicates that the numerical analysis of U type protection ring is conductive.Simulation shows good agreement with the test and the method can be regarded as reliable.

    1.Mousa NA,Whale MD,Groszmann DE,Zhang XJ.The potential for fuel tank fire and hydrodynamic ram from uncontained aircraft engine debris.Washington,D.C.:US Department of Transportation,Federal Aviation Administration;1997(Report No.:DC 20591 DOT/FAA/AR-96/95).

    2.Xuan HJ,Liu LL,Feng YM,He Q,Li JJ.Containment of highspeed rotating disk fragments.J Zhejiang Univ Sci A2012;13(9):665–73.

    3.FAA Federal Aviation Regulations.Airworthiness standards:Transport category airplanes.Washington,D.C.:Federal Aviation Administration;1984(FAA-FAR-25).

    4.Department of Transportation,Federal Aviation Administration.Gas turbine auxiliary power units.Washington,D.C.:US Department of Transportation,Federal Aviation Administration;2000.p.16–7(Technical Standard Order(TSO-C77b)).

    5.Hagg AC,Sankey GO.The containment of disk burst fragments by cylindrical shells.J Eng Power1974;96(2):114–23.

    6.Norman Jr FK,Jaunky N,Lawson RE,Ambur DR.Penetration simulation for uncontained engine debris impact on fuselage like panels using LS-DYNA.Finite Elem Anal Des2000;36(2):99–133.

    7.Ambur DR,Jaunky N,Lawson RE.Numerical simulations for high-energy impact of thin plates.Int J Impact Eng2001;25(7):683–702.

    8.Eric S,Steven H.The use of LS-DYNA models to predict containment of disk burst fragments.10th international LS-DYNA user conference.2008 Jan 1–9;Detroit(MI).

    9.Li JJ,Xuan HJ,Liao LF,Hong WR,Wu RR.Penetration of disk fragments following impact on thin plate.J Zhejiang Univ Sci A2009;10(5):677–84.

    10.He Q,Xuan HJ,Liu LL,Hong WR,Wu RR.Perforation of aeroengine fan casing by a single rotating blade.J Aerosp Sci Technol2013;35(1):234–41.

    11.Liu LL,Xuan HJ,Zhang N,Hong WR.Research on compressor disc containment of a cooling turbine.22nd proceedings of the conference on structural engineering.2013 Aug 9–11;Urumqi,China.Beijing:Engineering Mechanics Press;2013.p.190–5[Chinese].

    12.SAE Aerospace.SAEAerospace-ARP-85F.Airconditioning systems for subsonic airplanes.Warrendale(PA):Society of Automotive Engineers(SAE)Aerospace;2012.p.27.

    13.Federal Aviation Administration.Design considerations for minimizing hazards caused by uncontained turbine engine and auxiliary power unit rotor failure.Washington,D.C.:Federal Aviation Administration;1997(Report No.:FAA Advisory Circular No.20-128A).

    14.He Q,Xuan HJ,Liao LF,Hong WR,Wu RR.Simulation methodology development for rotating blade containment analysis.J Zhejiang Univ Sci A2012;13(4):239–59.

    15.Teng X,Wierzbicki T.Evaluation of six fracture models in high velocity perforation.Eng Fract Mech2006;73(12):1653–78.

    16.Johnson GR,Cook WH.A constitutive model and data for metals subjected to large strains,high rates and high temperatures.Proceedings of the 7th international symposium on ballistics;1983 Apr 19–21;Hague,Netherlands.p.541–57.

    17.Johnson GR,Cook WH.Fracture characteristics of three metals subjected to various strains,strain rates,temperatures and pressures.Eng Fract Mech1985;21(1):31–48.

    18.Li J,Xie LJ,Wang XB,Wang L,Xie J,Yang HJ.Material constitutive model of 2Cr13 for FEA of chip formation process.Appl Mech Mater2008;10(12):796–800.

    19.Chen G,Chen ZF,Tao JL,Niu W,He P.Dynamic mechanical property research of TC4.J Exp Mech2005;20(4):605–9[Chinese].

    20.Murat B,Steve K,Matti JL.Explicit finite-element analysis of 2024-T3/T351 aluminum material under impact loading for airplane engine containment and fragment shielding.J Aerosp Eng2009;22(3):287–95.

    21.Xuan HJ,Wu RR.Aeroengine turbine blade containment tests using high-speed rotor spin testing facility.Aerosp Sci Technol2006;10(6):501–8.

    21 August 2015;revised 27 November 2015;accepted 31 December 2015

    Available online 23 February 2016

    ?2016 Chinese Society of Aeronautics and Astronautics.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 571 87951223.

    E-mail addresses:baiconger@zju.edu.cn(C.Bai),marine@zju.edu.cn(H.Xuan).

    Peer review under responsibility of Editorial Committee of CJA.

    BAI Congeris a Ph.D.candidate at Institute of Process Equipment in Zhejiang University.Her research interests are structure and strength of aeroengine,especially of containment design methodology study for high-energy rotor disk fragments.

    XUAN Haijunis an associate professor and Ph.D.supervisor at Highspeed Rotating Machinery Lab.,Zhejiang University,Hangzhou,P.R.China.He received the Ph.D.degree from the same university in 2004.His current research interests are rotordynamics,rotor strengthen,disk low cycle fatigue,rotating blade high cycle fatigue and impacted structure dynamics response in high-speed rotating machinery.

    欧美精品啪啪一区二区三区| 国产精华一区二区三区| 国产精品永久免费网站| 日韩国内少妇激情av| 一区二区三区高清视频在线| 久久久久久久午夜电影| 可以在线观看的亚洲视频| 国产高清videossex| 中文资源天堂在线| 2021天堂中文幕一二区在线观| 亚洲精品粉嫩美女一区| 亚洲五月婷婷丁香| 黄色a级毛片大全视频| 国内精品一区二区在线观看| 男女下面进入的视频免费午夜| 99国产综合亚洲精品| 亚洲一卡2卡3卡4卡5卡精品中文| 成人一区二区视频在线观看| 国产精品综合久久久久久久免费| 久久久久久国产a免费观看| 亚洲成av人片免费观看| 欧美最黄视频在线播放免费| 精品电影一区二区在线| 长腿黑丝高跟| 狂野欧美白嫩少妇大欣赏| 国产99久久九九免费精品| 日本黄色视频三级网站网址| 亚洲国产欧洲综合997久久,| 我的老师免费观看完整版| 欧美黄色片欧美黄色片| 国产av又大| 黑人欧美特级aaaaaa片| 久久久久久人人人人人| 90打野战视频偷拍视频| 狂野欧美白嫩少妇大欣赏| 一级毛片精品| 午夜福利在线在线| 少妇裸体淫交视频免费看高清 | 日日爽夜夜爽网站| 少妇粗大呻吟视频| 90打野战视频偷拍视频| 又爽又黄无遮挡网站| 韩国av一区二区三区四区| 久久精品人妻少妇| 99国产综合亚洲精品| e午夜精品久久久久久久| 人人妻人人看人人澡| 91字幕亚洲| 亚洲国产欧美人成| 99久久精品国产亚洲精品| 中文字幕高清在线视频| 精品久久久久久,| 黄色视频,在线免费观看| 久久久精品国产亚洲av高清涩受| 国产亚洲精品综合一区在线观看 | 婷婷丁香在线五月| av免费在线观看网站| 18禁黄网站禁片免费观看直播| 我要搜黄色片| 欧洲精品卡2卡3卡4卡5卡区| 女同久久另类99精品国产91| 天堂√8在线中文| 亚洲成av人片免费观看| 精品高清国产在线一区| 少妇人妻一区二区三区视频| 久久天躁狠狠躁夜夜2o2o| 法律面前人人平等表现在哪些方面| 亚洲一区中文字幕在线| 中文字幕人成人乱码亚洲影| 精品免费久久久久久久清纯| 成人18禁在线播放| 亚洲欧美精品综合一区二区三区| 亚洲国产欧洲综合997久久,| 在线看三级毛片| 久久精品国产综合久久久| 亚洲精品在线观看二区| 18禁美女被吸乳视频| 精品久久蜜臀av无| 女同久久另类99精品国产91| 国产一区二区激情短视频| 欧美日韩一级在线毛片| 亚洲中文日韩欧美视频| www日本黄色视频网| 成人午夜高清在线视频| 精品第一国产精品| 国产精品久久久久久亚洲av鲁大| 国产成人精品无人区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区三区四区免费观看 | 免费观看精品视频网站| 婷婷精品国产亚洲av在线| 亚洲性夜色夜夜综合| 成人国语在线视频| 在线观看免费视频日本深夜| 亚洲熟妇熟女久久| 最新在线观看一区二区三区| 在线a可以看的网站| 丰满人妻一区二区三区视频av | 床上黄色一级片| 18禁黄网站禁片午夜丰满| 色综合婷婷激情| 午夜影院日韩av| 男女之事视频高清在线观看| 天堂影院成人在线观看| 又粗又爽又猛毛片免费看| 一个人免费在线观看的高清视频| 校园春色视频在线观看| 亚洲精品中文字幕在线视频| 极品教师在线免费播放| 久久久久精品国产欧美久久久| 中文亚洲av片在线观看爽| 99热只有精品国产| 亚洲欧美激情综合另类| 激情在线观看视频在线高清| 一二三四社区在线视频社区8| 日本一区二区免费在线视频| 国产精品亚洲美女久久久| 国产真人三级小视频在线观看| 一个人观看的视频www高清免费观看 | 国产单亲对白刺激| 亚洲精品一卡2卡三卡4卡5卡| 黄片小视频在线播放| 真人一进一出gif抽搐免费| 天堂av国产一区二区熟女人妻 | 在线观看日韩欧美| 成人高潮视频无遮挡免费网站| 男女做爰动态图高潮gif福利片| 18美女黄网站色大片免费观看| 精品第一国产精品| 亚洲美女黄片视频| 亚洲五月婷婷丁香| 成人永久免费在线观看视频| 亚洲成人国产一区在线观看| 两人在一起打扑克的视频| 天天一区二区日本电影三级| 丰满人妻一区二区三区视频av | 露出奶头的视频| 亚洲一区高清亚洲精品| 久久精品91蜜桃| 国产黄a三级三级三级人| 欧美色欧美亚洲另类二区| 国产精品乱码一区二三区的特点| 五月玫瑰六月丁香| 精品久久蜜臀av无| 国产午夜福利久久久久久| 国产精品爽爽va在线观看网站| 老司机午夜福利在线观看视频| 亚洲欧美精品综合一区二区三区| 天堂√8在线中文| 国产亚洲欧美98| 亚洲午夜精品一区,二区,三区| 欧美黄色片欧美黄色片| 可以免费在线观看a视频的电影网站| 成年版毛片免费区| 91成年电影在线观看| 中出人妻视频一区二区| 一进一出抽搐gif免费好疼| 久久中文字幕人妻熟女| 最新美女视频免费是黄的| 91字幕亚洲| 最近最新中文字幕大全免费视频| 制服诱惑二区| 不卡av一区二区三区| 香蕉av资源在线| 国产真实乱freesex| 香蕉久久夜色| 99热只有精品国产| 亚洲欧美精品综合久久99| 亚洲欧美精品综合一区二区三区| 天天添夜夜摸| 黑人欧美特级aaaaaa片| 美女午夜性视频免费| 高清毛片免费观看视频网站| 成人永久免费在线观看视频| АⅤ资源中文在线天堂| 老司机午夜福利在线观看视频| 亚洲人成网站在线播放欧美日韩| 免费看美女性在线毛片视频| 高潮久久久久久久久久久不卡| 亚洲乱码一区二区免费版| 久久精品91无色码中文字幕| 国产熟女xx| 国产av一区二区精品久久| 99在线视频只有这里精品首页| 国产亚洲精品av在线| 久久亚洲精品不卡| 国产成人一区二区三区免费视频网站| 欧美成人午夜精品| 极品教师在线免费播放| 免费在线观看日本一区| 亚洲精品久久成人aⅴ小说| av福利片在线| 欧美成人午夜精品| 露出奶头的视频| 欧美国产日韩亚洲一区| 少妇人妻一区二区三区视频| 操出白浆在线播放| 亚洲专区国产一区二区| 午夜福利免费观看在线| 国产精品永久免费网站| 欧美av亚洲av综合av国产av| 青草久久国产| 亚洲av五月六月丁香网| 中文字幕熟女人妻在线| 亚洲av成人精品一区久久| 最好的美女福利视频网| 欧美日韩一级在线毛片| 夜夜看夜夜爽夜夜摸| 天天添夜夜摸| 国产精品电影一区二区三区| 久久亚洲精品不卡| 女人被狂操c到高潮| 黑人巨大精品欧美一区二区mp4| 国产亚洲欧美在线一区二区| 日韩欧美国产在线观看| 亚洲国产看品久久| 老司机午夜十八禁免费视频| 悠悠久久av| 欧美成人性av电影在线观看| 久久久久久久久中文| 在线永久观看黄色视频| 久久久久国产一级毛片高清牌| 精品国产超薄肉色丝袜足j| av在线天堂中文字幕| 一本精品99久久精品77| 国产精品香港三级国产av潘金莲| 日韩有码中文字幕| 久久香蕉精品热| 久久中文字幕一级| 久久 成人 亚洲| 国产精品av视频在线免费观看| 99久久国产精品久久久| 精品国产亚洲在线| 久久亚洲真实| 熟妇人妻久久中文字幕3abv| videosex国产| 黄色丝袜av网址大全| 午夜福利在线在线| 操出白浆在线播放| 999精品在线视频| 国产高清有码在线观看视频 | 美女黄网站色视频| 国产精品 欧美亚洲| 精品人妻1区二区| 嫁个100分男人电影在线观看| 成人永久免费在线观看视频| 淫秽高清视频在线观看| 国内精品久久久久精免费| 巨乳人妻的诱惑在线观看| 久久香蕉激情| 国产99白浆流出| 亚洲七黄色美女视频| 久久香蕉激情| 亚洲电影在线观看av| 国产亚洲精品久久久久5区| 午夜精品一区二区三区免费看| 啦啦啦免费观看视频1| av福利片在线| 999精品在线视频| 老鸭窝网址在线观看| 亚洲成av人片在线播放无| 宅男免费午夜| 黄色丝袜av网址大全| 欧美av亚洲av综合av国产av| 亚洲人与动物交配视频| 两个人的视频大全免费| 又大又爽又粗| 国产乱人伦免费视频| 欧美日韩亚洲综合一区二区三区_| 夜夜躁狠狠躁天天躁| 国产高清激情床上av| 在线看三级毛片| 三级国产精品欧美在线观看 | 欧美国产日韩亚洲一区| 色噜噜av男人的天堂激情| 国产成人av教育| 亚洲 欧美 日韩 在线 免费| 国产精品 国内视频| 国产精品亚洲美女久久久| 亚洲精品粉嫩美女一区| 一级毛片女人18水好多| 免费电影在线观看免费观看| 久久伊人香网站| 久久人人精品亚洲av| 成人av在线播放网站| 欧美成人午夜精品| 在线观看午夜福利视频| 一二三四在线观看免费中文在| 国产亚洲精品久久久久5区| 看片在线看免费视频| 久久久久久久久久黄片| 观看免费一级毛片| 精品国产美女av久久久久小说| 精品久久蜜臀av无| 美女大奶头视频| 中文字幕精品亚洲无线码一区| 日本黄大片高清| 亚洲精品久久国产高清桃花| 日本成人三级电影网站| 一边摸一边抽搐一进一小说| 岛国在线观看网站| 一个人免费在线观看电影 | 午夜福利在线在线| 精品一区二区三区四区五区乱码| 97碰自拍视频| 久久久精品国产亚洲av高清涩受| 国产三级中文精品| 国产成人aa在线观看| 一区二区三区激情视频| 国产亚洲av嫩草精品影院| 亚洲专区国产一区二区| 1024视频免费在线观看| 国语自产精品视频在线第100页| 国产精品av久久久久免费| 一级毛片精品| 琪琪午夜伦伦电影理论片6080| 50天的宝宝边吃奶边哭怎么回事| 国产高清视频在线观看网站| 国产成人av激情在线播放| 久久天堂一区二区三区四区| 伦理电影免费视频| 少妇被粗大的猛进出69影院| 成人18禁在线播放| 他把我摸到了高潮在线观看| 精品久久久久久久久久久久久| 国产真人三级小视频在线观看| 亚洲一区高清亚洲精品| 国产成人系列免费观看| www国产在线视频色| 神马国产精品三级电影在线观看 | 成人三级黄色视频| 欧美中文综合在线视频| 97人妻精品一区二区三区麻豆| 久久久精品国产亚洲av高清涩受| 久久欧美精品欧美久久欧美| 久久久精品国产亚洲av高清涩受| av中文乱码字幕在线| 日本一区二区免费在线视频| 波多野结衣高清无吗| 日本一区二区免费在线视频| 国产精品久久久久久亚洲av鲁大| xxxwww97欧美| 亚洲美女黄片视频| 精品欧美一区二区三区在线| 美女午夜性视频免费| 国产单亲对白刺激| 国产又色又爽无遮挡免费看| 日本三级黄在线观看| 99国产极品粉嫩在线观看| 久99久视频精品免费| 一区二区三区高清视频在线| 国产成人av教育| 91字幕亚洲| 日本一区二区免费在线视频| 伊人久久大香线蕉亚洲五| 操出白浆在线播放| 午夜福利在线在线| 欧美黄色淫秽网站| 国产成人系列免费观看| 欧美另类亚洲清纯唯美| 国产精品久久久人人做人人爽| 国产精品 欧美亚洲| 久久这里只有精品中国| 级片在线观看| 99精品欧美一区二区三区四区| 日本一本二区三区精品| 99在线人妻在线中文字幕| 精品国内亚洲2022精品成人| 国产午夜精品久久久久久| 久久久精品大字幕| 国产亚洲欧美在线一区二区| 欧美日本视频| 91av网站免费观看| 亚洲午夜精品一区,二区,三区| 欧美zozozo另类| 老熟妇乱子伦视频在线观看| a级毛片在线看网站| 777久久人妻少妇嫩草av网站| 欧美黑人巨大hd| 国产精品一区二区精品视频观看| 男人的好看免费观看在线视频 | 老司机午夜十八禁免费视频| 日韩欧美精品v在线| 国产69精品久久久久777片 | 啪啪无遮挡十八禁网站| 黄色成人免费大全| 禁无遮挡网站| 午夜视频精品福利| 18禁黄网站禁片午夜丰满| 日韩精品青青久久久久久| 国内精品久久久久久久电影| 村上凉子中文字幕在线| 成人三级做爰电影| 日韩欧美一区二区三区在线观看| 国产精品一区二区免费欧美| 国产精品一区二区三区四区久久| 黄色毛片三级朝国网站| 天天添夜夜摸| 少妇熟女aⅴ在线视频| 人成视频在线观看免费观看| 精品不卡国产一区二区三区| 青草久久国产| 久久精品人妻少妇| 可以免费在线观看a视频的电影网站| 一级a爱片免费观看的视频| 亚洲第一欧美日韩一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 精华霜和精华液先用哪个| 亚洲第一欧美日韩一区二区三区| 黄色女人牲交| 精品久久久久久久久久免费视频| 国产一区二区在线av高清观看| 黄色毛片三级朝国网站| 91av网站免费观看| av免费在线观看网站| 午夜免费激情av| 国产一级毛片七仙女欲春2| 亚洲欧美日韩高清专用| 精品人妻1区二区| 久久精品国产99精品国产亚洲性色| 欧美在线黄色| 最近最新中文字幕大全电影3| 亚洲18禁久久av| 国产1区2区3区精品| 亚洲人成77777在线视频| 国产午夜精品论理片| 黄频高清免费视频| 在线a可以看的网站| 香蕉国产在线看| 午夜福利高清视频| 欧美黄色淫秽网站| 黄色女人牲交| 亚洲 欧美一区二区三区| 露出奶头的视频| 欧美 亚洲 国产 日韩一| 99久久无色码亚洲精品果冻| 亚洲国产高清在线一区二区三| 真人一进一出gif抽搐免费| 伊人久久大香线蕉亚洲五| 欧美3d第一页| 亚洲美女视频黄频| 中文字幕久久专区| 久久中文字幕一级| av免费在线观看网站| 国产亚洲av嫩草精品影院| 国产爱豆传媒在线观看 | 欧美+亚洲+日韩+国产| 国产成人av教育| 国产成人系列免费观看| 天堂影院成人在线观看| 国产精品日韩av在线免费观看| 国产伦在线观看视频一区| 久久精品国产亚洲av高清一级| 在线观看66精品国产| 欧美成狂野欧美在线观看| 一进一出抽搐gif免费好疼| 国产视频内射| 日本 av在线| 亚洲在线自拍视频| 亚洲性夜色夜夜综合| 国产精品一区二区三区四区免费观看 | 久久天堂一区二区三区四区| 日日摸夜夜添夜夜添小说| av在线天堂中文字幕| 成年版毛片免费区| 最近在线观看免费完整版| 国产av在哪里看| 亚洲avbb在线观看| 天堂动漫精品| 欧美乱码精品一区二区三区| 日韩av在线大香蕉| 久久婷婷成人综合色麻豆| 国产日本99.免费观看| 日韩 欧美 亚洲 中文字幕| 亚洲欧洲精品一区二区精品久久久| 国产欧美日韩精品亚洲av| 亚洲国产欧美网| 狠狠狠狠99中文字幕| 亚洲熟女毛片儿| 可以在线观看的亚洲视频| 国产精品久久久av美女十八| 国产aⅴ精品一区二区三区波| 国产一区二区在线av高清观看| 熟妇人妻久久中文字幕3abv| 一本久久中文字幕| 午夜福利在线在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟妇熟女久久| 少妇熟女aⅴ在线视频| 亚洲五月婷婷丁香| 人人妻人人澡欧美一区二区| 丰满人妻熟妇乱又伦精品不卡| 国产黄a三级三级三级人| 特级一级黄色大片| 在线观看免费日韩欧美大片| 2021天堂中文幕一二区在线观| 久久伊人香网站| 亚洲精品国产精品久久久不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 国产熟女xx| 午夜福利在线观看吧| 精品电影一区二区在线| 熟女少妇亚洲综合色aaa.| 五月玫瑰六月丁香| 老司机深夜福利视频在线观看| 丝袜人妻中文字幕| 精品人妻1区二区| 成人18禁在线播放| 久久久久久大精品| 久热爱精品视频在线9| 久99久视频精品免费| 99re在线观看精品视频| 国产99久久九九免费精品| 亚洲av第一区精品v没综合| 精品国产亚洲在线| 国产精品亚洲av一区麻豆| 在线永久观看黄色视频| 人人妻人人看人人澡| av超薄肉色丝袜交足视频| 国产精品综合久久久久久久免费| 成人亚洲精品av一区二区| 国产欧美日韩精品亚洲av| 日韩国内少妇激情av| 欧美乱妇无乱码| 日韩成人在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 亚洲性夜色夜夜综合| 亚洲人成网站在线播放欧美日韩| 97超级碰碰碰精品色视频在线观看| 国产蜜桃级精品一区二区三区| 男男h啪啪无遮挡| 国产精品 国内视频| 久久精品人妻少妇| www.熟女人妻精品国产| 九九热线精品视视频播放| 一二三四在线观看免费中文在| 国产成人一区二区三区免费视频网站| 99久久精品热视频| 看黄色毛片网站| 亚洲精华国产精华精| 亚洲 国产 在线| 亚洲国产精品久久男人天堂| 国产成人啪精品午夜网站| 一二三四社区在线视频社区8| 少妇熟女aⅴ在线视频| 午夜精品久久久久久毛片777| 色噜噜av男人的天堂激情| 国产精品电影一区二区三区| 亚洲黑人精品在线| 此物有八面人人有两片| 天堂影院成人在线观看| 日韩欧美免费精品| 国产99白浆流出| 91麻豆av在线| 国产黄a三级三级三级人| 老司机在亚洲福利影院| 女警被强在线播放| 亚洲激情在线av| 在线观看舔阴道视频| 午夜福利视频1000在线观看| 搡老岳熟女国产| 免费观看精品视频网站| 免费搜索国产男女视频| 波多野结衣高清无吗| 午夜久久久久精精品| 香蕉丝袜av| 亚洲一区二区三区色噜噜| 亚洲av电影不卡..在线观看| 久久久久久久午夜电影| 在线观看免费视频日本深夜| 欧美中文日本在线观看视频| 变态另类丝袜制服| 亚洲专区国产一区二区| 亚洲免费av在线视频| 美女高潮喷水抽搐中文字幕| 99国产精品一区二区三区| 欧美日韩福利视频一区二区| 久久亚洲精品不卡| 在线观看舔阴道视频| 一本一本综合久久| av在线播放免费不卡| 午夜日韩欧美国产| 青草久久国产| 日韩 欧美 亚洲 中文字幕| 一级毛片高清免费大全| 夜夜爽天天搞| 久久欧美精品欧美久久欧美| 欧美久久黑人一区二区| 大型av网站在线播放| 国产精品久久久久久亚洲av鲁大| xxx96com| 亚洲国产精品成人综合色| 欧美又色又爽又黄视频| 亚洲在线自拍视频| 免费搜索国产男女视频| 国产男靠女视频免费网站| 精品一区二区三区av网在线观看| 国产高清有码在线观看视频 | 成年人黄色毛片网站| 国产一区在线观看成人免费| 久久 成人 亚洲| 午夜免费激情av| av在线播放免费不卡| 亚洲国产日韩欧美精品在线观看 | 日本 欧美在线| 村上凉子中文字幕在线| 日日摸夜夜添夜夜添小说| 18禁裸乳无遮挡免费网站照片| 五月伊人婷婷丁香| 欧美高清成人免费视频www| 成年人黄色毛片网站| 男女做爰动态图高潮gif福利片| 成人永久免费在线观看视频| 免费在线观看黄色视频的| 精品乱码久久久久久99久播|