• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulations of high enthalpy flows around entry bodies

    2016-11-23 08:05:09CaiChunpei
    CHINESE JOURNAL OF AERONAUTICS 2016年2期

    Cai Chunpei

    Department of Mechanical Engineering-Engineering Mechanics,Michigan Technological University,Houghton,MI 49931,USA

    Numerical simulations of high enthalpy flows around entry bodies

    Cai Chunpei*

    Department of Mechanical Engineering-Engineering Mechanics,Michigan Technological University,Houghton,MI 49931,USA

    Chemical reactions;Compressible flows;Fluid dynamics;Finite volume methods;Hypersonic flow;Navier–Stokes equations;Numerical method

    Ablation flows around entry bodies are at highly nonequilibrium states.This paper presents comprehensive computational fluid dynamics simulations of such hypersonic flow examples.The computational scheme adopted in this study is based on the Navier–Stokes equations,and it is capable of simulating multiple-dimensional,non-equilibrium,chemically reacting gas flows with multiple species.Finite rate chemical reactions,multiple temperature relaxation processes,and ionizations phenomena with electrons are modeled.Simulation results of several hypersonic gas flows over axisymmetric bodies are presented and compared with results in the literature.It confirms that some past treatment of adopting less species for hypersonic flows is acceptable,and the differences from more species and more chemical reactions are not significant.

    1.Introduction

    Thermal protection systems(TPSs)are essential for the successful operation of space vehicles.1Simulating the hypersonic ablation flows around a TPS system involves many challenges which include,but not limited to,multiple species with chemicalreactionsand complex thermodynamicsrelations,2,3mechanical ablation,4thin shock waves with large gradients and interactions with boundary layers,multiple dimensions with possible surface recessions,multiple temperatures,radiations,and other multiple physics demanding careful modellings.Investigations with experiments are expensive and challenging;hence,we usually rely on computational fluid dynamics(CFD)simulations to investigate these flows.

    In the literature,there are many investigations on hypersonic flows,and only some of them are listed here.Some concentrated on numerical scheme development and parameter effects.5,6Some adopted particle simulation methods,such as the direct simulation Monte Carlo(DSMC),which are quite flexible for rare fied hypersonic flows.7–10Zhong et al.8included 11 species and 31 reactions.Much other works during the past adopted the Navier–Stokes equations(NSEs).Gosse and Candler2modeled the gas flow over a sphere-cone vehicle coupling in the solution of the mass and energy balance with surface reactions at an altitude of 16 km.In that work,gas–surface reactions and surface sublimation were included,and it was found that the predicted surface recession rate for a validation case was lower than that from experimental measurement.Chen and Milos11studied a hypersonic flowfield over a dense carbon-phenolic heat shield under flow conditions typical forearth reentry from a plant-entry mission.The ablation surface conditions of oxidation irradiation and material sublimation were coupled with NSEs and it was found that the surface ablation had only a small impact on the predicted convective heat flux.Huang12concentrated on silicon-based materials,and it was found that the effects from resin materials on the ablation flowfield were appreciable.

    This paper presents some hypersonic flow simulations with an NSE-based CFD solver which can serve as a foundation for further development.The next few sections are organized as follows:in Section 2,some details for the governing equations and numerical schemes are presented;in Section 3,some detailed thermodynamics relations and chemical reaction models are listed,Section 4 includes some simulation results with comparisons and discussions,and Section 5 draws several conclusions.

    2.Governing equations and numerical schemes

    The new CFD solver is based on NSEs.The axis-symmetric NSEs are listed as follows,including some chemical reaction source terms13:

    where ‘‘in” and ‘‘v” represent inviscid and viscous properties;subscripts ‘‘x”and ‘‘r” represent partial derivatives along thexandrdirections;andGvis one source term related to axissymmetry:

    whereuandvare the velocity components along thex-andrdirections,ρ is the mixture density,ρiis the density for theith species,pis the mixture gas pressure,Eis the mixture total internal energy,evthe specific vibrational energy,Dthe diffusion coef ficient,Xthe species concentration,nsthe number of species,ω·the source terms for density,andSvthe source term for vibrational energy.The shear stress tensor τ and the heat fluxqare:

    Before solving Eq.(1),they are non-dimensionalized,and the coordinate system is mapped into a curvilinear system.For in-viscid flux computation,the coefficient matrix needs to be computed and decomposed into an eigenvalue matrix.The Sterge flux scheme is used to compute the fluxes,and the properties at the cell edge are computed with the Roe scheme.14,15

    Once the fluxes across the cell interface are obtained,the source termWfor chemical reaction and vibrational energy relaxation is evaluated.By solving a set of ordinary differential equations(ODEs),dWi/dt=Si,we can update the flowfield properties with these source term contributions.In summary,an update of the flowfield properties from time stepnton+1 is obtained by the following equation:

    whereUni,jare the flow properties for cell(i,j)at momentT=nΔt;Ei+1/2,jare the fluxes across the cell interfacei+1/2 along thex-direction,andFi,j+1/2along they-direction in the same manner asEi;Wni,jare the chemical reaction sources in cell(i,j)with a cell volume ΔV.

    3.Thermodynamics for hot gas and chemical reaction modeling

    For the development of this CFD solver,the chemical reactions are crucial,and much efforts have been spent upon them.There are many curve-fitting results,which are critical for successful simulations of hypersonic flows;one good reference is by Park.16

    3.1.Thermodynamics models for single species hot gas

    The mole specific internal energy and mole specific heat energy at a constant volume for the mixture are computed with different models,and the formulas for monatomic,diatomic,and linear and non-liner polyatomic molecules are different.17For example,the formulas for non-linear polyatomic molecules are:

    wherenis the number of atoms inside the non-linear polyatomic species,and Θvlthe characteristic vibrational temperature for thelth polyatomic species.

    In this work,the viscosity coefficient for theith species,μi,is obtained by curve-fitting:

    whereai,bi,andciare the curve-fitting results18for theith species,andTkis the local temperature.

    For theith species,the thermal conductivity,ki,and the vibrational energy thermal conductivity,kvi,are given by Eucken’s empirical formulas19:

    whereCpiandCviare the constant pressure specific translational energy and constant volume specific translational energy,respectively.

    3.2.Thermal properties for gas mixture

    The bulk viscosity coefficient μ and the conductivity coeff icientsk,kvfor the mixtures are given by Wilke20:

    3.3.Chemical reaction source term computations

    For a chemical reaction system withnsspecies andnrreactions,the general form of therth reaction equation can be written as21:

    One possible method to calculate the energy source term is:

    which is the summation of the rate of change times the formation heat of each species,where ω·iis the generation rate for theith species.

    The forward and backward reaction rates for therth reaction are denoted as

    whereTis the temperature of the reaction.C0r,C1r,C2r,D0r,D1r,andD2rare constants related to the reaction.

    If the mole density for theith species is denoted as[Xi]andCi= ρi/ρ is the mass fraction for theith species,then there is a relation:

    For theith species that is involved in the reactions,we can define:

    The combination and dissociation reactions may involve third-body collisions.A third body which is denoted asMcan be any molecules,atoms,or radicals inside the reaction system,and the efficiencies of different third-bodies may vary.Usually,a third-body in a certain reaction is treated as one ordinary species,and the contributions of all possible thirdbodies to the mole fraction should be considered.Let’s denote the third-body efficiency of speciesjwith the third-body numberiasZij;then,the mole fraction of this third-body should be modified as follows:

    The mass change rate of theith species is calculated as:

    Therefore,the rate of change of[Xi]in therth reaction is given as17:

    wherenjis the number of species plus the number of third bodies.

    A combination of the above relations leads to:

    In the above equation,the following four notations are introduced:

    The creation rate for therth reaction is:

    The net mass creation rate for theith species is calculated by summing up all reactions as follows:

    3.4.Vibration–dissociation coupling model

    For nonequilibrium flows,the dissociation and vibrational energy relaxation have similar behaviors.17In this work,the bi-temperature model by Park is adopted to describe the air dissociation process and the vibrational energy relaxation.

    The above formula is empirical,but it is the most widely adopted model and the results are quite satisfying.In this work,mf=0.5 andnf=0.5.

    3.5.Vibrational–dissociation reaction modeling

    At a thermochemical non-equilibrium state,the characteristic dissociation time scale for air and that for the vibrational energy relaxation time scale are comparable,and the interactions between them can be described with a vibration–dissociation(V–D)coupling model.The bi-temperature model by Park22is used:

    The results from this simple model are satisfying,and in general,mandnare set to 0.5.It shall be mentioned that in the literature,it was argued that for high enthalpy flows,mfshall be taken as 0.7 andnfas 0.3.

    3.6.Vibrational energy relaxation model

    The vibrational energy source termSvforWin Eq.(1)is:

    whereev(T)is the vibrational energy computed by using the equilibrium translational temperature,ev(Tv)is the vibrational energy computed with the vibrational temperature,and τvis the characteristic vibrational temperature relaxation time scale.For a temperature between 3000 K and 8000 K,Milikan and White23provided a formula for the relaxation time for thesth species:

    whereMij=MiMj/(Mi+Mj),njis the number density for thejth species,and the unit for pressurePis atm.

    For a temperature over 8000 K,Park22offered some corrections for the relaxation time scale:

    3.7.Ablation boundary conditions

    A new reaction model for a TPS with silicon-related materials is developed.The silica–carbon reaction is

    To compute the reaction rate,the reaction temperature needs to be determined,which is defined as

    wherepeis the pressure of the gas environment.The mass flow rate of the gaseous product in Eq.(25)is modeled as

    The mass flow rate of the silicon material is given by

    wherem·wis the total mass flow rate injected to the flow field,m·tis the total mass loss rate of the TPS,and ε is the fraction ofm·wtom·t.

    4.Validations and discussions

    To validate the above numerical scheme,the above scheme is incorporated into an in–house software package GRASP24as a new module,and three cases are simulated,all of which are about non-equilibrium flows over an axisymmetric body.The free stream flow is assumed as pure air.

    For the first test case,the simulation parameters and geometry profiles are set to the same as those used by Candler25:the blunted body radius is set toRn=6.35 mm;the free stream Mach number isMa∞=15.3 (orV∞=5280 m/s);T∞=293 K andp∞=664 Pa.In the past,Candler25adopted a model of 7-species and 7-reactions and Coquel26adopted a model of 5-species and 5-reactions.In this work,a model of 11-species and 20-reactions is used;this model was proposed by Gupta and Yosn.27

    Fig.1 compares the results from this work and those by Candler.25The free stream flow is set from the right to the left.In this figure,TandTvrepresent the translational and vibrational temperatures.Fig.1(a)shows the temperature profile along the central stagnation line,while Fig.1(b)shows the ratio of major species mass concentrations of(O,N,O2,N2,NO)along the same stagnation line.As shown,the translational and vibrational temperatures from the simulations in this work and those by Candler have quite close peak values.The corresponding positions for the peak temperature values are close as well,and the mass concentrations along the stagnation line are close.There are appreciable differences between the mass concentration values for N2and O2due to different given free stream values.Behind the shock wave,in general,our simulation results of mass concentrations(O,N,and NO)agree well with Candler’s results.25The minor differences may come from different chemical reaction models.

    Fig.2 illustrates some comparisons with Coquel’s results.26Fig.2(a)is for the temperature results along the stagnation line,while Fig.2(b)the mass concentrations for major species O,N,O2,N2,and NO.As can be seen from these two figures,the translational temperature profiles have quite similar positions while there are appreciable differences between the highest values.The past work by Coquel26presents slightly larger peak values.There are relatively larger differences in the highest vibrational temperatures.The mass concentrations along the stagnation line agree quite well.The free stream flows have the same conditions for N2and O2,while behind the shock wave,atoms O,N,NO and molecules N2,O2have agreement in the mass concentrations.The minor differences are due to the different chemical reaction models.The simulation results from this test case indicate that the physical modeling and the numerical scheme for the NSEs in this work are both reliable;hence,we can proceed to investigate more complex high temperature ablation flows with multiple species and chemical reactions.

    For the second test case,high speed flows over an axisymmetric blunted body are simulated by adopting models with different numbers of species,and the flowfield results are compared.The simulation geometry is available in the literature.12Ablative boundary conditions were applied to simulate the ablation due to the high speed flow.The results of pure air flow(without ablations)and those with ablations are compared.For simulations of this type of high speed flows,accurate chemical models for charge exchanges can directly affect the accuracy of electron number density28,29and several other interesting flowfield properties.Based on thework by Cresswell and Porter30,a 26-species model with 54 chemical reactions was developed which considered resin with siliconrelated species.Bortner31proposed a widely accepted and relatively accurate chemical reaction model in 1966.In the eighties,Parker22summarized the past works on chemical reactions, and proposed some curve-fitting formulas.Resin-based materials which are related with silicon,such as Si,SiO,and SiO2,are considered for the simulations.Ions and electrons are also included in the modeling and the flowfield results are quite comprehensive.In this simulation,a model of 19 species and 34 simplified chemical reactions is considered,and to keep this paper concise,detailed chemical reactions are not provided here.The free stream air flow is set toU∞=5000 m/s and the flight heightH=50 km.Electron densities are set to the same as the ion number densities by using the quasi-neutral charge condition in plasma.Fig.3(a)and(b)presents the translational and vibrational temperature contours.One set of results includes the ablation effects on the blunted surface,while the others do not.By considering the ablation effects,the translational and vibrational temperature values are significantly smaller than the corresponding values in the case without ablations.These results indicate that the thermal protection system is quite effective.It is evident that the 19-species model can capture the flowfield with quite high accuracy.Fig.3(c)and(d)shows the ablation effects on the pressure field and the electron number density.They illustrate that the shock standing off distance is much larger in the situation of considering the ablation effects,probably due to more out-gassing into the main flowfield.Meanwhile,the electron number density is much higher for the ablation flow situation,probably because the surface ablations create larger gas density,and hence higher collision rates.

    Fig.1 An 11-species and 20-reactions model,current vs Candler’s results.25

    Fig.2 An 11-species and 20-reactions model,current vs Coquel’s results.26

    Fig.3 A 19-species and 26-reactions model,U∞=5000 km/s,altitude 50 km.

    The last test case is about hypersonic flows over an axisymmetric double-cone geometry with flow separations at the cone shoulder.The con figuration has a first cone of a half-angle of 25°,and the second cone 55°.Detailed geometry pro files are available in the literature.32Under the experimental condition(RUN 28)33,the incident flow has the following parameters:ρ∞=0.6545 × 10-3kg/m3,U∞=2664.00 m/s,T∞=185.56 KT∞=293.33 K,Ma∞=9.59,Re=13090

    The RUN 28 with the above flow condition is the most difficult one to be calculated due to the large flow separation region.The first cone produces an attached shock wave,and the second cone with a large angle produces one detached bow shock.The two shocks interact to form a transmitted shock that strikes the second cone surface over the cone–cone junction.The adverse pressure gradient due to the cone junction and the transmitted shock generate a large region of the separated flow that produces its own separation shock.This shock interacts with the attached shock from the first,altering the interaction with the detached shock from the second cone.This in turn affects the size of the separation region.The shock interaction produces very high surface pressure and heat transfer rates where the transmitted shock impinges on the second cone.

    Fig.4 A 20-species model.

    In the literature,there are many CFD simulations,for example,Xu et al.32provided detailed flow patterns.Most of them used pure air assumptions without considerations of chemical reactions.In this work,the flowfield is simulated with two scenarios,aiming to investigate the chemical reaction effects on the flowfield.One simulation adopts pure air of two species,O2and N2,and no chemical reactions;this corresponds to a frozen flow situation.The other simulation adopts 20 species and 26 chemical reactions,with different finite rate chemical reactions,and for simplicity,the details for these equations are omitted here.Fig.4(a)compares the surface pressure distributionsCp,and Fig.4(b)shows the corresponding surface heat coefficientsCq.Lis the base cone length.As can be seen,only minor differences exist between the two sets of simulation results,and it can be concluded that a consideration of multiple species actually only creates minor effects on the surface properties.Fig.4(c)and(d)shows the pressure and temperature field results from the two simulations.As can be seen from these two figures,the shock–shock interactions and other flow field patterns are well captured.While the simulation with a consideration of chemical reactions yields slightly minor differences in the temperature field,the pressure field is almost identical.

    5.Conclusions

    This paper presented some work on simulating high speed chemically reacting complex flows with multiple species,with a newly developed NSEs-based CFD solver.Chemical reactions with multi-species,multi-dimensions,and structured mesh are adopted to ensure high accuracy for the simulations.Three benchmark test cases are simulated and compared.For the first test case,some simulation results along the stagnation line were compared with past results in the literature,and acceptable agreements are observed.For the second test case,a model of 19-species was adopted,and a consideration of surface ablation yields a much cooler flowfield and a larger shock standing off distance-probably due to the mass release into the flowfield and energy absorption during the ablation.For the third test case,considerations of multiple species and finite rate chemical reactions actually do not yield appreciable differences from the case of pure air flow without chemical reaction.There were many CFD simulations in the past and the chemical reactions were neglected—our simulation results confirmed that this treatment was appropriate.

    These simulation results indicate that the simulation solver has good fidelity.The multi-species model for the test cases is suf ficient to capture some fundamental flow field features.Some minor differences can be observed.Including these finite rate chemical reactions,internal energy relaxations,and even ionization allows us to incorporate more physics.There are also many CFD simulations in the literature which neglected the chemical reactions completely—it is a frozen flow assumption.Such treatments can conveniently be achieved by simply switching off some options in this new CFD solver;as such,this solver is quite comprehensive.It may offer us fast baseline estimations without chemical reactions,and it is also feasible to add new chemical reaction models to improve current ones.Hence,it is a reliable platform for further development.

    1.Covington MA,Heinmann JM,Goldsten HE.Performance of a low density ablative heat shield material.Reston:AIAA;2004.Report No.:AIAA-2004-2273.

    2.Gosse R,Candler G.Ablation modeling of electro-magnetic lunched projectile for access to space.Reston:AIAA;2007.Report No.:AIAA-2007-1210.

    3.Suzuki T,Furudate M,Sawada L.Unified calculation of hypersonic flowfield for a reentry vehicle.J Thermophys Heat Transfer2002;16(1):94–100.

    4.Palaniathan R,Bindu S.Modeling of mechanical ablation in thermal protection system.J Spacecraft Rockets2005;42(6):971–9.

    5.Ma Y,Zhong X.Receptivity of a supersonic boundary layer over a flat plate,Part 3:Effect of different free stream disturbances.J Fluid Mech2005;532:63–109.

    6.Ma Y,Zhong X.Receptivity of a supersonic boundary layer over a flat plate,Part 1:Wave structures and interactions.J Fluid Mech2003;488:31–78.

    7.Bird GA.Molecular gasdynamics and numerical simulation methods.1st ed.New York:Oxford University Press;1994.

    8.Zhong JQ,Ozawa T,Levin D.Comparison of high-altitude hypersonic wake flows of slender and blunt bodies.AIAA J2008;46(1):251–62.

    9.Zhong JQ,Ozawa T,Levin DA.Modeling of stardust reentry ablation flows in the near-continuum flight regimes.AIAA J2008;46(10):2568–81.

    10.Boyd ID,Zhong JQ,Levin D,Jenniskens P.Flow and radiation analysis for stardust entry at high altitude.Reston:AIAA;2008.Report No.:AIAA-2008-1215.

    11.Chen YK,Milos FS.Navier-Stokes solutions with finite rate ablation for planetary mission earth reentries.J Spacecraft Rocket2005;42(6):961–70.

    12.Huang X.Numerical studies on the ablation flows around blunted bodies of resin materials[dissertation].Beijing:Institute of Mechanics,Chinese Academy of Sciences;2008.

    13.Anderson JD.Hypersonic and high temperature gas dynamics.2nd ed.Virginia:AIAA Education Series,AIAA Inc.;2006.

    14.Roe P.Approximate Riemann solvers,parameter vectors,and difference schemes.J Comput Phys1981;43(2):357–72.

    15.Hirsch C.Numericalcomputationofinternalandexternal flows.New Jersey:Wiley and Sons;2002.p.137–42.

    16.Park C.Nonequilibrium hypersonic aerothermodynamics.New Jersey:Wiley and Sons;1990,p.99–102.

    17.Vincenti WG,Kruger CH.Introduction to physical gas dynamics.Malabar,Florida:Krieger Publishing;1975.p.122–38.

    18.Blottner F,Johnson M,Ellis M.Chemically reacting viscous flow program for multi-component gas mixture.Albuquerque(NM):Sandia Lab;1971.Report No.:SC-RR-70-754.

    19.Eucken A.Allgemeine gesetzma¨βigkeiten,fu¨r das wu¨rmeleitvermo¨gen verschiedener stoffarten und aggregatzusta¨nde.Forschung Gabiete Ingenieur1940;11(1):6–20.

    20.Wilke CR.A viscosity equation for gas mixtures.J Chem Phys1950;18(4):517–9.

    21.Turns S.An introduction to combustion:concepts and applications.2nd ed.Columbus,OH:McGraw Hill;2010.p.228–31.

    22.Park C.Problem of rate chemistry in the flight regimes of aeroassisted orbital transfer vehicles.Prog Astronaut Aeronaut1985;96:511–37.

    23.Milikan RC,White DR.Systematics of vibrational relaxation.J Chem Phys1963;39(12):3029–213.

    24.Liu H,Cai C,Zou C.An object-oriented implementation of the DSMC method.Comput Fluids2012;57:65–75.

    25.Candler G.The computation of weakly ionized hypersonic flows in thermo-chemical nonequilibrium[dissertation].Stanford(CA):Stanford University;1998.

    26.Coquel F,Flament C.Viscous nonequilibrium flow calculations.9th ed.Boston:Birkhauser;1992.p.299.

    27.Gupta R,Yosn J.A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 Kel.Washington,D.C.:NASA;1990.Report No.:NASA Internal Note 1232.

    28.Starkey RP.Electromagnetic wave/magneto-active plasma sheathe interaction for hypersonic vehicle telemetry blackout analysis.Reston:AIAA;2003.Report No.:AIAA-2003-4167.

    29.Mather DE,Pasqual JM,Sillence JP.Radio frequency(RF)blackout during hypersonic reentry.Reston:AIAA;2005.Report No.:AIAA-2005-3443.

    30.Cresswell K,Porter B.Material effects of low temperature ablators on hypersonic wave properties of slender bodies[Internet].TIS67SD255,General Electric Co.,Internal Report;1967.

    31.Bortner MH.Suggested standard chemical kinetics for flow field calculations–a consensus opinion14th AMRAC proceeding,institute scientific and technology Report.Michigan:University of Michigan;1966.p.569–81.

    32.Xu K,Mao M,Tang L.A multi-dimensional gas-kinetic BGK scheme for hypersonic viscous flow.J Comput Phys2005;203(10):405–21.

    33.Holden MS,Wadhams TP.A review of experimental studies for DSMC and Navier–Stokes code validation in Laminar regions of shock/shock and shock boundary layer interaction including gas effects in hyper-velocity flows.Reston:AIAA;2003.Report No.:AIAA-2003-3641.

    12 May 2015;revised 28 July 2015;accepted 21 September 2015

    Available online 24 February 2016

    ?2016 Chinese Society of Aeronautics and Astronautics.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Tel.:+1 575 9155687.

    E-mail address:ccai@mtu.edu.

    Peer review under responsibility of Editorial Committee of CJA.

    Cai Chunpeiis an associate professor and Ph.D.advisor in the Department of Mechanical Engineering-Engineering Mechanics at Michigan Technological University in Houghton,USA.He received his B.E.degree in naval architecture from Harbin Engineering University in 1994,M.S.degree in fluid mechanics from the Institute of Mechanics at Chinese Academy of Sciences in 1997,M.S.degree in mechanical engineering from Cornell University in 1999,and Ph.D.degree in aerospace engineering from University of Michigan in 2005.His research area includes nonequilibrium gasdynamics,plasma flows,space engineering,and computational fluid dynamics.

    另类精品久久| av福利片在线观看| 日韩av在线免费看完整版不卡| 女人精品久久久久毛片| 美女内射精品一级片tv| 丝瓜视频免费看黄片| 赤兔流量卡办理| 国产精品一区二区在线观看99| 91久久精品电影网| 五月伊人婷婷丁香| 丰满人妻一区二区三区视频av| 丰满迷人的少妇在线观看| 激情五月婷婷亚洲| 男女国产视频网站| 久久久久久久久久久免费av| 久久国产精品男人的天堂亚洲 | 亚洲av福利一区| 大片电影免费在线观看免费| 国产男女内射视频| 久久人人爽av亚洲精品天堂| 久久青草综合色| 亚洲高清免费不卡视频| 女性被躁到高潮视频| 国产精品一二三区在线看| 欧美日韩亚洲高清精品| 国产精品麻豆人妻色哟哟久久| 女人久久www免费人成看片| 哪个播放器可以免费观看大片| 有码 亚洲区| 欧美 亚洲 国产 日韩一| 十八禁高潮呻吟视频 | 人妻人人澡人人爽人人| 丝袜喷水一区| 国产免费一级a男人的天堂| 日韩不卡一区二区三区视频在线| 美女国产视频在线观看| 欧美97在线视频| 精品亚洲成国产av| 免费人成在线观看视频色| 国产有黄有色有爽视频| 最近最新中文字幕免费大全7| 好男人视频免费观看在线| 在线亚洲精品国产二区图片欧美 | 熟女电影av网| 精品久久久久久电影网| 精品卡一卡二卡四卡免费| 亚洲国产成人一精品久久久| 亚洲av二区三区四区| 又大又黄又爽视频免费| 丰满少妇做爰视频| 亚洲国产精品国产精品| 中文字幕人妻丝袜制服| 日韩大片免费观看网站| 热99国产精品久久久久久7| 国产亚洲av片在线观看秒播厂| 大陆偷拍与自拍| 亚洲伊人久久精品综合| 亚洲国产最新在线播放| 欧美97在线视频| 国产免费一级a男人的天堂| 中文精品一卡2卡3卡4更新| 美女cb高潮喷水在线观看| 亚洲图色成人| 欧美三级亚洲精品| 丰满乱子伦码专区| 亚洲精品第二区| kizo精华| 国产精品福利在线免费观看| 久久6这里有精品| 晚上一个人看的免费电影| 欧美变态另类bdsm刘玥| 国产精品成人在线| 久久国产亚洲av麻豆专区| 狠狠精品人妻久久久久久综合| 美女中出高潮动态图| 女性生殖器流出的白浆| 各种免费的搞黄视频| 国产亚洲精品久久久com| 日本欧美视频一区| 在线观看av片永久免费下载| 97超视频在线观看视频| 简卡轻食公司| 欧美+日韩+精品| 深夜a级毛片| 最近中文字幕高清免费大全6| 91精品国产九色| 九草在线视频观看| 99久久中文字幕三级久久日本| 精品久久久精品久久久| 黄色欧美视频在线观看| 亚洲av中文av极速乱| 国产视频首页在线观看| 欧美 日韩 精品 国产| 亚洲国产日韩一区二区| 草草在线视频免费看| 国产免费视频播放在线视频| 久久精品夜色国产| 亚洲av在线观看美女高潮| 麻豆成人av视频| 街头女战士在线观看网站| 嫩草影院新地址| 国产欧美日韩一区二区三区在线 | 国产极品粉嫩免费观看在线 | 国产精品99久久99久久久不卡 | 日本av免费视频播放| 嫩草影院新地址| 久久久久久人妻| 99精国产麻豆久久婷婷| 有码 亚洲区| 麻豆乱淫一区二区| 日本黄色日本黄色录像| 一级毛片 在线播放| 久久国内精品自在自线图片| 在线观看免费视频网站a站| 久久久亚洲精品成人影院| 亚洲国产精品一区三区| 精品99又大又爽又粗少妇毛片| 大陆偷拍与自拍| 国产亚洲91精品色在线| 天堂俺去俺来也www色官网| 伦精品一区二区三区| 国产熟女午夜一区二区三区 | 欧美成人精品欧美一级黄| 久久鲁丝午夜福利片| 亚洲欧美成人综合另类久久久| 成人无遮挡网站| 乱人伦中国视频| 日本-黄色视频高清免费观看| 九色成人免费人妻av| 国产精品国产三级国产专区5o| 日韩,欧美,国产一区二区三区| 久久久久精品久久久久真实原创| 国产淫片久久久久久久久| 日韩精品免费视频一区二区三区 | 中文精品一卡2卡3卡4更新| 国产精品嫩草影院av在线观看| 久久这里有精品视频免费| 日日啪夜夜撸| 精品少妇内射三级| 在线观看免费视频网站a站| 国产精品成人在线| 亚洲欧美清纯卡通| 久久亚洲国产成人精品v| 26uuu在线亚洲综合色| 最后的刺客免费高清国语| 夜夜爽夜夜爽视频| 日本与韩国留学比较| 久久 成人 亚洲| 涩涩av久久男人的天堂| 亚洲av中文av极速乱| av在线播放精品| videos熟女内射| 边亲边吃奶的免费视频| 亚洲,一卡二卡三卡| 精品亚洲成a人片在线观看| 大话2 男鬼变身卡| 噜噜噜噜噜久久久久久91| 午夜精品国产一区二区电影| 亚洲av欧美aⅴ国产| 欧美性感艳星| 久久久国产欧美日韩av| 亚洲欧美一区二区三区黑人 | 日本色播在线视频| 91久久精品国产一区二区三区| 国产亚洲一区二区精品| 成人午夜精彩视频在线观看| 精品熟女少妇av免费看| 国国产精品蜜臀av免费| 国产亚洲午夜精品一区二区久久| 人妻夜夜爽99麻豆av| 美女大奶头黄色视频| 日本黄大片高清| 深夜a级毛片| 欧美国产精品一级二级三级 | 男人添女人高潮全过程视频| .国产精品久久| 成人黄色视频免费在线看| 免费大片18禁| 国产中年淑女户外野战色| 国产免费又黄又爽又色| 亚洲经典国产精华液单| 国产一区二区在线观看日韩| 我要看日韩黄色一级片| 丝袜脚勾引网站| 99热这里只有是精品50| 国产av码专区亚洲av| www.色视频.com| 男男h啪啪无遮挡| 美女视频免费永久观看网站| 日本黄大片高清| 搡老乐熟女国产| 中文字幕免费在线视频6| 亚洲欧美精品自产自拍| 高清不卡的av网站| 免费黄频网站在线观看国产| 国产一区二区三区av在线| 能在线免费看毛片的网站| 两个人免费观看高清视频 | 欧美精品一区二区大全| 欧美国产精品一级二级三级 | 国产成人精品婷婷| 亚洲美女搞黄在线观看| 成人毛片60女人毛片免费| 国产亚洲最大av| 亚洲人成网站在线播| 我的老师免费观看完整版| 国产综合精华液| 极品少妇高潮喷水抽搐| 天堂中文最新版在线下载| 丰满人妻一区二区三区视频av| 亚洲精品第二区| 亚洲丝袜综合中文字幕| 哪个播放器可以免费观看大片| 国产亚洲精品久久久com| 欧美+日韩+精品| 国产一区亚洲一区在线观看| 女的被弄到高潮叫床怎么办| 91久久精品电影网| 少妇猛男粗大的猛烈进出视频| 国产精品麻豆人妻色哟哟久久| 如日韩欧美国产精品一区二区三区 | 男人舔奶头视频| 男男h啪啪无遮挡| 国产精品国产av在线观看| 九九久久精品国产亚洲av麻豆| 黄色视频在线播放观看不卡| 大陆偷拍与自拍| 美女xxoo啪啪120秒动态图| 精品亚洲成国产av| 最新中文字幕久久久久| 精品人妻熟女av久视频| 久久女婷五月综合色啪小说| 黄色怎么调成土黄色| 国产日韩欧美在线精品| 视频区图区小说| 国产美女午夜福利| 亚洲第一区二区三区不卡| 国产黄片视频在线免费观看| 少妇的逼水好多| 亚洲国产精品专区欧美| 如何舔出高潮| 亚洲激情五月婷婷啪啪| 国产精品久久久久成人av| 久久精品国产亚洲av涩爱| 国产国拍精品亚洲av在线观看| 女的被弄到高潮叫床怎么办| 国产精品偷伦视频观看了| 国内精品宾馆在线| 黄色日韩在线| 黄色怎么调成土黄色| 成年女人在线观看亚洲视频| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产亚洲网站| 久久99一区二区三区| 日日爽夜夜爽网站| 亚洲欧美成人精品一区二区| 一边亲一边摸免费视频| 高清在线视频一区二区三区| 少妇丰满av| 97精品久久久久久久久久精品| 欧美日韩综合久久久久久| 少妇裸体淫交视频免费看高清| 日本欧美视频一区| 丰满人妻一区二区三区视频av| 亚洲国产欧美日韩在线播放 | 香蕉精品网在线| 男的添女的下面高潮视频| 大片免费播放器 马上看| 尾随美女入室| av一本久久久久| 日本91视频免费播放| 3wmmmm亚洲av在线观看| 免费看日本二区| 午夜福利网站1000一区二区三区| 国产精品久久久久久av不卡| 九草在线视频观看| 亚洲精品久久午夜乱码| 国产成人一区二区在线| 搡老乐熟女国产| 夜夜爽夜夜爽视频| 黑人高潮一二区| 婷婷色av中文字幕| 女人久久www免费人成看片| 观看av在线不卡| 男女边吃奶边做爰视频| 精品人妻熟女av久视频| 久久av网站| 精品国产一区二区久久| 亚洲高清免费不卡视频| 精品人妻一区二区三区麻豆| 老司机影院毛片| 又粗又硬又长又爽又黄的视频| 国产精品一区www在线观看| kizo精华| 日韩精品有码人妻一区| 精品卡一卡二卡四卡免费| 大又大粗又爽又黄少妇毛片口| 午夜日本视频在线| 日本av手机在线免费观看| 十八禁高潮呻吟视频 | 夜夜骑夜夜射夜夜干| 亚洲丝袜综合中文字幕| 国产午夜精品久久久久久一区二区三区| 91精品国产国语对白视频| 美女中出高潮动态图| 中文欧美无线码| 六月丁香七月| 国语对白做爰xxxⅹ性视频网站| 免费久久久久久久精品成人欧美视频 | 五月天丁香电影| 欧美高清成人免费视频www| 国产一区二区在线观看日韩| 成年人午夜在线观看视频| 99久久精品一区二区三区| av免费在线看不卡| 精品亚洲成国产av| 18禁裸乳无遮挡动漫免费视频| 老熟女久久久| 国产成人91sexporn| 午夜精品国产一区二区电影| 国产精品无大码| 午夜激情福利司机影院| 亚洲av中文av极速乱| 国产精品久久久久久精品电影小说| 欧美区成人在线视频| 精品少妇内射三级| 免费av不卡在线播放| 啦啦啦中文免费视频观看日本| 人妻一区二区av| 国产视频首页在线观看| 在线播放无遮挡| 日本猛色少妇xxxxx猛交久久| 久久久a久久爽久久v久久| 搡女人真爽免费视频火全软件| 亚洲成人一二三区av| 亚洲av中文av极速乱| 熟女人妻精品中文字幕| 亚洲精品亚洲一区二区| 久久精品国产亚洲网站| 国产黄色免费在线视频| 韩国高清视频一区二区三区| 国产黄频视频在线观看| 天堂俺去俺来也www色官网| 最新的欧美精品一区二区| 最近2019中文字幕mv第一页| 这个男人来自地球电影免费观看 | 在线播放无遮挡| 男女国产视频网站| 熟女av电影| 亚洲精品国产色婷婷电影| av专区在线播放| 久久久国产一区二区| 日本欧美视频一区| 有码 亚洲区| 亚洲丝袜综合中文字幕| 国产欧美日韩精品一区二区| 日韩av免费高清视频| 一级爰片在线观看| 国产成人精品婷婷| 人妻 亚洲 视频| 五月玫瑰六月丁香| 又爽又黄a免费视频| 九九久久精品国产亚洲av麻豆| 蜜桃久久精品国产亚洲av| 精华霜和精华液先用哪个| 国产一级毛片在线| 久久久久精品久久久久真实原创| 久久精品国产a三级三级三级| 亚洲欧洲国产日韩| 亚洲精品一区蜜桃| 我的女老师完整版在线观看| 久久久久久久亚洲中文字幕| 一边亲一边摸免费视频| 另类亚洲欧美激情| 午夜激情久久久久久久| av专区在线播放| √禁漫天堂资源中文www| 日韩电影二区| 97在线视频观看| 亚洲人成网站在线观看播放| 国产精品女同一区二区软件| 黄色配什么色好看| 亚洲高清免费不卡视频| av.在线天堂| 热99国产精品久久久久久7| 大话2 男鬼变身卡| 国产美女午夜福利| av播播在线观看一区| 热re99久久精品国产66热6| 亚洲欧美精品专区久久| 国产欧美日韩一区二区三区在线 | 亚洲婷婷狠狠爱综合网| 国产有黄有色有爽视频| 久久久久精品性色| 久久99精品国语久久久| 美女视频免费永久观看网站| 草草在线视频免费看| 高清在线视频一区二区三区| 国产一区亚洲一区在线观看| 80岁老熟妇乱子伦牲交| 人人澡人人妻人| 日本黄色日本黄色录像| 一区二区三区免费毛片| 亚洲电影在线观看av| 我要看黄色一级片免费的| 欧美三级亚洲精品| 亚洲人与动物交配视频| 自拍偷自拍亚洲精品老妇| 日本黄色片子视频| 最新中文字幕久久久久| 日本91视频免费播放| 在线观看三级黄色| 国产精品人妻久久久久久| 日韩强制内射视频| 久久精品国产亚洲av涩爱| 日日摸夜夜添夜夜爱| av福利片在线观看| 在线 av 中文字幕| 国产亚洲5aaaaa淫片| 亚洲av综合色区一区| 少妇丰满av| 97在线人人人人妻| 亚洲内射少妇av| 欧美高清成人免费视频www| 9色porny在线观看| 国产黄片美女视频| 在现免费观看毛片| 国产亚洲5aaaaa淫片| 久热久热在线精品观看| 草草在线视频免费看| 久久久a久久爽久久v久久| 国产亚洲欧美精品永久| 日韩一区二区视频免费看| 久久影院123| 免费看光身美女| 一二三四中文在线观看免费高清| 国产av精品麻豆| 免费观看的影片在线观看| 永久免费av网站大全| 久久人人爽人人片av| 亚洲美女黄色视频免费看| 国产91av在线免费观看| 亚洲自偷自拍三级| 欧美变态另类bdsm刘玥| 免费观看性生交大片5| av天堂中文字幕网| 亚洲欧美中文字幕日韩二区| 欧美日韩在线观看h| 欧美成人午夜免费资源| 97超视频在线观看视频| 亚洲三级黄色毛片| 97超视频在线观看视频| 国产高清三级在线| 亚洲国产av新网站| 黄色欧美视频在线观看| 青春草亚洲视频在线观看| 亚洲无线观看免费| 美女福利国产在线| 永久网站在线| 建设人人有责人人尽责人人享有的| 欧美日韩视频精品一区| 十八禁高潮呻吟视频 | 国产成人freesex在线| 国产成人a∨麻豆精品| 午夜福利在线观看免费完整高清在| 水蜜桃什么品种好| 免费观看a级毛片全部| 极品少妇高潮喷水抽搐| a级毛片免费高清观看在线播放| 亚洲在久久综合| 啦啦啦视频在线资源免费观看| 大陆偷拍与自拍| 国产精品一区www在线观看| 91aial.com中文字幕在线观看| 久久久久久久国产电影| 五月玫瑰六月丁香| 国产伦在线观看视频一区| 亚洲色图综合在线观看| 亚洲欧美精品自产自拍| 性色av一级| 人人妻人人澡人人看| 国产精品麻豆人妻色哟哟久久| 91久久精品国产一区二区三区| 久久鲁丝午夜福利片| 美女cb高潮喷水在线观看| 亚洲av中文av极速乱| 国产91av在线免费观看| 久久人人爽人人爽人人片va| 国产探花极品一区二区| 99久久精品国产国产毛片| 91午夜精品亚洲一区二区三区| 国产精品伦人一区二区| 日韩三级伦理在线观看| 国产成人一区二区在线| 欧美日韩视频高清一区二区三区二| 国产成人午夜福利电影在线观看| 夫妻午夜视频| 在线观看一区二区三区激情| 色婷婷av一区二区三区视频| 国产亚洲av片在线观看秒播厂| 十分钟在线观看高清视频www | 亚洲av日韩在线播放| 热99国产精品久久久久久7| 欧美三级亚洲精品| 能在线免费看毛片的网站| 国产男女超爽视频在线观看| 一二三四中文在线观看免费高清| 久久久久国产网址| 久久6这里有精品| 黄色一级大片看看| 日本爱情动作片www.在线观看| 亚洲在久久综合| 免费观看性生交大片5| 人妻制服诱惑在线中文字幕| 免费观看无遮挡的男女| h日本视频在线播放| 18禁在线无遮挡免费观看视频| 免费av不卡在线播放| 能在线免费看毛片的网站| 精品国产露脸久久av麻豆| 春色校园在线视频观看| 欧美日韩一区二区视频在线观看视频在线| 99九九在线精品视频 | 午夜老司机福利剧场| 在线天堂最新版资源| 热99国产精品久久久久久7| 成人毛片a级毛片在线播放| 国产中年淑女户外野战色| 亚洲怡红院男人天堂| 亚洲人成网站在线观看播放| 18禁在线无遮挡免费观看视频| 男女边摸边吃奶| 久久久久久人妻| 夫妻午夜视频| 波野结衣二区三区在线| 久久人人爽人人片av| 少妇人妻久久综合中文| a级片在线免费高清观看视频| 大片免费播放器 马上看| 亚洲精品乱码久久久久久按摩| 亚洲图色成人| 中国国产av一级| 在线天堂最新版资源| 欧美3d第一页| 自拍欧美九色日韩亚洲蝌蚪91 | 2021少妇久久久久久久久久久| 亚洲美女黄色视频免费看| 一级爰片在线观看| 91在线精品国自产拍蜜月| 成人毛片60女人毛片免费| 在线亚洲精品国产二区图片欧美 | 国产中年淑女户外野战色| 少妇人妻久久综合中文| 国产淫语在线视频| 我要看日韩黄色一级片| 免费少妇av软件| 插逼视频在线观看| 免费观看的影片在线观看| 纵有疾风起免费观看全集完整版| 欧美日韩av久久| 国产成人精品婷婷| 成年女人在线观看亚洲视频| 亚洲精品国产色婷婷电影| 亚洲在久久综合| 六月丁香七月| 午夜福利在线观看免费完整高清在| 人妻少妇偷人精品九色| 国产精品国产三级专区第一集| 亚洲成人一二三区av| 亚洲欧美成人综合另类久久久| av在线老鸭窝| 一级毛片电影观看| 欧美人与善性xxx| 美女福利国产在线| 免费观看在线日韩| 国产黄色视频一区二区在线观看| 国产精品无大码| 国产在线一区二区三区精| 777米奇影视久久| av视频免费观看在线观看| 少妇裸体淫交视频免费看高清| av有码第一页| 久久国内精品自在自线图片| 久久99一区二区三区| 麻豆乱淫一区二区| 欧美日韩精品成人综合77777| 丝瓜视频免费看黄片| 97超视频在线观看视频| 午夜免费观看性视频| 天堂8中文在线网| 日本黄大片高清| 亚洲不卡免费看| 国产精品一区二区在线不卡| 制服丝袜香蕉在线| 自线自在国产av| 一级二级三级毛片免费看| 亚洲国产精品一区二区三区在线| 国产爽快片一区二区三区| 中国国产av一级| 在线看a的网站| av线在线观看网站| 欧美日韩视频高清一区二区三区二| 91久久精品电影网| av在线app专区| 天美传媒精品一区二区| 日韩av不卡免费在线播放| 久久久国产欧美日韩av| 免费观看无遮挡的男女| 亚洲真实伦在线观看| 日韩电影二区| 最后的刺客免费高清国语| 精品久久久久久久久亚洲| 97超碰精品成人国产| 国产在视频线精品| 少妇丰满av|