• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study on combustion characteristics of Chinese RP-3 kerosene

    2016-11-23 08:05:21HongnXieMozhoZengWenChenBodong
    CHINESE JOURNAL OF AERONAUTICS 2016年2期

    M Hongn,Xie Mozho,Zeng Wen,Chen Bodong

    aSchool of Energy and Power Engineering,Dalian University of Technology,Dalian 116024,China

    bLiaoning Key Laboratory of Advanced Test Technology for Aerospace Propulsion System,Shenyang Aerospace University,Shenyang 110136,China

    Experimental study on combustion characteristics of Chinese RP-3 kerosene

    Ma Hongana,Xie Maozhaoa,Zeng Wenb,*,Chen Baodongb

    aSchool of Energy and Power Engineering,Dalian University of Technology,Dalian 116024,China

    bLiaoning Key Laboratory of Advanced Test Technology for Aerospace Propulsion System,Shenyang Aerospace University,Shenyang 110136,China

    Combustion mechanism;Combustion stability;Laminar combustion speed;Markstein length;RP-3 kerosene

    In order to illustrate the combustion characteristics of RP-3 kerosene which is widely used in Chinese aero-engines,the combustion characteristics of RP-3 kerosene were experimentally investigated in a constant volume combustion chamber.The experiments were performed at four different pressures of 0.1 MPa,0.3 MPa,0.5 MPa and 0.7 MPa,and three different temperatures of 390 K,420 K and 450 K,and over the equivalence ratio range of 0.6–1.6.Furthermore,the laminarcombustion speeds of a surrogate fuel for RP-3 kerosene were simulated under certain conditions.The results show that increasing the initial temperature or decreasing the initial pressure causes an increase in the laminar combustion speed of RP-3 kerosene.With the equivalence ratio increasing from 0.6 to 1.6,the laminar combustion speed increases initially and then decreases gradually.The highest laminar combustion speed is measured under fuel rich condition(the equivalence ratio is 1.2).At the same time,the Markstein length shows the same changing trend as the laminar combustion speed with modification of the initial pressure.Increasing the initial pressure will increase the instability of the flame front,which is established by decreased Markstein length.However,different from the effects of the initial temperature and equivalence ratio on the laminar combustion speed,increasing the equivalence ratio will lead to a decrease in the Markstein length and the stability of the flame front,and the effect of the initial temperature on the Markstein length is unclear.Furthermore,the simulated laminar combustion speeds of the surrogate fuel agree with the corresponding experimental datas of RP-3 kerosene within~10%deviation under certain conditions.

    ?2016 Chinese Society of Aeronautics and Astronautics.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Laminar combustion speed reflects the reactivity,diffusivity and exothermicity characteristics of aviation fuels,and the accurate value of laminar combustion speed is important for designing the combustor of an aero-engine,simulating turbulent combustion process and verifying chemical reactionkinetics.At the same time,a turbulent flame is employed in the aero-engine combustor,which is affected by stretch.The response of a flame to stretch can be defined by Markstein length,which also describes the stability of flame front.

    There are several methods for measuring the laminar combustion speed and Markstein length of combustible gas,such as the stagnation plane flame method1,the heat flux method2and the constant volume combustion chamber method.3Compared with the stagnation plane flame method and the heat flux method,a linear relationship between the flame speed and flame stretch can be defined and Markstein lengths can also be deduced easily from the experimental measurement simultaneously through the third method.4Therefore,spherically expanding flames which are used in the constant volume combustion chamber method are extensively utilized to determine the laminar combustion speed and Markstein length of kerosene and the surrogate fuelofkerosene in Refs.5–10Eisazadeh-Far et al.5,6experimentally studied the flame structures and laminar combustion speeds of JP-8/air and JP-8/O2/diluent premixed flames at high temperatures and pressures using two constant volume cylindrical and spherical chambers.Kelley et al.7experimentally studied laminar combustion speeds and Markstein lengths of C5–C8n-alkane mixtures with air at elevated pressures in a constant pressure chamber.Fuller et al.8experimentally studied the effects of vitiation on the flame speed ofn-decane using the spherical combustion chambertechnique.However,corresponding experimental data of RP-3 kerosene which is widely used in Chinese aero-engine are scarce.

    As discussed above,the constant volume combustion chamber method has already been testified to be an appropriate method to measure the combustion characteristics of gaseous fuels.3Therefore,in the present work,this method is used to determine the combustion characteristics of RP-3 kerosene.Because the laminar combustion speed and Markstein length of a premixed flame depend on the initial temperature,initial pressure and composition of the gas mixture,experiments are performed at three different temperatures of 390 K,420 K and 450 K,four different pressures of 0.1 MPa,0.3 MPa,0.5 MPa and 0.7 MPa and a wide range of equivalence ratios from 0.6 to 1.6 in the present work.

    Fig.1 Schematic diagram of experimental facility.

    Fig.2 Schematic diagram of constant volume combustion chamber.

    2.Experimental facility

    Fig.1 shows the schematic diagram of the experimental facility11,which consists of a constant volume combustion chamber and the systems for ignition,heating,data collection and high-speed schlieren photography.Fig.2 provides the schematic diagram of constant volume combustion chamber.As shown in Fig.2,the cylindrical type combustion chamber is made of stainless steel,and the inner diameter is 180 mm and the volume is 5.5 L.Both sides of the chamber are transparent to make the inside observable and to offer optical access,and the diameter of visual field size is 80 mm.The gas entrance system consists of a valve connected to the gas cylinder for preparation of the mixtures,a vacuum pump for evacuating the system,and some temperature and pressure test facilities.The initial temperature is measured by thermocouples with the accuracy of 1 K and a high-precision pressure transducer is used to measure the initial pressure in the cylindrical chamber.A dynamic pressure sensor with the accuracy of 0.8%installed on the inner wall of the combustion chamber is used to measure the combustion pressure.

    A conventional battery-coil system is applied to igniting the mixture at the center of the cylinder,and the data collection program synchronizes the ignition with the dynamic pressure recording and schlieren photography.The schlieren photography is installed within the cylindrical vessel to take optical recordings of the burning event.A high speed camera(Phantom V611)with the frequency of 10000 pictures per second is used to keep a record of the dimension and shape of the developing flame front.To make sure that the fresh mixture is quiescent and homogeneous in the chamber,at least ten minutes must remain after the chamber is filled with fuel and oxidizer.Each experimentaltestundereach condition mustbe performed at least three times.

    3.Theoretical model

    The stretched flame speedSnwhich reflects the flame propagation can be deduced from the flame radius versus time as demonstrated by Bradley et al.12Snis given as

    whereris the flame radius in the image andtthe elapsing time after the mixture is ignited.

    Flame stretch rate α in a quiescent mixture can be defined as

    whereAis the area of flame front.For a spherically outward expanding flame,the flame stretch rate can be defined as

    At the early stage of flame development,a linear relationship between the flame speed and the flame stretch rate exists,such as,

    The unstretched flame speedSlis generally acquired as the intercept value at α =0 in the plot ofSnagainst α,and the Markstein lengthLbof burned gas is the negative value of the slope ofSnversus α curve.

    A simple relationship linking the laminar combustion speedulto the unstretched flame speedSlis given as

    where ρuand ρbare the densities of unburned and burned gas.From Eq.(5),the laminar combustion speed can be obtained as

    4.Experimental results and discussions

    In the present experiment,the investigations of the flame propagation characteristics,laminar combustion speed and Markstein length are carried outforRP-3 kerosene.The experimental facility and technique employed in the present work have been validated in the work of Hu et al.11In order to illustrate the effects of initial parameters(such as pressure,temperature and composition of the mixture)on the combustion properties,three different initial temperatures of 390 K,420 K and 450 K,four different pressures of 0.1 MPa,0.3 MPa,0.5 MPa and 0.7 MPa and a wide range of equivalence ratios from 0.6 to 1.6 are chosen for the investigations.

    In order to determine the formula of RP-3 kerosene,which affects the determination of experimental equivalence ratio,the main components and the main physical properties of RP-3 kerosene are experimentally analyzed.RP-3 kerosene consists of saturated hydrocarbons(92.1%volume)and aromatic hydrocarbons(7.9%volume).Compositions of this type kerosene are listed in Table 1,including saturated straight chain alkanes,saturated naphthenes and aromatic compounds.

    The molecular weight and the hydrogen-carbon of RP-3 kerosene are 149.1 g/mol and 2.04,respectively,so,in the present study,the formula of RP-3 kerosene is determined as C10.62H21.66.

    4.1.Flame propagation characteristics of RP-3 kerosene

    The characteristics of the igniter can affect the flame propagation characteristics as discussed by Liang et al.13Thus,when the spherically propagating flame method is used to determine the laminar combustion speed,the raw flame radius data should be carefully selected.Bradley et al.14and Huang et al.15showed that the flame speed became independent of the sparkenergy when the flame radius was bigger than 6 mm.In addition,the pressure in the whole chamber hardly varies when the flame radius is less than 25 mm,thus the burning process can be considered as a constant pressure one,just as presented by Burke et al.16In order to eliminate the effects of ignition energy and pressure rise in the combustion chamber,the flame radius in flame photos used in the present analysis is selected from 6 mm to 25 mm.

    Table 1 Compositions of Chinese RP-3 kerosene.

    Fig.3 shows the selected snapshots of stoichiometric RP-3 kerosene/air flames with four different initial pressures(p)at the initial temperature(T)of 390 K.Eisazadeh-Far et al.6and Oran et al.17stated that flame thickness decreased at higher initial pressures,which reduced its resistance to perturbations.Thus,the flame instability would be enhanced,the flame front surfaces were not smooth,and cells appeared.However,in the present work,the effect of the initial pressure on the flame stability is not obvious at the initial temperature of 390 K and the equivalence ratio of 1.0.As shown in Fig.3,the spherically expanding flame is smooth and propagates outwardly from the core of the constant chamber under the condition that the initial pressure is 0.1 MPa.With the initial pressure increasing to 0.7 MPa,there is no evidence of wrinkles or cracks on the flame front surface and the flame remain stable.

    Fig.4 shows the selected images of this combustible mixture for four different equivalence ratios at the initial pressure of 0.3 MPa and the initial temperature of 390 K.It can be seen that for RP-3 kerosene/air mixture,the flame instability is enhanced with the equivalence ratio increasing.The flame front surface is maintained smooth throughout the whole flame propagation process at the low equivalence ratio.However,with the equivalence ratio increasing,there are some cracks or small cells on the flame around the electrodes.With the equivalence ratio increasing to 1.5,the flame front will turn into the cellular structure,and large flaws or protruding cells occur.

    Fig.3 Effect of initial pressure on flame propagation characteristics(φ=1.0,T=390 K).

    Fig.4 Effect of equivalence ratio on flame propagation characteristics(p=0.3 MPa,T=390 K).

    To identify the effect of initial temperature on flame stability,the schlieren images of stoichiometric RP-3 kerosene/air mixtures for three different initial temperatures at the initial pressure of 0.1 MPa are provided in Fig.5.

    The results show that flame stability is insensitive to the initial temperature.The reason maybe is that,with the initial temperature increasing,both thermal expansion and flame thickness decrease.The hydrodynamic instability18decreases with the thermal expansion decreasing or the flame thickness increasing,and the comprehensive effects of these two factors cause unclear variation in flame front stability at different initial temperatures.

    Fig.6 shows the evolution of flame radius versus time at various initial pressures,temperatures and equivalence ratios.The evolution of flame radius versus time is linear under all conditions.Increasing speed of flame radius versus time is lower with the initial pressure increasing,which indicates that the flame propagation tends to be retarded.At the same time,the increasing speed of flame radius versus time under the condition that the initial temperature is 390 K is the same as that for 420 K.However,with the initial temperature increasing from 420 K to 450 K,the increasing speed of flame radius versus time is enhanced.Furthermore,with the equivalence ratio increasing from 0.9 to 1.5,the increasing speed of flame radius versus time increases initially and then decreases gradually.The highest increasing speed of flame radius is measured under the condition that the equivalence ratio is 1.2.

    The stretched flame speeds versus the flame radius at various initial pressures,temperatures and equivalence ratios are shown in Fig.7.With the flame expanding,the stretched flame speeds show different trends at different initial pressures,temperatures and equivalence ratios.At the high initial pressures(such as 0.3 MPa,0.5 MPa and 0.7 MPa)and the equivalence ratios of 0.9 and 1.4,little variation of stretched flame speed versus flame radius is presented.However,with the flame radius increasing,the stretched flame speed decreases at the early stage of flame propagation and increases at the subsequent stage of flame propagation under the conditions that the initial pressure is 0.1 MPa and the equivalence ratios are 1.2 and 1.3.In addition,the stretched flame speed increases slightly with the increase of flame radius at the equivalence ratios of 1.0 and 1.1.

    Fig.5 Effect of initial temperature on flame propagation characteristics(φ=1.0,p=0.1 MPa).

    Fig.8 shows a selection of experimental data displaying the variations of stretched flame speed with total stretch rate at various initial pressures,temperatures and equivalence ratios.The evolution of the stretched flame speed versus the stretch rate is about linear under the conditions that the initial pressures are high and the equivalence ratios are 0.9,1.0,1.1 and 1.4.However,the trends are not linear under the conditions that the initial pressure is 0.1 MPa and the equivalence ratios are 1.2 and 1.3.Extrapolations of the datas in Fig.8 to a zero stretch rate yield the unstretched flame speed and the gradient gives the negative value of Markstein length.With the stretch rate increasing,the stretched flame speeds decrease,and the gradients of the lines are negative values,which represent the positive values of Markstein length at the initial pressures and temperatures and over the equivalence ratio range considered.

    4.2.Combustion stability of RP-3 kerosene

    Markstein length can be used to quantify the sensitivity of a flame on stretch.14A positive value ofLbindicates thatthe flametendsto restrain protuberancesin the flame front and this tendency causes a stable flame.Furthermore,greater positive value ofLbindicates that the flame is more stable.However,a negative value ofLbmeans that the stretched flame speed increases with the stretch rate increasing,and this tendency increases the instability of flame.

    Fig.6 Evolution of flame radius versus time.

    Fig.7 Variations of stretched flame speed with flame radius.

    Fig.8 Variations of stretched flame speed with flame stretch.

    Fig.9 Variations of Markstein length with equivalence ratio.

    Fig.10 Variations of unstretched flame speed and laminar combustion speed with equivalence ratio.

    Fig.9 shows the evolution of Markstein length versus the equivalence ratio at various initial pressures and temperatures.The Markstein length shows a decrease trend with the increase of equivalence ratio at all initial pressure and temperature conditions.This suggests that the flame front instability is enhanced with the increase of equivalence ratio.With the equivalence ratio increasing to 1.4 or 1.5 at the initial pressure of 0.5 MPa or 0.1 MPa,the negative value ofLbindicates that the flame front is unstable,which is consistent with the results presented in Fig.4.

    Fig.11 Experimental and simulated laminar combustion speeds of Chinese RP-3 kerosene.

    Fig.12 Experimental laminar combustion speeds of Chinese RP-3 kerosene,Jet A and Jet A-1.

    Furthermore,with the initial pressure increasing,the flame instability is enhanced,which can be reflected through decreasing values ofLb.As discussed by Vukadinovic et al.10,the flame thickness was a crucial parameter which can explain a decrease in flame front stability with pressure rising.Also in others’experimental works,19,20the flame thickness was described as basic parameter for the flame front stability in the case of pressure change.Therefore,with the initial pressure increasing,the flame thickness decreases,which causes the flame front more sensitive to disturbances.It can also be observed that there is more obvious difference between Markstein lengths at 0.1 MPa and 0.3 MPa than that at higher pressures of 0.3 MPa and 0.5 MPa,which indicates that the dependency of Markstein length on the initial pressure decreases.The reason of that maybe is that the changes in the flame thickness introduced by raising the pressure from 0.1 MPa to 0.3 MPa and from 0.3 MPa to 0.5 MPa are different.Compared with the condition at low pressure levels,an increase in the pressure causes smaller flame thickness variation at higher pressure levels.Therefore,the stability of the flame front is less affected.

    However,in contrast to the initial pressure in fluence,the effect of the initial temperature on the Markstein length is unclear.The increase of the initial temperature leads to a slight decrease in Markstein length over the equivalence ratio range of 0.9–1.1,but over the equivalence ratio range of 1.2–1.5,with the initial temperature increasing,the increase in Markstein length is little.

    4.3.Laminar combustion speed of RP-3 kerosene

    Fig.10 shows the unstretched flame speed and the laminar combustion speed versus the equivalence ratio at various initial pressures and temperatures.The unstretched flame speed and laminar combustion speed of the fuel exhibit the theoretically expected behavior.21With the initial temperature increasing,the unstretched flame speed and the laminar combustion speed increase.The effect of the equivalence ratio on the laminar combustion speed also exhibits the theoretical expectation for fuels consisting ofhydrocarbons only.With the equivalence ratio increasing from 0.7 to 1.5,the unstretched flame speed and the laminar combustion speed increase initially and then decrease gradually.The highest unstretched flame speed and laminar combustion speed are observed under fuel rich condition(the equivalence ratio is 1.2).

    Furthermore,as shown in Fig.10,with the initial pressure increasing,the laminar combustion speed decreases over the equivalence ratio range of 0.7–1.5 and at the initial temperature of 390 K.The initial pressure has two types of effects on the flame22:the chemical effect and the thermal effect.With the chemical effect,the flame speed decreases with the initial pressure increasing.However,with the thermal effect,the reaction temperature will increase with the initial pressure increasing,which will accelerate the reaction rate.According to the experimental results in the present study,the gaining from the thermal effect cannot compensate the loss due to the chemical effect.Therefore,the laminar combustion speed will decrease with the increase of the initial pressure.

    As discussed by Zeng et al.,23a surrogate fuel was selected for RP-3 kerosene and the chemical reaction mechanism(including 150 species and 591 reactions)of this surrogate fuel was constructed.The simulated auto-ignition delay time of this surrogate fuel using this reaction mechanism excellently agreed with the corresponding experimental data of RP-3 kerosene.In the present work,the laminar combustion speeds of this surrogate fuel are simulated by CHEMKIN PRO release’s flame_speed model under certain conditions using this reaction mechanism as shown in Fig.11 and the comparisons between the simulated and the experimental data are shown in Table 2.The thermodynamics data and transport data of the surrogate fuel used in the simulation were also discussed by Zeng et al.,23and the datas of grid properties and stream properties have no effect on the simulated results.

    From Fig.11 and Table 2,we can see that the simulated laminar combustion speeds of this surrogate fuel using this chemical reaction mechanism agree with the corresponding experimental data of RP-3 kerosene within~10%deviation over the equivalence ratio range of 0.8–1.5,and at the initial pressures of 0.1 and 0.5 MPa and the initial temperatures of 390 and 450 K.A surrogate fuel selected must successfully emulate the targeted properties and combustion behavior of the real fuel.24As discussed above,the surrogate fuel for RP-3 kerosene that we selected successfully emulate the auto-ignition and laminar combustion characteristics of RP-3 kerosene.However,we cannot summarize that this surrogate fuel is a good surrogate fuel for RP-3 kerosene because the capabilities of this surrogate fuel to emulate some other physical and chemical properties of RP-3 kerosene are unclear.

    The laminarcombustion speedsofRP-3 kerosene measured in the present work are compared with those of Jet A1,9and Jet A-1 kerosene10under similar conditions as shown in Fig.12.

    Table 2 Experimental and simulated values of laminar combustion speed ul.

    There exists a little discrepancy between these experimental values although under similar conditions.The existing discrepancy could possibly be due to the different chemical properties ofthesefuelsandthedifferent experimentalmethodsemployed.

    5.Conclusions

    The experimental datas of the combustion characteristics of RP-3 kerosene are scarce.So,in the present study,the determinations of the flame structure,laminar combustion speed and Markstein length of RP-3 kerosene are successfully accomplished by employing the combustion chamber method.Furthermore,the influences of initialtemperature,initial pressure and mixture composition on the flame structure,laminar combustion speed and Markstein length are also investigated.The main results are summarized as follows:

    (1)With the initial pressure increasing,the laminar combustion speed and Markstein length of RP-3 kerosene decrease.Increasing the initial pressure leads to a decrease in the flame thickness,and this makes the flame front more sensitive to disturbances.

    (2)With the equivalence ratio increasing from 0.6 to 1.6,the laminar combustion speed of RP-3 kerosene increases initially and then decreases gradually.The highest laminar combustion speed is obtained under fuel rich condition.However,with the equivalence ratio increasing,the Markstein length decreases.

    (3)An increase in the initial temperature from 390 K to 450 K causes an increase in the laminar combustion speed.However,the effect of initial temperature on the Markstein length is unclear.The Markstein length gives a decreasing trend at the equivalence ratios of 0.9,1.0 and 1.1,and an increasing trend at other equivalence ratios.

    Acknowledgments

    The authors appreciate the financial supports from the NationalNaturalScience Foundation ofChina (No.51376133 and No.51506132).

    1.Kumar K,Sung CJ,Hui X.Laminar flame speeds and extinction limits of conventional and alternative jet fuels.Fuel2011;90(3):1004–11.

    2.Bosschaart KJ,Lph DG.The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method.Combust Flame2004;136(3):261–9.

    3.Weiss M,Zarzalis N,Suntz R.Experimental study of Markstein length effects on laminar flamelet velocity in turbulent premixed flames.Combust Flame2008;154(4):671–91.

    4.Gu XJ,Haq MZ,Lawes M,Woolley R.Laminar burning velocity and Markstein lengths of methane–air mixtures.Combust Flame2000;121(2):41–58.

    5.Eisazadeh-Far K,Parsinejad F,Metghalchi H.Flame structure and laminar burning speeds of JP-8/air premixed mixtures at high temperatures and pressures.Fuel2010;89(5):1041–9.

    6.Eisazadeh-Far K,Moghaddas A,Metghalchi H,Keck JC.The effect of diluent on flame structure and laminar burning speeds of JP-8/oxidizer/diluent premixed flames.Fuel2011;90(4):1476–86.Y,Bloomer D,et al.Effects of vitiation and pressure on laminar lf ame speeds of n-decane.Reston:AIAA;2012.Report No.:AIAA-2012-0167.

    9.Singh D,Nishiie TI,Qiao L.Laminar burning speeds and Markstein lengths of n-decane/air,n-decane/O2/He,jet-A/air and S-8/air flames.Reston:AIAA;2010.Report No.:AIAA-2010-0951.

    10.Vukadinovic V,Habisreuther P,Zarzalis N.Influence of pressure and temperature on laminar burning velocity and Markstein length of kerosene Jet A-1:Experimental and numerical study.Fuel2013;111(3):401–10.

    11.Hu EJ,Huang ZH,He JJ,Jin C,Zheng JJ.Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames.IntJHydrogenEnergy2009;34:4876–88.

    12.Bradley D,Hicks RA,Lawes M,Sheppard CGW,Woolley R.The measurement of laminar burning velocities and Markstein lengths for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion chamber.Combust Flame1998;115(1–2):126–44.

    13.Liang YT,Zeng W,Hu E.Experimental study of the effect of nitrogen addition on gas explosion.J Loss Prev Process Ind2013;26(1):1–9.

    14.Bradley D,Gaskell PH,Gu XJ.Burning velocities,Markstein lengths,and flame quenching for spherical methane-air flames:a computational study.Combust Flame1996;104(1–2):176–98.

    15.Huang ZH,Wang Q,Yu JR,Zhang Y,Zeng K,Miao HY.Measurement of laminar burning velocity of dimethyl ether-air premixed mixtures.Fuel2007;86(15):2360–6.

    16.Burke MP,Chen Z,Ju Y,Dryer FL.Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames.Combust Flame2009;156(4):771–9.

    17.Oran ES,Gardner JH.Chemical-acoustic interactions in combustion systems.Prog Energy Combust Sci1985;11(4):253–76.

    18.Jomaas G,Law CK,Bechtold JK.On transition to cellularity in expanding spherical flames.J Fluid Mech2007;583:1–26.

    19.Gu X,Huang ZH,Wu S,Li Q.Laminar burning velocities and flame instabilities of butanol isomers-air mixtures.Combust Flame2010;157(2):2318–25.

    7.Kelley AP,Smallbone AJ,Zhu D,Law CK.Laminar flame speeds of C5 to C8 n-alkanes at elevated pressures and temperatures.Reston:AIAA;2010.Report No.:AIAA-2010-0774.

    8.Fuller CC,Gokulakrishnan P,Klassen MS,Adusumilli S,Kochar

    20.Law CK,Jomaas G,Bechtold JK.Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures:theory and experiment.ProcCombustInst2005;30(1):159–67.

    21.Warnatz J,Maas U,Dibble RW.Combustion.Berlin:Springer;2000.

    22.Jiang D,Chen C,Yang J,Yang Z.Advanced internal combustion engine fundamental.Xi’an:Xi’an Jiaotong University Press;2006.p.249–61.

    23.Zeng W,Li HX,Chen BD,Ma HA.Experimental and kinetic modeling study of ignition characteristics of Chinese RP-3 kerosene.Combust Sci Technol2015;187(3):396–409.

    24.Kim D,Martz J,Angela Violi.A surrogate for emulating the physical and chemical properties of conventional jet fuel.Combust Flame2014;161(6):1489–98.

    14 May 2015;revised 4 December 2015;accepted 11 January 2016

    Available online 24 February 2016

    *Corresponding author.Tel.:+86 2489723722.

    E-mail addresses:mahongan_sy@163.com(H.Ma),xmz@dlut.edu.cn(M.Xie),zengwen928@sohu.com(W.Zeng),baodong_chen@sina.com(B.Chen).

    Peer review under responsibility of Editorial Committee of CJA.

    Ma Honganreceived the M.S.degree in Aerospace Propulsion Theory and Engineering from Shenyang Aerospace University in 2006,and then became a teacher there.Now he will get the Ph.D.degree at School of Energy and Power Engineering,Dalian University of Technology.His main research interests are the experimental and simulated study on the combustion process in the aero-engine combustor.

    Xie Maozhaois a professor at School of Energy and Power Engineering,Dalian University of Technology.His area of research includes simulations of the combustion process in the internal combustion engine and the combustion characteristics of fuel.

    Zeng Wenis a professor at Liaoning Key Laboratory of Advanced Test Technology for Aerospace Propulsion System,Shenyang Aerospace University.He received the Ph.D.degree from the School of Energy and Power Engineering,Dalian University of Technology in 2003.His current research interests are the combustion process in the aero-engine combustor and the combustion characteristics of kerosene.

    Chen Baodongis a professor at Liaoning Key Laboratory of Advanced Test Technology for Aerospace Propulsion System,Shenyang Aerospace University.His area of research includes the new surrogate fuel for kerosene and the advanced combustion technology in the aeroengine.

    色综合色国产| 免费高清在线观看视频在线观看| 久久这里有精品视频免费| 国产黄频视频在线观看| 国产一区二区三区综合在线观看 | 一级毛片 在线播放| 亚洲av日韩在线播放| 日韩不卡一区二区三区视频在线| 亚洲aⅴ乱码一区二区在线播放| 国产视频内射| 97超碰精品成人国产| 99精国产麻豆久久婷婷| 一级毛片 在线播放| 亚洲高清免费不卡视频| 欧美高清性xxxxhd video| 亚洲欧美一区二区三区黑人 | 自拍欧美九色日韩亚洲蝌蚪91 | 如何舔出高潮| 91精品一卡2卡3卡4卡| 亚洲精品aⅴ在线观看| 国产精品国产三级国产av玫瑰| 国产成人免费无遮挡视频| 国产69精品久久久久777片| 久久这里有精品视频免费| 国产免费一级a男人的天堂| 日本vs欧美在线观看视频 | 黄片无遮挡物在线观看| 在线 av 中文字幕| 久久久久人妻精品一区果冻| 亚洲国产av新网站| 国内少妇人妻偷人精品xxx网站| 欧美激情国产日韩精品一区| kizo精华| 黑人高潮一二区| 最黄视频免费看| 少妇人妻一区二区三区视频| 久久精品久久久久久噜噜老黄| 日韩人妻高清精品专区| 中文欧美无线码| 日本与韩国留学比较| 纵有疾风起免费观看全集完整版| 五月开心婷婷网| 人妻 亚洲 视频| 中文字幕制服av| 久久久久精品性色| 伦理电影免费视频| 日本猛色少妇xxxxx猛交久久| 18禁裸乳无遮挡动漫免费视频| 26uuu在线亚洲综合色| 十分钟在线观看高清视频www | 精品亚洲乱码少妇综合久久| 久久久久久伊人网av| 欧美zozozo另类| 丰满迷人的少妇在线观看| 国国产精品蜜臀av免费| 成人漫画全彩无遮挡| 久久6这里有精品| 亚洲欧美中文字幕日韩二区| 极品教师在线视频| 国产一区有黄有色的免费视频| 少妇丰满av| 亚洲人与动物交配视频| 99久久中文字幕三级久久日本| 日本wwww免费看| av免费观看日本| 久久久久精品久久久久真实原创| 精品国产三级普通话版| 看非洲黑人一级黄片| 国产伦精品一区二区三区视频9| 久久久久精品久久久久真实原创| 汤姆久久久久久久影院中文字幕| 国产成人精品久久久久久| 日本-黄色视频高清免费观看| 日韩人妻高清精品专区| 我的女老师完整版在线观看| 丝袜脚勾引网站| 成人一区二区视频在线观看| 国产精品国产三级专区第一集| 日韩强制内射视频| 18禁动态无遮挡网站| 九草在线视频观看| www.色视频.com| 欧美zozozo另类| 国产久久久一区二区三区| 黑丝袜美女国产一区| 久久久久久久久大av| 亚洲综合精品二区| 午夜免费观看性视频| freevideosex欧美| 亚洲aⅴ乱码一区二区在线播放| 成年av动漫网址| 国产黄片美女视频| 欧美精品国产亚洲| 成年免费大片在线观看| 人妻制服诱惑在线中文字幕| 97超视频在线观看视频| 狂野欧美白嫩少妇大欣赏| 97超碰精品成人国产| 亚洲欧美日韩无卡精品| 丰满少妇做爰视频| 久热这里只有精品99| 亚洲精品乱码久久久久久按摩| 国产精品爽爽va在线观看网站| 久久人人爽人人片av| 人妻一区二区av| 国产 一区精品| 高清不卡的av网站| 在线观看一区二区三区激情| 国产极品天堂在线| 美女福利国产在线 | 老司机影院毛片| 99久久中文字幕三级久久日本| 在线 av 中文字幕| 亚洲欧美日韩东京热| 视频区图区小说| 99久久综合免费| 免费黄频网站在线观看国产| 日日啪夜夜撸| 午夜福利视频精品| 一个人免费看片子| 日韩欧美 国产精品| 男女国产视频网站| 大片电影免费在线观看免费| 色哟哟·www| 久久久久性生活片| 久久国产精品大桥未久av | 高清欧美精品videossex| 尤物成人国产欧美一区二区三区| 欧美xxⅹ黑人| 国产精品精品国产色婷婷| 美女视频免费永久观看网站| 色综合色国产| 各种免费的搞黄视频| 男人爽女人下面视频在线观看| 午夜视频国产福利| 日本与韩国留学比较| 国产精品女同一区二区软件| 极品少妇高潮喷水抽搐| 久久久亚洲精品成人影院| 观看美女的网站| 久久久久久久国产电影| 午夜福利网站1000一区二区三区| 观看美女的网站| 亚洲国产精品国产精品| 成年美女黄网站色视频大全免费 | 国产精品一及| 久久久久国产精品人妻一区二区| 女人久久www免费人成看片| 七月丁香在线播放| 一级黄片播放器| 不卡视频在线观看欧美| 爱豆传媒免费全集在线观看| 性色av一级| 看十八女毛片水多多多| 色哟哟·www| 久久久久性生活片| 天堂俺去俺来也www色官网| 观看av在线不卡| 精品久久久久久久久亚洲| 免费观看性生交大片5| 久久久久精品性色| 97超碰精品成人国产| 亚洲激情五月婷婷啪啪| 麻豆国产97在线/欧美| 91精品伊人久久大香线蕉| 在线 av 中文字幕| 国产色爽女视频免费观看| 在线播放无遮挡| 欧美日韩综合久久久久久| 久久久成人免费电影| 久久6这里有精品| 久热久热在线精品观看| 欧美老熟妇乱子伦牲交| 亚洲精品亚洲一区二区| 国产精品三级大全| 男人和女人高潮做爰伦理| 新久久久久国产一级毛片| 黄色日韩在线| 亚洲欧美成人综合另类久久久| 国产精品精品国产色婷婷| 麻豆精品久久久久久蜜桃| 另类亚洲欧美激情| 天天躁夜夜躁狠狠久久av| 少妇的逼好多水| 亚洲综合精品二区| 国产一级毛片在线| 国产av一区二区精品久久 | 色综合色国产| 干丝袜人妻中文字幕| 国产av一区二区精品久久 | 亚洲性久久影院| 九草在线视频观看| av网站免费在线观看视频| 国产亚洲5aaaaa淫片| 亚洲自偷自拍三级| 少妇猛男粗大的猛烈进出视频| 狂野欧美白嫩少妇大欣赏| 又爽又黄a免费视频| 黄色一级大片看看| 免费高清在线观看视频在线观看| 久久久国产一区二区| 精品少妇久久久久久888优播| 国产乱来视频区| 欧美 日韩 精品 国产| 日本黄色日本黄色录像| 黄片无遮挡物在线观看| 我要看日韩黄色一级片| 99热6这里只有精品| 内射极品少妇av片p| 国产精品成人在线| 亚洲av电影在线观看一区二区三区| 91久久精品国产一区二区成人| 亚洲欧美日韩另类电影网站 | 国产色爽女视频免费观看| 国产精品一区二区三区四区免费观看| 午夜日本视频在线| 五月玫瑰六月丁香| 99久久精品国产国产毛片| 国产91av在线免费观看| 亚洲欧美日韩东京热| 日韩av不卡免费在线播放| 各种免费的搞黄视频| 春色校园在线视频观看| 香蕉精品网在线| 亚洲无线观看免费| 亚洲av中文av极速乱| 狂野欧美激情性xxxx在线观看| 干丝袜人妻中文字幕| 插逼视频在线观看| 国产一区亚洲一区在线观看| 亚洲内射少妇av| 日本与韩国留学比较| 久久97久久精品| 亚洲精品一区蜜桃| 国产熟女欧美一区二区| 欧美日韩在线观看h| 我要看日韩黄色一级片| 蜜桃久久精品国产亚洲av| 国产黄片美女视频| 97超视频在线观看视频| 精品人妻熟女av久视频| 欧美变态另类bdsm刘玥| 亚洲第一区二区三区不卡| 男女啪啪激烈高潮av片| 激情五月婷婷亚洲| 少妇熟女欧美另类| 国产午夜精品一二区理论片| 男女免费视频国产| 欧美日韩精品成人综合77777| 激情 狠狠 欧美| 亚洲精品国产av成人精品| 女的被弄到高潮叫床怎么办| 日日摸夜夜添夜夜添av毛片| 免费高清在线观看视频在线观看| 伦理电影免费视频| 超碰97精品在线观看| 黑丝袜美女国产一区| 超碰av人人做人人爽久久| 精品久久久噜噜| 国产午夜精品久久久久久一区二区三区| 国内精品宾馆在线| 久久久久久久久久人人人人人人| 久久人人爽av亚洲精品天堂 | 国产在线男女| 中文天堂在线官网| 久久久精品94久久精品| 亚洲国产精品成人久久小说| 涩涩av久久男人的天堂| 你懂的网址亚洲精品在线观看| 精品一区二区免费观看| 国产成人免费无遮挡视频| 亚洲精品乱码久久久v下载方式| 三级经典国产精品| 精品国产三级普通话版| 国产在视频线精品| 久久国产精品男人的天堂亚洲 | 少妇丰满av| 久久久午夜欧美精品| av一本久久久久| 国产免费一区二区三区四区乱码| 色视频www国产| 国产大屁股一区二区在线视频| 中文天堂在线官网| 日韩制服骚丝袜av| 婷婷色综合www| 亚洲人成网站高清观看| 99久久精品一区二区三区| 日韩一本色道免费dvd| 有码 亚洲区| 亚洲人与动物交配视频| 精品人妻一区二区三区麻豆| 欧美激情国产日韩精品一区| 久久久午夜欧美精品| 少妇人妻 视频| 嫩草影院入口| 国产爽快片一区二区三区| 久久久久久久久久成人| 亚洲精品亚洲一区二区| 国产精品女同一区二区软件| 毛片女人毛片| av专区在线播放| 只有这里有精品99| 夜夜骑夜夜射夜夜干| h视频一区二区三区| 日日啪夜夜撸| 97热精品久久久久久| 少妇精品久久久久久久| 交换朋友夫妻互换小说| 日本猛色少妇xxxxx猛交久久| 久久国内精品自在自线图片| av在线老鸭窝| 亚洲精品亚洲一区二区| 狂野欧美激情性xxxx在线观看| 免费看日本二区| 黄色一级大片看看| 亚洲国产精品专区欧美| 国精品久久久久久国模美| 91精品国产九色| 亚洲成人av在线免费| 国产一区亚洲一区在线观看| 下体分泌物呈黄色| 成人午夜精彩视频在线观看| 亚洲av中文av极速乱| 国产精品人妻久久久影院| 干丝袜人妻中文字幕| 亚洲电影在线观看av| 亚洲精品乱久久久久久| 丝袜脚勾引网站| 高清视频免费观看一区二区| 美女国产视频在线观看| 亚洲成人手机| 青春草视频在线免费观看| 成人毛片60女人毛片免费| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品一区www在线观看| 91狼人影院| 久久精品久久久久久噜噜老黄| 嫩草影院入口| 黄色欧美视频在线观看| 亚洲av中文av极速乱| 久久久久久久精品精品| 中文字幕免费在线视频6| 一个人看的www免费观看视频| 国产精品国产三级国产av玫瑰| 乱系列少妇在线播放| 国产av精品麻豆| 在线观看免费高清a一片| 亚洲国产日韩一区二区| 亚洲欧美日韩卡通动漫| h日本视频在线播放| 在线观看免费高清a一片| 国产在线免费精品| 亚洲成人手机| 插逼视频在线观看| 国产精品熟女久久久久浪| 精品熟女少妇av免费看| 女性被躁到高潮视频| 一级毛片黄色毛片免费观看视频| 午夜福利影视在线免费观看| 肉色欧美久久久久久久蜜桃| av不卡在线播放| 欧美日韩一区二区视频在线观看视频在线| 性色avwww在线观看| 精品国产露脸久久av麻豆| 亚洲成人手机| 一级毛片黄色毛片免费观看视频| 亚洲av免费高清在线观看| 午夜福利在线观看免费完整高清在| 婷婷色综合www| 一级毛片黄色毛片免费观看视频| 日韩亚洲欧美综合| 日韩人妻高清精品专区| 日韩一区二区三区影片| 少妇人妻一区二区三区视频| 成年av动漫网址| 搡女人真爽免费视频火全软件| 国产久久久一区二区三区| 国产精品av视频在线免费观看| 高清毛片免费看| 九九久久精品国产亚洲av麻豆| 亚洲国产精品国产精品| 亚州av有码| 老师上课跳d突然被开到最大视频| 精品一区二区免费观看| 99热这里只有是精品50| 国产精品免费大片| 欧美老熟妇乱子伦牲交| 欧美日韩视频高清一区二区三区二| 亚洲美女黄色视频免费看| 男人狂女人下面高潮的视频| 成人国产麻豆网| 亚洲精品一区蜜桃| 精品午夜福利在线看| 精品一区二区三卡| 国产精品爽爽va在线观看网站| 在线播放无遮挡| 在线观看美女被高潮喷水网站| 亚洲精品一二三| 丰满迷人的少妇在线观看| 亚洲久久久国产精品| av在线播放精品| 看十八女毛片水多多多| 国模一区二区三区四区视频| 夫妻性生交免费视频一级片| 最近手机中文字幕大全| 91久久精品电影网| 在线免费观看不下载黄p国产| freevideosex欧美| 啦啦啦啦在线视频资源| 黄片wwwwww| av线在线观看网站| 日韩大片免费观看网站| 青春草视频在线免费观看| 免费av中文字幕在线| 久久久欧美国产精品| 久久人人爽av亚洲精品天堂 | 99久久精品国产国产毛片| 男女免费视频国产| 亚洲精品第二区| 久久99精品国语久久久| 国产91av在线免费观看| 亚洲精品乱久久久久久| 小蜜桃在线观看免费完整版高清| 午夜免费鲁丝| 成人亚洲精品一区在线观看 | 免费大片黄手机在线观看| 嫩草影院入口| 国产免费一级a男人的天堂| 最近的中文字幕免费完整| 国产精品成人在线| 亚洲美女搞黄在线观看| 亚洲国产欧美在线一区| 亚洲欧美成人精品一区二区| 精品少妇久久久久久888优播| 三级经典国产精品| 男人和女人高潮做爰伦理| 久久久亚洲精品成人影院| 久久精品久久久久久久性| 看非洲黑人一级黄片| 国产日韩欧美亚洲二区| 国产亚洲91精品色在线| 中国美白少妇内射xxxbb| 女人十人毛片免费观看3o分钟| 久久国产精品大桥未久av | 精品视频人人做人人爽| 成人影院久久| 一个人看视频在线观看www免费| 国产精品久久久久久av不卡| 欧美三级亚洲精品| 久久人人爽人人片av| 五月伊人婷婷丁香| 国产高清三级在线| 久久ye,这里只有精品| 日韩,欧美,国产一区二区三区| 婷婷色综合大香蕉| 大片免费播放器 马上看| 岛国毛片在线播放| 久久久精品94久久精品| 青春草视频在线免费观看| 国产一区亚洲一区在线观看| 新久久久久国产一级毛片| 日韩不卡一区二区三区视频在线| 国产精品蜜桃在线观看| 日本色播在线视频| 久久精品久久久久久久性| 午夜福利在线在线| av不卡在线播放| 亚洲电影在线观看av| 18禁裸乳无遮挡免费网站照片| 欧美最新免费一区二区三区| 国精品久久久久久国模美| 国产成人freesex在线| 激情 狠狠 欧美| 国产又色又爽无遮挡免| 亚洲精品国产色婷婷电影| 男女无遮挡免费网站观看| 夫妻午夜视频| 黄色一级大片看看| 日韩亚洲欧美综合| av播播在线观看一区| 国产深夜福利视频在线观看| 精品久久久久久久久av| 看免费成人av毛片| 日本欧美国产在线视频| 国产黄色免费在线视频| 熟妇人妻不卡中文字幕| 精品久久久久久久久av| 黄色配什么色好看| 亚洲精品日本国产第一区| 亚洲欧美精品专区久久| 日日啪夜夜爽| 国产精品三级大全| 国产在线免费精品| 亚洲精品日本国产第一区| 亚洲美女黄色视频免费看| 日日啪夜夜爽| 日韩强制内射视频| av福利片在线观看| 熟女人妻精品中文字幕| 在线观看一区二区三区| 久久久久久久亚洲中文字幕| 丰满迷人的少妇在线观看| av福利片在线观看| 少妇 在线观看| 成人国产麻豆网| 成人一区二区视频在线观看| av在线播放精品| 男女免费视频国产| 91精品国产九色| 国产欧美另类精品又又久久亚洲欧美| 国产成人一区二区在线| 日本一二三区视频观看| 亚洲真实伦在线观看| 精品亚洲乱码少妇综合久久| 国产视频首页在线观看| h日本视频在线播放| 国产人妻一区二区三区在| 婷婷色综合大香蕉| 美女中出高潮动态图| 欧美一区二区亚洲| av.在线天堂| 一级黄片播放器| 九九久久精品国产亚洲av麻豆| 人妻 亚洲 视频| 午夜福利视频精品| 亚洲精品亚洲一区二区| 亚洲国产精品国产精品| 激情 狠狠 欧美| 亚洲成人av在线免费| av不卡在线播放| 国内少妇人妻偷人精品xxx网站| 51国产日韩欧美| 亚洲人与动物交配视频| 亚洲精品aⅴ在线观看| 最近手机中文字幕大全| 一级毛片黄色毛片免费观看视频| av不卡在线播放| 人妻夜夜爽99麻豆av| 熟女人妻精品中文字幕| 国产黄色免费在线视频| 干丝袜人妻中文字幕| 欧美日韩精品成人综合77777| 亚洲人成网站在线播| 久久久久久伊人网av| 亚洲国产毛片av蜜桃av| 2018国产大陆天天弄谢| av视频免费观看在线观看| 欧美一区二区亚洲| 伦理电影大哥的女人| 欧美成人一区二区免费高清观看| 尾随美女入室| 深爱激情五月婷婷| 国产成人一区二区在线| 视频中文字幕在线观看| 99国产精品免费福利视频| 黄色怎么调成土黄色| 人人妻人人澡人人爽人人夜夜| 国产在视频线精品| 人妻夜夜爽99麻豆av| 国产美女午夜福利| 久久99蜜桃精品久久| 中文字幕免费在线视频6| 久久久久视频综合| 亚洲第一av免费看| 久久久精品94久久精品| 欧美激情国产日韩精品一区| 亚洲,一卡二卡三卡| 久久久久久久久久人人人人人人| 亚洲av免费高清在线观看| 日韩一本色道免费dvd| 亚洲av综合色区一区| 精品久久久久久电影网| 欧美一级a爱片免费观看看| 成人特级av手机在线观看| 欧美+日韩+精品| 亚洲成人手机| 久久人妻熟女aⅴ| 国产黄色视频一区二区在线观看| 久久99蜜桃精品久久| 丝瓜视频免费看黄片| 五月玫瑰六月丁香| 国产精品国产av在线观看| av在线播放精品| 一级毛片黄色毛片免费观看视频| 下体分泌物呈黄色| 在线观看免费日韩欧美大片 | 水蜜桃什么品种好| 街头女战士在线观看网站| 老熟女久久久| 国产一区亚洲一区在线观看| 欧美高清成人免费视频www| 噜噜噜噜噜久久久久久91| 亚洲最大成人中文| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产高清在线一区二区三| 最近的中文字幕免费完整| 哪个播放器可以免费观看大片| 免费黄网站久久成人精品| 国产欧美另类精品又又久久亚洲欧美| 国产午夜精品一二区理论片| 人人妻人人添人人爽欧美一区卜 | 精品一区二区免费观看| 国产色婷婷99| 深爱激情五月婷婷| 国产精品一区二区在线观看99| 中文乱码字字幕精品一区二区三区| 久久99精品国语久久久| 亚洲不卡免费看| 免费久久久久久久精品成人欧美视频 | 精品少妇黑人巨大在线播放| 欧美日韩国产mv在线观看视频 | 日韩亚洲欧美综合| 国产精品秋霞免费鲁丝片| 亚洲,欧美,日韩| 最近2019中文字幕mv第一页|