• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Test Method for the Static/Moving State of Targets Applied to Airport Surface Surveillance MLAT System

    2016-11-21 06:27:30,,,,

    ,,,,

    1. The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, P.R.China;2. College of Electronic Engineering, University of Electronic Science and Technology of China,Chengdu 611731, P.R.China

    ?

    A Test Method for the Static/Moving State of Targets Applied to Airport Surface Surveillance MLAT System

    HuangRongshun1,PengWe2*,LiJing1,WuHonggang1,LiXingbo1

    1. The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, P.R.China;2. College of Electronic Engineering, University of Electronic Science and Technology of China,Chengdu 611731, P.R.China

    (Received 4 November 2015; revised 24 March 2016; accepted 25 April 2016)

    Due to the particularity of its location algorithm, there are some unique difficulties and features regarding the test of target motion states of multilateration (MLAT) system for airport surface surveillance. This paper proposed a test method applicable for the airport surface surveillance MLAT system, which can effectively determine whether the target is static or moving at a certain speed. Via a normalized test statistic designed in the sliding data window, the proposed method not only eliminates the impact of geometry Dilution of precision (GDOP) effectively, but also transforms the test of different motion states into the test of different probability density functions. Meanwhile, by adjusting the size of the sliding window, it can fulfill different test performance requirements. The method was developed through strict theoretical extrapolation and performance analysis, and simulations results verified its correctness and effectiveness.

    multilateration(MLAT); hypothesis testing; motion state detection; sliding window; geometric Dilution of precision (GDOP)

    0 Introduction

    Multilateration(MLAT) is a novel positioning technology, and the fundamental principle is to identify locations using time difference of arrival (TDOA)[1]. MLAT system is featured with high positioning accuracy, strong anti-interference capability and good redundancy, which is a basic component of the next generation airport surface surveillance system proposed by International Civil Aviation Organization (ICAO)[2-3].

    Airport surface surveillance refers to the process of detecting, positioning, correlating and tracking aircraft and service vehicles in civil airports. The localization signal of airport surface surveillance system based on MLAT technology may come from the transponder and automatic broadcasting signal of aircraft and vehicles[4]. When designing a complete airport surface surveillance system, it not only requires to accurately determine the positions of aircraft and vehicles, but also to detect and determine their motion states, for instance, whether the target is static or moving at a certain speed[5-6].

    Detecting target motion state is ultimately a decision-making process or a hypothetic testing problem[7]. Traditional test methods of motion states construct the test statistics according to the target moving model and noise characteristics, then compare the statistics value with selected thresholds, and thus determine the motion state of targets. In general, noise is considered as stable white Gaussian noise, which also coincides with many practical conditions[8-9].

    MLAT location algorithm is based on TDOA, which means the related localization equation is nonlinear. Many processing techniques have been proposed with different complexity and restrictions. Linearizing the nonlinear equation by Taylor-series expansion and then solving iteratively is one possible way[10]. Chan adopted two liner approximate equations and the corresponding weighted least squares method to estimate target position. Thanks to its linear closed-form solution, Chan algorithm has been widely used in practical engineering[11]. In 2006, Chan proposed approximate maximum likelihood (AML) method, which can attain the theoretical lower bound, but is unable to fulfill the requirements of practical engineering due to its complex calculations[12]. Huang analyzed the influence of target height difference on three stations positioning accuracy[13]. Sharp and Hahn proposed location method of a three-station with auxiliary height difference. However, this method can only be applied when the geometric relationship between the satellite and the Earth is special[14-15]. A novel method is proposed by Yang et al. that uses known pressure altitudes to improve positioning accuracy in MLAT. But there is no in-depth analysis of the theoretical positioning accuracy and robustness of the method[16].

    Due to the particularity of MLAT location algorithm, the errors of estimated target position are related to TDOA measurement accuracy, layout of receiving stations, as well as the relative geometric positions between the target and the set of receiving stations, meaning the location noise of MLAT is related to multiple error variables[17-18]. The application of traditional detection algorithms of target motion state may lead to the degradation of detection performance and even to the failure. Regarding this problem, there is little research at home and abroad and no effective solutions. Yuan and Chen propose a detection algorithm of static state using the features of positioning error and ant colony algorithm[19]. However, this algorithm is rather complex and the calculation is heavy, which therefore is not suitable for the implementation of engineering applications.

    This paper proposed a detection method of motion states of airport surface targets based on MLAT systems. The detection method combines the characteristics of MLAT location algorithm, and implements the detection through the designed normalized test statistic within a sliding data window. The proposed method works on the principle that when the target remains static or moving, the normalized test statistic obeys different distributions (central Chi square or non-central Chi square distribution). Through normalization and adjusting the size of sliding window, the proposed method not only eliminates the effects of geometry dilution of precision (GDOP) on detection performance, but also is able to fulfill different detection requirements.

    The context of this paper is organized as below: Section 1 is introduction, and Section 2 describes the detailed derivation and performance analysis of the proposed method. Section 3 provides the details of simulation verification. Finally, we draw the conclusion.

    1 Theoretical Derivation and Performance Analysis

    In the following derivation process, we first presented the formula of static/moving state based on binary hypothesis test, and used the data within a sliding window to implement linear transformation in order to develop a normalized test statistic. The goal is to eliminate the effects of GDOP, and to transform the test of target motion state into the test of the probability density functions.

    1.1 Motion state test based on binary hypothesis test

    Based on binary hypothesis test, the formula in terms of a target motion state(static/moving) can be represented as

    (1)

    In the following processes, we will define a sliding window consisting ofNposition samples of a target(the positions ofNsamples is estimated by MLAT system ), and use theNth sample(xN,yN) to subtract the rest samples (xi,yi), respectively (i=1,…,N-1), thus we can obtain the differencedxNi,dyNi(i=1,…,N-1) corresponding tox,yaxis

    (2)

    When the target remain static, namelyvxk=vyk=0 in Eq. (1), then the concrete form of Eq.(2) is

    (3)

    Here we construct difference vector dwx=[dxN1,dxN2,…,dxNN-1]T,dwy=[dyN1,dyN2,…,dyNN-1]Tforxaxis andyaxis withN-1 values in Eq.(3), respectively, and where [·]Trepresents transposition.

    Therefore, we can use vector dwxto construct the test statistics in order to perform motion test onxaxis (without losing the generality, the procedure and conclusion of dwyis similar to dwx). The specific steps for deciding whether a target is static or moving are as follows:

    Step 1 Derive the covariance matrix of dwxbased on MLAT location algorithm characteristic when the target is static.

    Step 2 dxyis normalized using the covariance matrix, and to obtain appropriate test statistics.

    Step 3 Obtain the detection thresholdMxξaccording to the distribution of test statistics and performance requirement.

    Step 4 Determine the motion state of the target using the test statistic and properly chosen threshold in step 2 and 3.

    The detailed descriptions of those steps above is as follow. When the state of target isH0(namely the state of target is static), the covariance matrix of dwxcould be expressed as follows according to Eq.(3).

    (4)

    (5)

    According to Chan and Sharp[12,14], E{(ηxi)2},i=1,…,NinEq.(5)notonlyrelatestoreceiverthermalnoise,butalsototherelativepositionsbetweentargetandstations,andtherelationshipbetweenthemis

    (6)

    Gt=

    (7)

    (8)

    (9)

    To deal withdwxthrough normalization processing as follows, the influence on test process caused by relative localization geometry between target and stations can be eliminated. Then normalized statistic quantityξxkfor test process can be gotten

    (10)

    Substitut Eq.(9) into Eq.(10) gives

    (11)

    1.2 Motion state test based on probability density function

    By properly choosing the level of confidence, the threshold valueMxξcan be determined, and hypothesis testing for static or moving target could be made as

    (12)

    In conclusion, the concrete steps of the test method proposed in this paper applied to judge whether a target is static or moving state are as follows:

    (1) Determine the sliding window size Naccordingtoperformancerequirements,anddeterminethresholdMxξandMyξaccordingtolevelofconfidence.Calculatedwxanddwyinslidingwindow,respectively.

    (4)Tomakerepetitivejudgmentaccordingtothestepsdescribedaboveasthenextsampleslidesintothewindow.

    2 Simulation

    Simulationwascarriedouttoverifythevalidityoftheproposedmethod.Chanalgorithmwasappliedtosimulationtoestimatethetargetlocation.Therewere8stationsandthe(x, y, z)coordinatesofeachstationwere(-114.199 28, 2 913.697 04, -3.489 79), (-331.837 08, -240.138 36, -5.383 16), (586.891 45, 1 854.460 46, 28.302 10),(683.941 72, 3 116.517 55, 18.578 23),(556.024 14, 1 166.376 65, -4.601 39), (-331.926 47, 422.073 61, -4.512 67),(0, 0, 0),and(-0.098 85, 3 527.896 14, -5.710 45) (thesecoordinatesalsoaretheactualstationcoordinatesofMLATatGuilinLiangjiangInternationalAirport).Thetargetcoordinateswas(-360, 300, -10),thetimeintervalofsampleswas1s,theTOAnoisewassetasGaussianwhitenoisewithstandarddeviation3ns.TheexperimentalPDFscamefrom10 000independentMonteCarlotrials.

    ThesimulationgeneratedthePDFswhenthetargetwasstaticormovingatacertainspeed,inordertovalidatethecorrectnessoftheproposedmethod,aswellastoassessitsperformance.Thesimulationconsistedofthefollowingtwoparts:

    (1)BycomparingthedegreeofcoincidenceofsimulatedPDFsandtheoreticalPDFs(instaticstate),weverifedthecorrectnessoftheoryanalysis;

    2)WegeneratdthePDFswhenthetargetwasstaticandmovingatdifferentspeedsandindifferentsizesofslidingwindow.ThePDFwhentargetremainedstaticwasoverlappedwiththosewhentargetmovedatdifferentspeedwithdifferentslidingwindowsize.Thecomparisonsoftheoverlapsshowedtheeffectsoftargetspeedandwindowsizeontestperformancewhichcouldbequantitativelyassessed(sincefalsedetectingandleakingdetectingprobabilitieswererelatedtotheoverlapextentofthePDFs).

    2.1ComparisonofsimulatedandtheoreticalPDFs

    Fig.1showsthetheoreticalandsimulatedvaluesofPDFswhentargetwasstaticandthesizesofslidingwindowwere3, 5and7,respectively(inthatcasethetheoreticalPDFswerecentralχ2PDFswith2, 4, 6degreesoffreedom).AsshownintheFig.1,thesimulatedresultsfitwellwiththetheoreticalvalues.Itprovesthecorrectnessofpreviousderivation.

    Fig.1 Simulated and theoretical PDFs in different sizes of sliding window (target is static)

    2.2 Performance Comparisons

    LetPfddenotes the probability of false detection, i.e., when target is moving but is determined to be static. LetPlddenotes the probability of leaking detection; i.e., when target is static but the decision is moving. To improve the test performance (i.e. reducePfdandPldat the same time), it requires the overlapping area of the PDF for static target and the PDFs for moving target to be as small as possible.

    We simulated the PDFs, when the target was static and moving at different velocities and in different sizes of sliding window, in order to assess the effects of target speed and window size on test performance.

    The selected parameters in the simulation were as follows:

    (1) The size of sliding window was 3, and the velocity of target was 0.5 m/s, 1 m/s, and 1.3 m/s, respectively.

    (2) The size of sliding window was 5, and the velocity of target was 0.5 m/s, 0.6 m/s, and 1.0 m/s, respectively.

    (3) Both significance level and false detection probabilityPfdwere set as 0.05.

    Figs.2,3 show the simulation results Asxaxis was similar toyaxis, onlyxaxis was simulated.

    From above analysis we can see that, with the static target and window size of 3, the distribution of test statistics was centralized χ2distribution with 2 degrees of freedom. In that case the corresponding detection threshold was obtained to be 6 (namelyMxξ=6) from the distribution. In Fig. 2, when the target velocity was 0.5 m/s,1 m/s and 1.3 m/s, the corresponding PDF was non-centralisedχ2distribution (2 degrees of freedom). By calculation, the simulated non-central Chi-square areas to the left ofMxξwere 0.693, 0.145, 0.023 successively when the target velocity values were 0.5 m/s, 1m/s and 1.3 m/s, respectively (namely correspondingPfdwere 0.693, 0.145, 0.023, respectively). Obviously, it indicates that only when the target is moving at 1.3 m/s and the size of sliding window is 3, the proposed method is able to fulfill the performance requirements ofPfd.

    Fig.2 PDFs with different speed when the size of sliding window is 3

    Fig.3 PDFs with different speed when the size of sliding window is 5

    With the static target and window size of 5, the distribution of test statistics was centralizedχ2distribution with 4 degrees of freedom. In the same way above, we obtained detection threshold (Mxξ=9.49). The data in Fig.3 indicate that, when the velocity of target was 0.5 m/s, 0.6 m/s and 1 m/s, the simulated non-centralizedχ2distribution (4 degrees of freedom) areas to the left ofMxξwere 0.133, 0.039 and 0.0, respectively (i.e. correspondingPfdare 0.133, 0.039 and 0.0, respectively).

    Apparently, it indicates that when the window size is set to 5, the target with velocity of 0.6 m/s is able to fulfill the requirements ofPfd.

    Known in Figs.2,3, along with the increasing window size and target velocity, the overlapping area of centralizedχ2distribution (target remain static) and non-centralizedχ2distribution (target is moving) would be decreased. This will reduce the probability of false detection and the probability of leaking detection at the same time, with the disadvantage of increasing amount of calculation.

    From above simulation results we can see that, the window size and target velocity significantly affect the test performance. In practice, it may choose properly size of window according to the system performance requirements.

    3 Conclusions

    This paper proposed a method of determining the static/moving state of targets, which is applied to MLAT system for airport surface surveillance. Using designed test statistics, this method constructs different PDFs to represent the static/moving state of targets, and uses it as the basis of binary hypothesis test. The main characteristics of this method are as follows:

    (1) It eliminates the effects of GDOP on estimation error in MLAT system, which enables the test performance to have no connection with the relative geometric location between targets and stations;

    (2) The size of sliding data window can be adjusted to fulfill different requirements of test performance.

    As the theoretical basis of the state judging module in A-SMGCS, the proposed method has already been applied to the demonstration project of MLAT experimental system at Guilin Liangjiang International Airport.

    Acknowledgement

    This work was supported by the National Science and Technology Pillar Program of China (No.2011BAH24B06), the National Nature Science Foundation of China and Chinese Civil Aviation Jointly Funded Foundation Project (No.U1433129), and the Sichuan Provincial Department of Education Foundation (No.13ZB0287).

    The authors would like to express their gratitude to Central and Southern Air Traffic Management Bureau of CAAC, Southwest Air Traffic Management Bureau of CAAC and Guilin Liangjiang International Airport.

    [1] SHERMAN L, PER E. Capacity study of multilateration (MLAT) based navigation for alternative position navigation and timing (APNT) services for aviation [J]. Navigation, Journal of the Institute of Navigation, 2012, (59)4:263-279.

    [2] GAVIRIA M, MAURO L, GASPARE G, et al. Localization algorithms for multilateration (MLAT) systems in airport surface surveillance [J].Signal, Image and Video Processing, 2014, 9(7):1549-1558.

    [3] MAURO L, ADOLF M, GASPARE G. Closed form localization algorithms for mode s wide area multilateration[C]∥ Proceeding of the 6th European Radar conference, Rome, Italy: IEEE Press, 2009, 73-76.

    [4] ROEDER M. EMMA-European airport movement management by A-SMGCS-A contribution to the vision 2020[C]∥ 25th Congress of the International Council of the Aeronautical Sciences, Hamburg Germany: Optimage, Ltd, 2006:4013-4019.

    [5] MAURO L, SILVIO S, GASPARE G. ADS-B/MLAT surveillance system from high altitude platform systems[C] ∥2011 Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles, Italy, Capri: IEEE Press, 2011: 153-158.

    [6] IVAN M, JUAN B, REYES L D, et al. Improvement of multilateration (MLAT) accuracy and convergence for airport surveillance[C]∥2011 Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles, Italy, Capri: IEEE Press, 2011: 185-190.

    [7] IIN F, WANG H, WANG W, et al. Vehicle state and parameter estimation based on dual unscented particle filter algorithm[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2014,31(5): 568-576.

    [8] HARRY L, VAN TREES. Detection, estimation, and modulation theory [M]. New York: Wiley Inter Science, 2001: 120-180.

    [9] TODD K M, WYNN C S. Mathematical methods and algorithms for signal processing [M]. Upper Saddle River: Prentice Hall, 2000: 264-267.

    [10]TONIERI D J. Statistical theory of passive location systems[J]. IEEE Trans on AES, 1984, (20)5: 183-198.

    [11]CHAN Y T, HO K C. A Simple and efficient estimator for hyperbolic location[J]. IEEE Trans on SP, 1994, 42(8): 1905-1915.

    [12]CHAN Y T, YAU H, HANG C, et al. Exact and approximate maximum likelihood localization algorithms[J]. IEEE Trans on Vehicular Technology, 2006, 55(1):10-16.

    [13]HUANG J Y, WAN Q. Analysis of TDOA and TDOA/SS based geolocation techniques in a non-line-of-sight environment [J]. Communications and Networks, 2012, 14(5): 533-539.

    [14]SHARP I, YU K. On the GDOP and accuracy for indoor positioning [J]. IEEE Trans on AES, 2012, 48(3): 2032-2051.

    [15]HAHN W R, TRETTER S A. Optimum processing for delay-vector estimation in passive signal arrays [J]. IEEE Trans on Inform Theory, 1973, (19): 608-614

    [16]YANG Lin, ZHOU Yiyu, XU Hui, et al. Passive location and error analysis using TDOA and aided height information by three stations[J]. Acta Electronica Sinica, 1998, 26(12): 71-74(in Chinese).

    [17]SHARP I, KEGEN Y. GDOP Analysis for Positioning System Design[J]. IEEE Trans on Vehicular Technology, 2009, 58(7): 3371-3382.

    [18]ZHANG Zhengchao, TONG Li. Precision Analysis of passive location of 4-stations based on TDOA [J]. Journal of China Academy of Electronics and Information Technology, 2010, 5(6): 582-587. (in Chinese)

    [19]YUAN Gang, CHEN Jing. A clustering detection algorithm of stationary target for passive time difference location system [J]. Journal of Electronics & Information Technology, 2010, 32(3): 728-731. (in Chinese).

    [20]CHAN Y T, TSUI W Y, SO H C, et al. Time-of-arrival based localization under NLOS conditions [J].IEEE Trans on Vehicular Technology, 2006, 55(1): 17-24.

    Dr. Huang Rongshun is currently a Researcher in the Second Research Institute of CAAC. He received his Ph.D. in Sichuan University, and his main research interests focus on information processing and system integration.

    Dr. Peng Wei is currently working as postdoctoral research fellow in University of Electronic Science and Technology of China. He received his Ph.D. in University of Electronic Science and Technology of China, and his main research interests are radar, digital signal processing and MLAT system.

    Ms. Li Jing is currently an engineer in the Second Research Institute of CAAC, She received master degree in computer science and technology in 2008 from Northwest A&F University and her main research interests include MALT, ADS-B and A-SMGCS.

    Dr. Wu Honggang is currently a researcher in the Second Research Institute of CAAC. He received his Ph.D. in Beijing University of Aeronautics and Astronautics, and his main research interests include signal processing and air traffic control systems.

    Dr. Li Xingbo is the engineer of the Second Research Institute of CAAC. She received her Ph.D. in Warwick University, UK. Her research interests include multi-agent systems and swarm intelligence.

    (Executive Editor: Zhang Bei)

    TN958.97 Document code:A Article ID:1005-1120(2016)04-0425-08

    *Corresponding author, E-mail address: pw7@163.com.

    How to cite this article: Huang Rongshun, Peng We, Li Jing, et al.A test method for the static/moving state of targets applied to airport surface surveillance mlat system[J]. Trans. Nanjing Univ. Aero. Astro., 2016,33(4):425-432.

    http://dx.doi.org/10.16356/j.1005-1120.2016.04.425

    黄色怎么调成土黄色| 一级毛片我不卡| 国产亚洲91精品色在线| 欧美性感艳星| 久久久午夜欧美精品| 黑人高潮一二区| 国精品久久久久久国模美| 国产中年淑女户外野战色| 亚洲三级黄色毛片| 国产有黄有色有爽视频| 成人黄色视频免费在线看| 丰满乱子伦码专区| 精品人妻熟女av久视频| 日韩电影二区| 三级国产精品欧美在线观看| 最近最新中文字幕免费大全7| 国产成人a∨麻豆精品| 嘟嘟电影网在线观看| 久久亚洲国产成人精品v| 欧美精品人与动牲交sv欧美| 久久人人爽人人爽人人片va| 男人和女人高潮做爰伦理| 久久精品国产亚洲av天美| 久久婷婷青草| 一个人看视频在线观看www免费| av又黄又爽大尺度在线免费看| 欧美成人精品欧美一级黄| 91精品国产国语对白视频| 嫩草影院新地址| 欧美老熟妇乱子伦牲交| 久久精品国产鲁丝片午夜精品| 国产片特级美女逼逼视频| 天天躁日日操中文字幕| 精品熟女少妇av免费看| 午夜福利在线观看免费完整高清在| 成人毛片60女人毛片免费| 欧美精品一区二区大全| freevideosex欧美| 男女边摸边吃奶| 免费看光身美女| 人妻制服诱惑在线中文字幕| 黄色日韩在线| 免费大片黄手机在线观看| 伦理电影大哥的女人| 国产欧美亚洲国产| 国产毛片在线视频| 岛国毛片在线播放| 欧美最新免费一区二区三区| 欧美精品人与动牲交sv欧美| 亚洲av中文av极速乱| 亚洲一区二区三区欧美精品| 国产有黄有色有爽视频| 精品国产一区二区三区久久久樱花 | 国精品久久久久久国模美| 精华霜和精华液先用哪个| 黄片wwwwww| 蜜臀久久99精品久久宅男| 纯流量卡能插随身wifi吗| 女的被弄到高潮叫床怎么办| 国产v大片淫在线免费观看| 亚洲精品中文字幕在线视频 | 国产一区二区三区av在线| 国产精品成人在线| 精品一区二区免费观看| 99热国产这里只有精品6| 亚洲精品乱久久久久久| 男女国产视频网站| xxx大片免费视频| 久久这里有精品视频免费| 91狼人影院| 18+在线观看网站| 日韩欧美一区视频在线观看 | 亚洲国产精品999| 国产极品天堂在线| 久久综合国产亚洲精品| 香蕉精品网在线| 人妻制服诱惑在线中文字幕| 国产伦精品一区二区三区视频9| 精品久久久久久久末码| 老女人水多毛片| 肉色欧美久久久久久久蜜桃| 亚洲av福利一区| 国产淫片久久久久久久久| 久久国产精品男人的天堂亚洲 | 中国美白少妇内射xxxbb| 国产伦理片在线播放av一区| 成人黄色视频免费在线看| 国产av国产精品国产| 内地一区二区视频在线| 欧美老熟妇乱子伦牲交| 熟女电影av网| 美女内射精品一级片tv| 国产免费视频播放在线视频| 18禁在线无遮挡免费观看视频| 亚洲成人手机| 精品久久久久久久末码| 亚洲国产精品成人久久小说| 国产精品国产三级国产专区5o| 美女视频免费永久观看网站| 99国产精品免费福利视频| 五月伊人婷婷丁香| 久久综合国产亚洲精品| 久久久色成人| 99热6这里只有精品| 下体分泌物呈黄色| 欧美日韩亚洲高清精品| 久久人人爽人人片av| 欧美极品一区二区三区四区| 精品亚洲成a人片在线观看 | 国产乱人视频| 我的女老师完整版在线观看| 日韩亚洲欧美综合| 亚洲精华国产精华液的使用体验| 汤姆久久久久久久影院中文字幕| 一本—道久久a久久精品蜜桃钙片| 日韩大片免费观看网站| av免费在线看不卡| 一本—道久久a久久精品蜜桃钙片| 精品久久久久久久久av| 亚洲精品色激情综合| 日日撸夜夜添| 深夜a级毛片| 丰满人妻一区二区三区视频av| 免费播放大片免费观看视频在线观看| www.色视频.com| 久久人人爽人人爽人人片va| 2018国产大陆天天弄谢| 91久久精品国产一区二区三区| 亚洲av电影在线观看一区二区三区| 天天躁日日操中文字幕| 国产精品久久久久久精品电影小说 | 国产成人精品福利久久| 色5月婷婷丁香| 亚洲精华国产精华液的使用体验| 人人妻人人澡人人爽人人夜夜| 一级毛片黄色毛片免费观看视频| 国产永久视频网站| 最新中文字幕久久久久| 成人特级av手机在线观看| 久久99热6这里只有精品| 岛国毛片在线播放| 欧美日韩视频精品一区| 精品久久国产蜜桃| 18禁在线无遮挡免费观看视频| 欧美xxxx黑人xx丫x性爽| 最近的中文字幕免费完整| 国产v大片淫在线免费观看| 欧美97在线视频| 欧美激情国产日韩精品一区| 欧美三级亚洲精品| 日本午夜av视频| av国产久精品久网站免费入址| 亚洲国产毛片av蜜桃av| 国产精品一区二区性色av| 日本vs欧美在线观看视频 | 日本黄大片高清| 肉色欧美久久久久久久蜜桃| 亚洲激情五月婷婷啪啪| 亚洲国产精品专区欧美| 成人特级av手机在线观看| 91在线精品国自产拍蜜月| 中文字幕亚洲精品专区| 高清午夜精品一区二区三区| 大码成人一级视频| 老司机影院成人| 乱码一卡2卡4卡精品| 五月开心婷婷网| 哪个播放器可以免费观看大片| 国产精品欧美亚洲77777| av不卡在线播放| 久久毛片免费看一区二区三区| 精品久久久久久久久亚洲| 精品久久久精品久久久| 蜜桃在线观看..| 久久久久精品久久久久真实原创| 中文乱码字字幕精品一区二区三区| 久久av网站| 久久久成人免费电影| 下体分泌物呈黄色| 看十八女毛片水多多多| 一级a做视频免费观看| 国产精品久久久久久久久免| 制服丝袜香蕉在线| 国产黄片视频在线免费观看| 日韩视频在线欧美| 伦理电影大哥的女人| 草草在线视频免费看| 一二三四中文在线观看免费高清| 少妇熟女欧美另类| 国产色婷婷99| 免费av不卡在线播放| 深夜a级毛片| 亚洲自偷自拍三级| 一二三四中文在线观看免费高清| 国产亚洲精品久久久com| 如何舔出高潮| 久久这里有精品视频免费| 夫妻性生交免费视频一级片| 日本色播在线视频| 超碰av人人做人人爽久久| 国产精品久久久久久精品电影小说 | 精品一区二区免费观看| 日韩 亚洲 欧美在线| 久久鲁丝午夜福利片| 777米奇影视久久| 啦啦啦啦在线视频资源| 人妻夜夜爽99麻豆av| 亚洲精品久久午夜乱码| videos熟女内射| 成人毛片60女人毛片免费| 国产精品免费大片| 中文字幕精品免费在线观看视频 | 多毛熟女@视频| 99九九线精品视频在线观看视频| 午夜福利影视在线免费观看| 国产在线一区二区三区精| 国产欧美亚洲国产| 日韩制服骚丝袜av| 麻豆乱淫一区二区| 大话2 男鬼变身卡| av一本久久久久| 国产无遮挡羞羞视频在线观看| 精品酒店卫生间| 美女国产视频在线观看| av国产久精品久网站免费入址| 日韩 亚洲 欧美在线| 久久久久久久久久久丰满| 尾随美女入室| 国产爱豆传媒在线观看| 搡女人真爽免费视频火全软件| 久久韩国三级中文字幕| 男人狂女人下面高潮的视频| 成人高潮视频无遮挡免费网站| 看非洲黑人一级黄片| 亚洲国产精品成人久久小说| 波野结衣二区三区在线| 亚洲精品国产色婷婷电影| 99热全是精品| 午夜免费观看性视频| 欧美精品一区二区大全| av免费观看日本| 欧美另类一区| 欧美日韩国产mv在线观看视频 | 午夜福利网站1000一区二区三区| 又大又黄又爽视频免费| 天美传媒精品一区二区| 成人一区二区视频在线观看| 精品久久久久久电影网| 99热6这里只有精品| 十八禁网站网址无遮挡 | 夜夜看夜夜爽夜夜摸| 边亲边吃奶的免费视频| 最新中文字幕久久久久| 伦理电影免费视频| 一级黄片播放器| 久热这里只有精品99| 91午夜精品亚洲一区二区三区| 搡老乐熟女国产| 亚洲国产毛片av蜜桃av| 日本wwww免费看| 免费观看的影片在线观看| 亚洲三级黄色毛片| 亚洲成色77777| 只有这里有精品99| 精品人妻视频免费看| 夫妻午夜视频| 人人妻人人添人人爽欧美一区卜 | 亚洲美女搞黄在线观看| 亚洲av二区三区四区| 夫妻午夜视频| 日本欧美视频一区| 亚洲av.av天堂| 欧美日韩亚洲高清精品| 高清欧美精品videossex| 一级毛片我不卡| 麻豆乱淫一区二区| 80岁老熟妇乱子伦牲交| 午夜福利高清视频| 欧美精品国产亚洲| 国产精品99久久99久久久不卡 | av免费在线看不卡| 亚洲欧美日韩卡通动漫| 久久ye,这里只有精品| 午夜福利影视在线免费观看| 国产高清三级在线| 成人毛片a级毛片在线播放| 国产精品国产三级国产av玫瑰| 国产免费一区二区三区四区乱码| 国产色婷婷99| 26uuu在线亚洲综合色| 欧美xxxx性猛交bbbb| 午夜福利在线观看免费完整高清在| 中国国产av一级| 高清毛片免费看| 在线天堂最新版资源| 精品一区二区免费观看| 国产精品一区二区在线不卡| 性色av一级| 97超碰精品成人国产| 国产精品偷伦视频观看了| 天天躁日日操中文字幕| 中文字幕人妻熟人妻熟丝袜美| 最近中文字幕2019免费版| 一本色道久久久久久精品综合| 干丝袜人妻中文字幕| 亚洲激情五月婷婷啪啪| 美女内射精品一级片tv| 国产成人a区在线观看| 人妻夜夜爽99麻豆av| 国产精品一及| 国内精品宾馆在线| 欧美高清成人免费视频www| 夫妻性生交免费视频一级片| 亚洲美女视频黄频| 啦啦啦视频在线资源免费观看| 中文字幕制服av| 亚洲欧美精品自产自拍| 精品久久国产蜜桃| 免费看av在线观看网站| 女人久久www免费人成看片| 欧美另类一区| 男人添女人高潮全过程视频| 亚洲欧美日韩东京热| 久久ye,这里只有精品| 国产欧美日韩精品一区二区| 视频区图区小说| 国产老妇伦熟女老妇高清| 成人综合一区亚洲| 欧美精品人与动牲交sv欧美| 久久久成人免费电影| 高清不卡的av网站| 美女视频免费永久观看网站| 女人久久www免费人成看片| 黄片wwwwww| 日本一二三区视频观看| 国产av一区二区精品久久 | 国产黄色视频一区二区在线观看| 女性生殖器流出的白浆| 黑人猛操日本美女一级片| 欧美3d第一页| 看免费成人av毛片| 国产亚洲5aaaaa淫片| 国产成人精品婷婷| 久久久色成人| 久久久精品免费免费高清| 久久国产乱子免费精品| 色视频在线一区二区三区| 国产日韩欧美亚洲二区| 国产黄色免费在线视频| 国产片特级美女逼逼视频| 身体一侧抽搐| a 毛片基地| 制服丝袜香蕉在线| av女优亚洲男人天堂| 你懂的网址亚洲精品在线观看| 人人妻人人添人人爽欧美一区卜 | 国产精品一区二区三区四区免费观看| av免费观看日本| 久久6这里有精品| 日日啪夜夜爽| 国产女主播在线喷水免费视频网站| 国国产精品蜜臀av免费| 超碰97精品在线观看| 在线看a的网站| 偷拍熟女少妇极品色| 直男gayav资源| 久久久午夜欧美精品| 精品久久久精品久久久| 网址你懂的国产日韩在线| 日日摸夜夜添夜夜爱| 国产欧美亚洲国产| 好男人视频免费观看在线| 欧美最新免费一区二区三区| 春色校园在线视频观看| 亚洲精品aⅴ在线观看| 国产av国产精品国产| 赤兔流量卡办理| 男女下面进入的视频免费午夜| 国产av国产精品国产| 特大巨黑吊av在线直播| 黄色一级大片看看| 草草在线视频免费看| 日本爱情动作片www.在线观看| 中文在线观看免费www的网站| 亚洲精品乱码久久久久久按摩| 最近中文字幕高清免费大全6| 乱码一卡2卡4卡精品| 国产精品偷伦视频观看了| 亚洲精品第二区| 汤姆久久久久久久影院中文字幕| 韩国高清视频一区二区三区| 日韩中字成人| 新久久久久国产一级毛片| 亚洲伊人久久精品综合| 嘟嘟电影网在线观看| 午夜福利高清视频| 欧美xxxx黑人xx丫x性爽| 人妻 亚洲 视频| 男女啪啪激烈高潮av片| 久久 成人 亚洲| 精品亚洲成a人片在线观看 | 啦啦啦视频在线资源免费观看| av视频免费观看在线观看| 五月伊人婷婷丁香| 色婷婷久久久亚洲欧美| 性高湖久久久久久久久免费观看| 卡戴珊不雅视频在线播放| 欧美最新免费一区二区三区| 日本欧美国产在线视频| 亚洲精品自拍成人| 国产精品伦人一区二区| 99久久精品热视频| 中文字幕久久专区| 亚洲av电影在线观看一区二区三区| 欧美激情国产日韩精品一区| 欧美成人a在线观看| 国产熟女欧美一区二区| 欧美精品亚洲一区二区| 亚洲精品久久久久久婷婷小说| 韩国高清视频一区二区三区| 日韩精品有码人妻一区| 亚洲人成网站高清观看| 91久久精品国产一区二区三区| 国产伦理片在线播放av一区| 少妇猛男粗大的猛烈进出视频| 成人亚洲欧美一区二区av| 大香蕉97超碰在线| 亚洲精品亚洲一区二区| 国产片特级美女逼逼视频| 精品国产一区二区三区久久久樱花 | 国产伦精品一区二区三区视频9| 亚洲欧美清纯卡通| 熟女av电影| 97超视频在线观看视频| 麻豆乱淫一区二区| 天堂中文最新版在线下载| 91精品国产国语对白视频| 亚洲丝袜综合中文字幕| 日韩制服骚丝袜av| 国产精品久久久久久久久免| 日本午夜av视频| av又黄又爽大尺度在线免费看| 一二三四中文在线观看免费高清| 久久这里有精品视频免费| av免费在线看不卡| 久久精品久久久久久久性| 一级毛片黄色毛片免费观看视频| 一级毛片久久久久久久久女| 蜜桃久久精品国产亚洲av| 亚洲精品乱码久久久久久按摩| 热99国产精品久久久久久7| 网址你懂的国产日韩在线| 搡老乐熟女国产| 精品视频人人做人人爽| 久久久成人免费电影| 亚洲美女搞黄在线观看| 国产亚洲91精品色在线| 91狼人影院| av卡一久久| 男女免费视频国产| 亚洲人与动物交配视频| 日韩av在线免费看完整版不卡| 亚洲欧美一区二区三区国产| 大话2 男鬼变身卡| 丰满少妇做爰视频| 国产在线免费精品| 搡老乐熟女国产| av专区在线播放| 一本色道久久久久久精品综合| 久久久久久人妻| 伦理电影大哥的女人| 国产高清国产精品国产三级 | 寂寞人妻少妇视频99o| 高清不卡的av网站| 国产成人精品福利久久| 亚洲三级黄色毛片| 一区二区av电影网| 欧美97在线视频| 一级二级三级毛片免费看| 女性生殖器流出的白浆| 成年人午夜在线观看视频| 国产精品成人在线| 乱码一卡2卡4卡精品| 一边亲一边摸免费视频| 日韩电影二区| 少妇的逼好多水| 精品久久久噜噜| 菩萨蛮人人尽说江南好唐韦庄| 免费看av在线观看网站| 国产永久视频网站| 2021少妇久久久久久久久久久| 国产精品一区二区三区四区免费观看| 黑人猛操日本美女一级片| 日本欧美视频一区| 国产精品一及| 国产在线一区二区三区精| 亚洲国产av新网站| 欧美日韩亚洲高清精品| 2022亚洲国产成人精品| 亚洲精品第二区| 亚洲av中文av极速乱| 香蕉精品网在线| 黑人高潮一二区| 蜜桃在线观看..| 毛片一级片免费看久久久久| 伦理电影大哥的女人| 美女xxoo啪啪120秒动态图| 午夜免费观看性视频| 高清日韩中文字幕在线| 欧美日韩亚洲高清精品| 天天躁夜夜躁狠狠久久av| 夜夜骑夜夜射夜夜干| 亚洲色图av天堂| 高清不卡的av网站| 黄色一级大片看看| a级毛片免费高清观看在线播放| 欧美97在线视频| 在线观看三级黄色| 精品一区二区三卡| 青青草视频在线视频观看| 国产有黄有色有爽视频| 色视频www国产| 精品久久久久久久久亚洲| 99热这里只有精品一区| 草草在线视频免费看| 韩国av在线不卡| 这个男人来自地球电影免费观看 | 午夜福利视频精品| 欧美日本视频| 男女国产视频网站| 亚洲精华国产精华液的使用体验| 一区二区三区四区激情视频| 亚洲精品aⅴ在线观看| 99热这里只有是精品在线观看| 欧美精品一区二区免费开放| 亚洲av综合色区一区| 在线观看免费日韩欧美大片 | 两个人的视频大全免费| 性色avwww在线观看| 亚洲成人av在线免费| 嫩草影院入口| av天堂中文字幕网| 亚洲高清免费不卡视频| av福利片在线观看| 最近手机中文字幕大全| 欧美精品一区二区大全| 成人午夜精彩视频在线观看| av免费观看日本| 成年av动漫网址| 日韩中字成人| 国产久久久一区二区三区| 久久精品国产自在天天线| 晚上一个人看的免费电影| 亚洲美女黄色视频免费看| 麻豆成人午夜福利视频| 午夜福利高清视频| a 毛片基地| 天天躁夜夜躁狠狠久久av| 亚洲精品第二区| 午夜福利在线在线| 干丝袜人妻中文字幕| av国产免费在线观看| 久久精品熟女亚洲av麻豆精品| 久久青草综合色| 午夜福利高清视频| 直男gayav资源| 五月玫瑰六月丁香| 亚洲av中文字字幕乱码综合| 在线观看国产h片| 欧美激情国产日韩精品一区| 女人十人毛片免费观看3o分钟| 岛国毛片在线播放| 一区二区三区四区激情视频| 久久精品国产亚洲av涩爱| 青青草视频在线视频观看| 欧美激情国产日韩精品一区| 超碰av人人做人人爽久久| 国产成人freesex在线| 在线观看免费高清a一片| 99精国产麻豆久久婷婷| 国产免费一区二区三区四区乱码| 夜夜看夜夜爽夜夜摸| 人妻少妇偷人精品九色| 在线观看免费日韩欧美大片 | 久久午夜福利片| 成人毛片60女人毛片免费| 久久人人爽人人片av| 婷婷色麻豆天堂久久| 蜜桃亚洲精品一区二区三区| 3wmmmm亚洲av在线观看| 99热这里只有精品一区| 少妇人妻久久综合中文| 尤物成人国产欧美一区二区三区| 国产精品国产三级国产av玫瑰| 国产日韩欧美在线精品| 有码 亚洲区| 午夜免费男女啪啪视频观看| 午夜免费鲁丝| 网址你懂的国产日韩在线| 久久久色成人| 亚洲真实伦在线观看| av线在线观看网站| 亚洲内射少妇av| 亚洲性久久影院| 国产高清有码在线观看视频| h视频一区二区三区| 欧美日韩视频精品一区| 晚上一个人看的免费电影| xxx大片免费视频| 日韩国内少妇激情av| 热99国产精品久久久久久7| 自拍偷自拍亚洲精品老妇| 精品亚洲成国产av| 国产视频首页在线观看| 欧美最新免费一区二区三区|