• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Test Method for the Static/Moving State of Targets Applied to Airport Surface Surveillance MLAT System

    2016-11-21 06:27:30,,,,

    ,,,,

    1. The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, P.R.China;2. College of Electronic Engineering, University of Electronic Science and Technology of China,Chengdu 611731, P.R.China

    ?

    A Test Method for the Static/Moving State of Targets Applied to Airport Surface Surveillance MLAT System

    HuangRongshun1,PengWe2*,LiJing1,WuHonggang1,LiXingbo1

    1. The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, P.R.China;2. College of Electronic Engineering, University of Electronic Science and Technology of China,Chengdu 611731, P.R.China

    (Received 4 November 2015; revised 24 March 2016; accepted 25 April 2016)

    Due to the particularity of its location algorithm, there are some unique difficulties and features regarding the test of target motion states of multilateration (MLAT) system for airport surface surveillance. This paper proposed a test method applicable for the airport surface surveillance MLAT system, which can effectively determine whether the target is static or moving at a certain speed. Via a normalized test statistic designed in the sliding data window, the proposed method not only eliminates the impact of geometry Dilution of precision (GDOP) effectively, but also transforms the test of different motion states into the test of different probability density functions. Meanwhile, by adjusting the size of the sliding window, it can fulfill different test performance requirements. The method was developed through strict theoretical extrapolation and performance analysis, and simulations results verified its correctness and effectiveness.

    multilateration(MLAT); hypothesis testing; motion state detection; sliding window; geometric Dilution of precision (GDOP)

    0 Introduction

    Multilateration(MLAT) is a novel positioning technology, and the fundamental principle is to identify locations using time difference of arrival (TDOA)[1]. MLAT system is featured with high positioning accuracy, strong anti-interference capability and good redundancy, which is a basic component of the next generation airport surface surveillance system proposed by International Civil Aviation Organization (ICAO)[2-3].

    Airport surface surveillance refers to the process of detecting, positioning, correlating and tracking aircraft and service vehicles in civil airports. The localization signal of airport surface surveillance system based on MLAT technology may come from the transponder and automatic broadcasting signal of aircraft and vehicles[4]. When designing a complete airport surface surveillance system, it not only requires to accurately determine the positions of aircraft and vehicles, but also to detect and determine their motion states, for instance, whether the target is static or moving at a certain speed[5-6].

    Detecting target motion state is ultimately a decision-making process or a hypothetic testing problem[7]. Traditional test methods of motion states construct the test statistics according to the target moving model and noise characteristics, then compare the statistics value with selected thresholds, and thus determine the motion state of targets. In general, noise is considered as stable white Gaussian noise, which also coincides with many practical conditions[8-9].

    MLAT location algorithm is based on TDOA, which means the related localization equation is nonlinear. Many processing techniques have been proposed with different complexity and restrictions. Linearizing the nonlinear equation by Taylor-series expansion and then solving iteratively is one possible way[10]. Chan adopted two liner approximate equations and the corresponding weighted least squares method to estimate target position. Thanks to its linear closed-form solution, Chan algorithm has been widely used in practical engineering[11]. In 2006, Chan proposed approximate maximum likelihood (AML) method, which can attain the theoretical lower bound, but is unable to fulfill the requirements of practical engineering due to its complex calculations[12]. Huang analyzed the influence of target height difference on three stations positioning accuracy[13]. Sharp and Hahn proposed location method of a three-station with auxiliary height difference. However, this method can only be applied when the geometric relationship between the satellite and the Earth is special[14-15]. A novel method is proposed by Yang et al. that uses known pressure altitudes to improve positioning accuracy in MLAT. But there is no in-depth analysis of the theoretical positioning accuracy and robustness of the method[16].

    Due to the particularity of MLAT location algorithm, the errors of estimated target position are related to TDOA measurement accuracy, layout of receiving stations, as well as the relative geometric positions between the target and the set of receiving stations, meaning the location noise of MLAT is related to multiple error variables[17-18]. The application of traditional detection algorithms of target motion state may lead to the degradation of detection performance and even to the failure. Regarding this problem, there is little research at home and abroad and no effective solutions. Yuan and Chen propose a detection algorithm of static state using the features of positioning error and ant colony algorithm[19]. However, this algorithm is rather complex and the calculation is heavy, which therefore is not suitable for the implementation of engineering applications.

    This paper proposed a detection method of motion states of airport surface targets based on MLAT systems. The detection method combines the characteristics of MLAT location algorithm, and implements the detection through the designed normalized test statistic within a sliding data window. The proposed method works on the principle that when the target remains static or moving, the normalized test statistic obeys different distributions (central Chi square or non-central Chi square distribution). Through normalization and adjusting the size of sliding window, the proposed method not only eliminates the effects of geometry dilution of precision (GDOP) on detection performance, but also is able to fulfill different detection requirements.

    The context of this paper is organized as below: Section 1 is introduction, and Section 2 describes the detailed derivation and performance analysis of the proposed method. Section 3 provides the details of simulation verification. Finally, we draw the conclusion.

    1 Theoretical Derivation and Performance Analysis

    In the following derivation process, we first presented the formula of static/moving state based on binary hypothesis test, and used the data within a sliding window to implement linear transformation in order to develop a normalized test statistic. The goal is to eliminate the effects of GDOP, and to transform the test of target motion state into the test of the probability density functions.

    1.1 Motion state test based on binary hypothesis test

    Based on binary hypothesis test, the formula in terms of a target motion state(static/moving) can be represented as

    (1)

    In the following processes, we will define a sliding window consisting ofNposition samples of a target(the positions ofNsamples is estimated by MLAT system ), and use theNth sample(xN,yN) to subtract the rest samples (xi,yi), respectively (i=1,…,N-1), thus we can obtain the differencedxNi,dyNi(i=1,…,N-1) corresponding tox,yaxis

    (2)

    When the target remain static, namelyvxk=vyk=0 in Eq. (1), then the concrete form of Eq.(2) is

    (3)

    Here we construct difference vector dwx=[dxN1,dxN2,…,dxNN-1]T,dwy=[dyN1,dyN2,…,dyNN-1]Tforxaxis andyaxis withN-1 values in Eq.(3), respectively, and where [·]Trepresents transposition.

    Therefore, we can use vector dwxto construct the test statistics in order to perform motion test onxaxis (without losing the generality, the procedure and conclusion of dwyis similar to dwx). The specific steps for deciding whether a target is static or moving are as follows:

    Step 1 Derive the covariance matrix of dwxbased on MLAT location algorithm characteristic when the target is static.

    Step 2 dxyis normalized using the covariance matrix, and to obtain appropriate test statistics.

    Step 3 Obtain the detection thresholdMxξaccording to the distribution of test statistics and performance requirement.

    Step 4 Determine the motion state of the target using the test statistic and properly chosen threshold in step 2 and 3.

    The detailed descriptions of those steps above is as follow. When the state of target isH0(namely the state of target is static), the covariance matrix of dwxcould be expressed as follows according to Eq.(3).

    (4)

    (5)

    According to Chan and Sharp[12,14], E{(ηxi)2},i=1,…,NinEq.(5)notonlyrelatestoreceiverthermalnoise,butalsototherelativepositionsbetweentargetandstations,andtherelationshipbetweenthemis

    (6)

    Gt=

    (7)

    (8)

    (9)

    To deal withdwxthrough normalization processing as follows, the influence on test process caused by relative localization geometry between target and stations can be eliminated. Then normalized statistic quantityξxkfor test process can be gotten

    (10)

    Substitut Eq.(9) into Eq.(10) gives

    (11)

    1.2 Motion state test based on probability density function

    By properly choosing the level of confidence, the threshold valueMxξcan be determined, and hypothesis testing for static or moving target could be made as

    (12)

    In conclusion, the concrete steps of the test method proposed in this paper applied to judge whether a target is static or moving state are as follows:

    (1) Determine the sliding window size Naccordingtoperformancerequirements,anddeterminethresholdMxξandMyξaccordingtolevelofconfidence.Calculatedwxanddwyinslidingwindow,respectively.

    (4)Tomakerepetitivejudgmentaccordingtothestepsdescribedaboveasthenextsampleslidesintothewindow.

    2 Simulation

    Simulationwascarriedouttoverifythevalidityoftheproposedmethod.Chanalgorithmwasappliedtosimulationtoestimatethetargetlocation.Therewere8stationsandthe(x, y, z)coordinatesofeachstationwere(-114.199 28, 2 913.697 04, -3.489 79), (-331.837 08, -240.138 36, -5.383 16), (586.891 45, 1 854.460 46, 28.302 10),(683.941 72, 3 116.517 55, 18.578 23),(556.024 14, 1 166.376 65, -4.601 39), (-331.926 47, 422.073 61, -4.512 67),(0, 0, 0),and(-0.098 85, 3 527.896 14, -5.710 45) (thesecoordinatesalsoaretheactualstationcoordinatesofMLATatGuilinLiangjiangInternationalAirport).Thetargetcoordinateswas(-360, 300, -10),thetimeintervalofsampleswas1s,theTOAnoisewassetasGaussianwhitenoisewithstandarddeviation3ns.TheexperimentalPDFscamefrom10 000independentMonteCarlotrials.

    ThesimulationgeneratedthePDFswhenthetargetwasstaticormovingatacertainspeed,inordertovalidatethecorrectnessoftheproposedmethod,aswellastoassessitsperformance.Thesimulationconsistedofthefollowingtwoparts:

    (1)BycomparingthedegreeofcoincidenceofsimulatedPDFsandtheoreticalPDFs(instaticstate),weverifedthecorrectnessoftheoryanalysis;

    2)WegeneratdthePDFswhenthetargetwasstaticandmovingatdifferentspeedsandindifferentsizesofslidingwindow.ThePDFwhentargetremainedstaticwasoverlappedwiththosewhentargetmovedatdifferentspeedwithdifferentslidingwindowsize.Thecomparisonsoftheoverlapsshowedtheeffectsoftargetspeedandwindowsizeontestperformancewhichcouldbequantitativelyassessed(sincefalsedetectingandleakingdetectingprobabilitieswererelatedtotheoverlapextentofthePDFs).

    2.1ComparisonofsimulatedandtheoreticalPDFs

    Fig.1showsthetheoreticalandsimulatedvaluesofPDFswhentargetwasstaticandthesizesofslidingwindowwere3, 5and7,respectively(inthatcasethetheoreticalPDFswerecentralχ2PDFswith2, 4, 6degreesoffreedom).AsshownintheFig.1,thesimulatedresultsfitwellwiththetheoreticalvalues.Itprovesthecorrectnessofpreviousderivation.

    Fig.1 Simulated and theoretical PDFs in different sizes of sliding window (target is static)

    2.2 Performance Comparisons

    LetPfddenotes the probability of false detection, i.e., when target is moving but is determined to be static. LetPlddenotes the probability of leaking detection; i.e., when target is static but the decision is moving. To improve the test performance (i.e. reducePfdandPldat the same time), it requires the overlapping area of the PDF for static target and the PDFs for moving target to be as small as possible.

    We simulated the PDFs, when the target was static and moving at different velocities and in different sizes of sliding window, in order to assess the effects of target speed and window size on test performance.

    The selected parameters in the simulation were as follows:

    (1) The size of sliding window was 3, and the velocity of target was 0.5 m/s, 1 m/s, and 1.3 m/s, respectively.

    (2) The size of sliding window was 5, and the velocity of target was 0.5 m/s, 0.6 m/s, and 1.0 m/s, respectively.

    (3) Both significance level and false detection probabilityPfdwere set as 0.05.

    Figs.2,3 show the simulation results Asxaxis was similar toyaxis, onlyxaxis was simulated.

    From above analysis we can see that, with the static target and window size of 3, the distribution of test statistics was centralized χ2distribution with 2 degrees of freedom. In that case the corresponding detection threshold was obtained to be 6 (namelyMxξ=6) from the distribution. In Fig. 2, when the target velocity was 0.5 m/s,1 m/s and 1.3 m/s, the corresponding PDF was non-centralisedχ2distribution (2 degrees of freedom). By calculation, the simulated non-central Chi-square areas to the left ofMxξwere 0.693, 0.145, 0.023 successively when the target velocity values were 0.5 m/s, 1m/s and 1.3 m/s, respectively (namely correspondingPfdwere 0.693, 0.145, 0.023, respectively). Obviously, it indicates that only when the target is moving at 1.3 m/s and the size of sliding window is 3, the proposed method is able to fulfill the performance requirements ofPfd.

    Fig.2 PDFs with different speed when the size of sliding window is 3

    Fig.3 PDFs with different speed when the size of sliding window is 5

    With the static target and window size of 5, the distribution of test statistics was centralizedχ2distribution with 4 degrees of freedom. In the same way above, we obtained detection threshold (Mxξ=9.49). The data in Fig.3 indicate that, when the velocity of target was 0.5 m/s, 0.6 m/s and 1 m/s, the simulated non-centralizedχ2distribution (4 degrees of freedom) areas to the left ofMxξwere 0.133, 0.039 and 0.0, respectively (i.e. correspondingPfdare 0.133, 0.039 and 0.0, respectively).

    Apparently, it indicates that when the window size is set to 5, the target with velocity of 0.6 m/s is able to fulfill the requirements ofPfd.

    Known in Figs.2,3, along with the increasing window size and target velocity, the overlapping area of centralizedχ2distribution (target remain static) and non-centralizedχ2distribution (target is moving) would be decreased. This will reduce the probability of false detection and the probability of leaking detection at the same time, with the disadvantage of increasing amount of calculation.

    From above simulation results we can see that, the window size and target velocity significantly affect the test performance. In practice, it may choose properly size of window according to the system performance requirements.

    3 Conclusions

    This paper proposed a method of determining the static/moving state of targets, which is applied to MLAT system for airport surface surveillance. Using designed test statistics, this method constructs different PDFs to represent the static/moving state of targets, and uses it as the basis of binary hypothesis test. The main characteristics of this method are as follows:

    (1) It eliminates the effects of GDOP on estimation error in MLAT system, which enables the test performance to have no connection with the relative geometric location between targets and stations;

    (2) The size of sliding data window can be adjusted to fulfill different requirements of test performance.

    As the theoretical basis of the state judging module in A-SMGCS, the proposed method has already been applied to the demonstration project of MLAT experimental system at Guilin Liangjiang International Airport.

    Acknowledgement

    This work was supported by the National Science and Technology Pillar Program of China (No.2011BAH24B06), the National Nature Science Foundation of China and Chinese Civil Aviation Jointly Funded Foundation Project (No.U1433129), and the Sichuan Provincial Department of Education Foundation (No.13ZB0287).

    The authors would like to express their gratitude to Central and Southern Air Traffic Management Bureau of CAAC, Southwest Air Traffic Management Bureau of CAAC and Guilin Liangjiang International Airport.

    [1] SHERMAN L, PER E. Capacity study of multilateration (MLAT) based navigation for alternative position navigation and timing (APNT) services for aviation [J]. Navigation, Journal of the Institute of Navigation, 2012, (59)4:263-279.

    [2] GAVIRIA M, MAURO L, GASPARE G, et al. Localization algorithms for multilateration (MLAT) systems in airport surface surveillance [J].Signal, Image and Video Processing, 2014, 9(7):1549-1558.

    [3] MAURO L, ADOLF M, GASPARE G. Closed form localization algorithms for mode s wide area multilateration[C]∥ Proceeding of the 6th European Radar conference, Rome, Italy: IEEE Press, 2009, 73-76.

    [4] ROEDER M. EMMA-European airport movement management by A-SMGCS-A contribution to the vision 2020[C]∥ 25th Congress of the International Council of the Aeronautical Sciences, Hamburg Germany: Optimage, Ltd, 2006:4013-4019.

    [5] MAURO L, SILVIO S, GASPARE G. ADS-B/MLAT surveillance system from high altitude platform systems[C] ∥2011 Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles, Italy, Capri: IEEE Press, 2011: 153-158.

    [6] IVAN M, JUAN B, REYES L D, et al. Improvement of multilateration (MLAT) accuracy and convergence for airport surveillance[C]∥2011 Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles, Italy, Capri: IEEE Press, 2011: 185-190.

    [7] IIN F, WANG H, WANG W, et al. Vehicle state and parameter estimation based on dual unscented particle filter algorithm[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2014,31(5): 568-576.

    [8] HARRY L, VAN TREES. Detection, estimation, and modulation theory [M]. New York: Wiley Inter Science, 2001: 120-180.

    [9] TODD K M, WYNN C S. Mathematical methods and algorithms for signal processing [M]. Upper Saddle River: Prentice Hall, 2000: 264-267.

    [10]TONIERI D J. Statistical theory of passive location systems[J]. IEEE Trans on AES, 1984, (20)5: 183-198.

    [11]CHAN Y T, HO K C. A Simple and efficient estimator for hyperbolic location[J]. IEEE Trans on SP, 1994, 42(8): 1905-1915.

    [12]CHAN Y T, YAU H, HANG C, et al. Exact and approximate maximum likelihood localization algorithms[J]. IEEE Trans on Vehicular Technology, 2006, 55(1):10-16.

    [13]HUANG J Y, WAN Q. Analysis of TDOA and TDOA/SS based geolocation techniques in a non-line-of-sight environment [J]. Communications and Networks, 2012, 14(5): 533-539.

    [14]SHARP I, YU K. On the GDOP and accuracy for indoor positioning [J]. IEEE Trans on AES, 2012, 48(3): 2032-2051.

    [15]HAHN W R, TRETTER S A. Optimum processing for delay-vector estimation in passive signal arrays [J]. IEEE Trans on Inform Theory, 1973, (19): 608-614

    [16]YANG Lin, ZHOU Yiyu, XU Hui, et al. Passive location and error analysis using TDOA and aided height information by three stations[J]. Acta Electronica Sinica, 1998, 26(12): 71-74(in Chinese).

    [17]SHARP I, KEGEN Y. GDOP Analysis for Positioning System Design[J]. IEEE Trans on Vehicular Technology, 2009, 58(7): 3371-3382.

    [18]ZHANG Zhengchao, TONG Li. Precision Analysis of passive location of 4-stations based on TDOA [J]. Journal of China Academy of Electronics and Information Technology, 2010, 5(6): 582-587. (in Chinese)

    [19]YUAN Gang, CHEN Jing. A clustering detection algorithm of stationary target for passive time difference location system [J]. Journal of Electronics & Information Technology, 2010, 32(3): 728-731. (in Chinese).

    [20]CHAN Y T, TSUI W Y, SO H C, et al. Time-of-arrival based localization under NLOS conditions [J].IEEE Trans on Vehicular Technology, 2006, 55(1): 17-24.

    Dr. Huang Rongshun is currently a Researcher in the Second Research Institute of CAAC. He received his Ph.D. in Sichuan University, and his main research interests focus on information processing and system integration.

    Dr. Peng Wei is currently working as postdoctoral research fellow in University of Electronic Science and Technology of China. He received his Ph.D. in University of Electronic Science and Technology of China, and his main research interests are radar, digital signal processing and MLAT system.

    Ms. Li Jing is currently an engineer in the Second Research Institute of CAAC, She received master degree in computer science and technology in 2008 from Northwest A&F University and her main research interests include MALT, ADS-B and A-SMGCS.

    Dr. Wu Honggang is currently a researcher in the Second Research Institute of CAAC. He received his Ph.D. in Beijing University of Aeronautics and Astronautics, and his main research interests include signal processing and air traffic control systems.

    Dr. Li Xingbo is the engineer of the Second Research Institute of CAAC. She received her Ph.D. in Warwick University, UK. Her research interests include multi-agent systems and swarm intelligence.

    (Executive Editor: Zhang Bei)

    TN958.97 Document code:A Article ID:1005-1120(2016)04-0425-08

    *Corresponding author, E-mail address: pw7@163.com.

    How to cite this article: Huang Rongshun, Peng We, Li Jing, et al.A test method for the static/moving state of targets applied to airport surface surveillance mlat system[J]. Trans. Nanjing Univ. Aero. Astro., 2016,33(4):425-432.

    http://dx.doi.org/10.16356/j.1005-1120.2016.04.425

    av女优亚洲男人天堂| 99久久九九国产精品国产免费| 99热6这里只有精品| 嫩草影院入口| a级毛片a级免费在线| 精品久久久久久久久亚洲| 成年女人看的毛片在线观看| 亚洲最大成人中文| 在线播放国产精品三级| 久久人人爽人人片av| 欧美成人a在线观看| 我要搜黄色片| 国产av不卡久久| 免费av毛片视频| ponron亚洲| 日本成人三级电影网站| 国产精品国产高清国产av| 一级毛片aaaaaa免费看小| 欧美成人精品欧美一级黄| 久久6这里有精品| 亚洲av成人av| 一级a爱片免费观看的视频| 欧美一区二区精品小视频在线| 联通29元200g的流量卡| 免费在线观看成人毛片| 国产精品久久久久久av不卡| 精品久久久久久久久av| 美女免费视频网站| 网址你懂的国产日韩在线| 啦啦啦韩国在线观看视频| 女人被狂操c到高潮| 高清毛片免费观看视频网站| 国产av不卡久久| 18禁黄网站禁片免费观看直播| 日本-黄色视频高清免费观看| 成人一区二区视频在线观看| 国产精品久久电影中文字幕| 一级黄片播放器| 亚洲精品国产av成人精品 | 69av精品久久久久久| 国产精品,欧美在线| 国产男靠女视频免费网站| 免费看光身美女| 99热精品在线国产| 亚洲精品乱码久久久v下载方式| 一本久久中文字幕| 搡老妇女老女人老熟妇| 99久久中文字幕三级久久日本| 久久久久久九九精品二区国产| 国产精品乱码一区二三区的特点| 亚洲第一电影网av| 成人二区视频| 成人av在线播放网站| 哪里可以看免费的av片| 99热网站在线观看| 亚洲真实伦在线观看| 国语自产精品视频在线第100页| 国产探花在线观看一区二区| 久久精品国产清高在天天线| h日本视频在线播放| 久久亚洲国产成人精品v| 国产aⅴ精品一区二区三区波| 国产精品久久视频播放| 男人的好看免费观看在线视频| 18禁在线无遮挡免费观看视频 | 男人狂女人下面高潮的视频| 成人特级av手机在线观看| 国产精品一及| 日本-黄色视频高清免费观看| 少妇高潮的动态图| 国产精品不卡视频一区二区| 99热精品在线国产| 亚洲av不卡在线观看| 最近在线观看免费完整版| 久久6这里有精品| 两个人视频免费观看高清| 女人十人毛片免费观看3o分钟| 精品久久国产蜜桃| 中国国产av一级| 丝袜美腿在线中文| 亚洲av第一区精品v没综合| 久久久久久久午夜电影| 成人特级av手机在线观看| 草草在线视频免费看| 亚洲美女黄片视频| 亚洲精品一区av在线观看| 色哟哟哟哟哟哟| 在线观看免费视频日本深夜| 午夜日韩欧美国产| 可以在线观看毛片的网站| 亚洲人成网站在线播| 国产精品伦人一区二区| 国产v大片淫在线免费观看| 国产片特级美女逼逼视频| 日韩 亚洲 欧美在线| a级毛色黄片| 午夜爱爱视频在线播放| 精品欧美国产一区二区三| 国产亚洲91精品色在线| 久久99热这里只有精品18| 男女下面进入的视频免费午夜| 欧美激情久久久久久爽电影| 小蜜桃在线观看免费完整版高清| 中文字幕免费在线视频6| 极品教师在线视频| 乱系列少妇在线播放| 亚洲五月天丁香| 日韩成人av中文字幕在线观看 | 一级毛片aaaaaa免费看小| 亚洲人成网站在线观看播放| 一本精品99久久精品77| 亚洲不卡免费看| 欧美极品一区二区三区四区| 99热这里只有精品一区| 别揉我奶头 嗯啊视频| 成人美女网站在线观看视频| 国内久久婷婷六月综合欲色啪| 久久久久性生活片| 色视频www国产| 晚上一个人看的免费电影| 国产亚洲av嫩草精品影院| 日韩欧美精品免费久久| 欧美成人一区二区免费高清观看| 国产精华一区二区三区| 精品一区二区三区视频在线| 一进一出抽搐动态| 国产麻豆成人av免费视频| 久久99热6这里只有精品| 最新在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 国产 一区 欧美 日韩| 真实男女啪啪啪动态图| 免费人成在线观看视频色| 99久久精品一区二区三区| 亚洲av成人精品一区久久| 真人做人爱边吃奶动态| a级一级毛片免费在线观看| 国产色婷婷99| 日韩大尺度精品在线看网址| 久久久久久久久久成人| av福利片在线观看| 麻豆一二三区av精品| 看片在线看免费视频| 日韩人妻高清精品专区| 别揉我奶头~嗯~啊~动态视频| 国产久久久一区二区三区| 热99在线观看视频| 在线观看av片永久免费下载| 国产伦在线观看视频一区| 亚洲人与动物交配视频| 69人妻影院| 嫩草影院新地址| 俺也久久电影网| 久久韩国三级中文字幕| 国产成人影院久久av| 美女内射精品一级片tv| 搡老妇女老女人老熟妇| 日本a在线网址| 亚洲高清免费不卡视频| 性色avwww在线观看| 国内精品宾馆在线| 国产淫片久久久久久久久| 在线免费十八禁| 国产69精品久久久久777片| 亚洲图色成人| 久久久久久久亚洲中文字幕| 99久久精品一区二区三区| 亚洲国产日韩欧美精品在线观看| 91在线观看av| 亚洲av二区三区四区| av在线蜜桃| 波多野结衣高清无吗| av在线观看视频网站免费| 少妇丰满av| 色噜噜av男人的天堂激情| 深夜精品福利| 精品久久久久久久久av| 中文字幕熟女人妻在线| 国产精品女同一区二区软件| 色播亚洲综合网| 亚洲精品影视一区二区三区av| 国产精品久久久久久av不卡| 一个人观看的视频www高清免费观看| 少妇猛男粗大的猛烈进出视频 | 网址你懂的国产日韩在线| 免费无遮挡裸体视频| 亚洲中文字幕日韩| 亚洲真实伦在线观看| 在线观看一区二区三区| 亚洲熟妇熟女久久| 国产成年人精品一区二区| 亚洲精品日韩av片在线观看| 国产精品国产三级国产av玫瑰| 国产高清视频在线观看网站| 综合色av麻豆| 俺也久久电影网| 麻豆av噜噜一区二区三区| 国产av一区在线观看免费| 极品教师在线视频| 国产在线精品亚洲第一网站| 特级一级黄色大片| 欧美日韩综合久久久久久| 悠悠久久av| 精品久久久久久久久亚洲| 国产欧美日韩精品亚洲av| 九色成人免费人妻av| 黄色视频,在线免费观看| 一个人观看的视频www高清免费观看| 99久久精品国产国产毛片| 精品人妻熟女av久视频| 精品99又大又爽又粗少妇毛片| 尤物成人国产欧美一区二区三区| 国产综合懂色| 亚洲人成网站在线观看播放| 国产视频一区二区在线看| 又粗又爽又猛毛片免费看| 午夜福利18| 99热只有精品国产| 亚洲国产欧美人成| 激情 狠狠 欧美| 亚洲aⅴ乱码一区二区在线播放| 在现免费观看毛片| 成人二区视频| 十八禁国产超污无遮挡网站| 一个人看视频在线观看www免费| 亚洲av二区三区四区| 中文字幕av成人在线电影| 色噜噜av男人的天堂激情| 国产成人福利小说| 搡老妇女老女人老熟妇| 日本一二三区视频观看| 中文字幕精品亚洲无线码一区| 欧美国产日韩亚洲一区| 亚洲欧美日韩高清在线视频| 国产伦一二天堂av在线观看| 国产高清不卡午夜福利| 亚洲国产高清在线一区二区三| 国产男靠女视频免费网站| 久久久久久久久久黄片| 精品免费久久久久久久清纯| 精品欧美国产一区二区三| 免费看日本二区| 免费观看精品视频网站| 精品福利观看| 无遮挡黄片免费观看| 舔av片在线| 成人午夜高清在线视频| 高清毛片免费观看视频网站| 性欧美人与动物交配| 啦啦啦观看免费观看视频高清| 国产精品乱码一区二三区的特点| 国内少妇人妻偷人精品xxx网站| 亚洲人成网站高清观看| 成人高潮视频无遮挡免费网站| 亚洲第一区二区三区不卡| 国产三级在线视频| 长腿黑丝高跟| 俺也久久电影网| 国产91av在线免费观看| 精品少妇黑人巨大在线播放 | av卡一久久| 在线看三级毛片| 国内精品久久久久精免费| 免费av不卡在线播放| 精品人妻视频免费看| 噜噜噜噜噜久久久久久91| 久久午夜亚洲精品久久| 欧美成人免费av一区二区三区| 可以在线观看毛片的网站| 人妻制服诱惑在线中文字幕| 国产乱人视频| 成年女人永久免费观看视频| 男女之事视频高清在线观看| 午夜精品在线福利| 国产又黄又爽又无遮挡在线| 日韩成人伦理影院| av在线蜜桃| 久久久久久伊人网av| 天天躁日日操中文字幕| 免费看日本二区| 91狼人影院| 波多野结衣高清无吗| 国产精品免费一区二区三区在线| 舔av片在线| 欧美xxxx性猛交bbbb| 国产av一区在线观看免费| 日日摸夜夜添夜夜添av毛片| 亚洲一区二区三区色噜噜| 日韩精品有码人妻一区| 97在线视频观看| av卡一久久| aaaaa片日本免费| 国产精品一区二区免费欧美| 色综合色国产| 国产 一区精品| 97在线视频观看| 亚洲va在线va天堂va国产| 亚洲精品成人av观看孕妇| 国产淫语在线视频| 日韩成人伦理影院| 中文天堂在线官网| 91aial.com中文字幕在线观看| 国产欧美另类精品又又久久亚洲欧美| 一级片'在线观看视频| 女性被躁到高潮视频| 十八禁高潮呻吟视频 | 大话2 男鬼变身卡| 亚洲怡红院男人天堂| 美女xxoo啪啪120秒动态图| av女优亚洲男人天堂| 精品亚洲成a人片在线观看| www.av在线官网国产| freevideosex欧美| 97在线视频观看| 色视频在线一区二区三区| 丰满饥渴人妻一区二区三| 午夜免费观看性视频| 欧美区成人在线视频| 久久久久精品久久久久真实原创| 久久影院123| 欧美丝袜亚洲另类| 国产又色又爽无遮挡免| 高清黄色对白视频在线免费看 | 水蜜桃什么品种好| 又黄又爽又刺激的免费视频.| 免费大片黄手机在线观看| 黄片无遮挡物在线观看| 亚洲精品国产色婷婷电影| 男人和女人高潮做爰伦理| 女的被弄到高潮叫床怎么办| 精品人妻熟女毛片av久久网站| 国产黄色免费在线视频| 亚州av有码| 欧美 亚洲 国产 日韩一| 欧美97在线视频| 欧美三级亚洲精品| 亚洲欧洲国产日韩| 国模一区二区三区四区视频| 亚洲精品国产av蜜桃| 一个人看视频在线观看www免费| 久久国产乱子免费精品| 国产日韩一区二区三区精品不卡 | 久久精品久久久久久噜噜老黄| 免费观看无遮挡的男女| 亚洲国产欧美日韩在线播放 | 一级片'在线观看视频| 简卡轻食公司| 欧美97在线视频| av.在线天堂| 在线观看三级黄色| 水蜜桃什么品种好| 国产精品不卡视频一区二区| 成人毛片a级毛片在线播放| 各种免费的搞黄视频| 午夜老司机福利剧场| 熟妇人妻不卡中文字幕| 亚洲国产日韩一区二区| 午夜日本视频在线| 狂野欧美激情性xxxx在线观看| 人妻少妇偷人精品九色| 久久久久久人妻| 97超碰精品成人国产| 日产精品乱码卡一卡2卡三| 国产综合精华液| 狠狠精品人妻久久久久久综合| 欧美激情极品国产一区二区三区 | 久久国产亚洲av麻豆专区| 欧美丝袜亚洲另类| 亚洲,欧美,日韩| 最近2019中文字幕mv第一页| 又黄又爽又刺激的免费视频.| 熟女电影av网| 日韩不卡一区二区三区视频在线| 在线观看免费高清a一片| 亚洲精品乱码久久久v下载方式| 成人亚洲欧美一区二区av| 久久久久久久久大av| av国产久精品久网站免费入址| 晚上一个人看的免费电影| 在线观看人妻少妇| 人妻一区二区av| 国产免费一级a男人的天堂| 久久久亚洲精品成人影院| 国产精品欧美亚洲77777| 男人爽女人下面视频在线观看| 精品久久久噜噜| 性高湖久久久久久久久免费观看| 欧美精品一区二区免费开放| 久久影院123| 欧美3d第一页| 另类亚洲欧美激情| 一区二区三区精品91| 免费观看性生交大片5| 国产爽快片一区二区三区| 国产成人精品福利久久| 国产极品粉嫩免费观看在线 | 久久热精品热| 成人18禁高潮啪啪吃奶动态图 | 国产精品三级大全| 日韩 亚洲 欧美在线| 午夜免费观看性视频| 寂寞人妻少妇视频99o| 国产精品国产三级国产av玫瑰| 国内精品宾馆在线| 亚洲人成网站在线观看播放| 日产精品乱码卡一卡2卡三| 少妇裸体淫交视频免费看高清| 欧美成人精品欧美一级黄| 高清午夜精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | www.av在线官网国产| 国产 一区精品| 9色porny在线观看| 新久久久久国产一级毛片| 国产黄频视频在线观看| 国产免费一区二区三区四区乱码| 国产淫语在线视频| 在线天堂最新版资源| 亚洲国产欧美在线一区| 国产成人免费无遮挡视频| 欧美成人午夜免费资源| 日本欧美国产在线视频| 久久婷婷青草| 亚洲欧美精品自产自拍| 日韩av在线免费看完整版不卡| 自拍欧美九色日韩亚洲蝌蚪91 | 狠狠精品人妻久久久久久综合| 亚洲国产精品999| av播播在线观看一区| √禁漫天堂资源中文www| 中文乱码字字幕精品一区二区三区| 中文在线观看免费www的网站| 日韩熟女老妇一区二区性免费视频| 少妇丰满av| 美女xxoo啪啪120秒动态图| 晚上一个人看的免费电影| 亚洲欧美日韩东京热| 亚洲真实伦在线观看| 久久人人爽av亚洲精品天堂| 国产视频内射| 日韩成人伦理影院| 国产黄频视频在线观看| 综合色丁香网| 日韩一区二区三区影片| 免费看日本二区| 欧美日本中文国产一区发布| 亚洲精品视频女| 国国产精品蜜臀av免费| 少妇熟女欧美另类| 精品久久久噜噜| 亚洲国产精品一区二区三区在线| 国产精品国产三级国产av玫瑰| 国语对白做爰xxxⅹ性视频网站| 一个人免费看片子| 成人毛片60女人毛片免费| 亚洲怡红院男人天堂| 亚洲欧美日韩另类电影网站| 亚洲久久久国产精品| 九九久久精品国产亚洲av麻豆| 美女内射精品一级片tv| 亚洲人成网站在线播| 久久女婷五月综合色啪小说| 一区二区av电影网| 亚洲欧美日韩卡通动漫| 国产91av在线免费观看| 久久国产精品大桥未久av | 亚洲高清免费不卡视频| 免费黄网站久久成人精品| 亚洲电影在线观看av| 国产一区二区三区av在线| 精品卡一卡二卡四卡免费| 国产日韩欧美亚洲二区| 黑丝袜美女国产一区| 一区在线观看完整版| av女优亚洲男人天堂| 免费看不卡的av| 国产一区二区三区av在线| 91精品伊人久久大香线蕉| 国产乱人偷精品视频| 日本免费在线观看一区| 美女xxoo啪啪120秒动态图| 十八禁高潮呻吟视频 | 寂寞人妻少妇视频99o| 男女免费视频国产| 草草在线视频免费看| 欧美 亚洲 国产 日韩一| 亚洲性久久影院| 国产精品三级大全| 久久久久久久大尺度免费视频| 中文天堂在线官网| 观看美女的网站| 国产一区有黄有色的免费视频| 街头女战士在线观看网站| 国精品久久久久久国模美| 一级爰片在线观看| 久久久久精品久久久久真实原创| 性色avwww在线观看| 黄色欧美视频在线观看| 日韩伦理黄色片| 国内精品宾馆在线| 欧美最新免费一区二区三区| av又黄又爽大尺度在线免费看| 国产日韩欧美视频二区| 亚洲精品aⅴ在线观看| 亚洲情色 制服丝袜| 国产在线一区二区三区精| 午夜福利网站1000一区二区三区| 亚洲国产精品一区三区| 日本欧美视频一区| 蜜臀久久99精品久久宅男| 亚洲高清免费不卡视频| 欧美日本中文国产一区发布| 免费久久久久久久精品成人欧美视频 | 国产91av在线免费观看| 免费黄色在线免费观看| 我要看黄色一级片免费的| 精品国产国语对白av| 国产亚洲av片在线观看秒播厂| 国产精品一区二区性色av| 国产男女内射视频| 天堂俺去俺来也www色官网| 成年人免费黄色播放视频 | 自拍偷自拍亚洲精品老妇| 免费大片18禁| 中文字幕亚洲精品专区| 亚洲真实伦在线观看| 99久久综合免费| 欧美变态另类bdsm刘玥| 亚洲成色77777| 一级a做视频免费观看| 新久久久久国产一级毛片| 九九在线视频观看精品| 青青草视频在线视频观看| 亚洲精品乱码久久久v下载方式| 少妇高潮的动态图| 免费不卡的大黄色大毛片视频在线观看| 香蕉精品网在线| 亚洲欧美一区二区三区黑人 | 国产探花极品一区二区| 国产 一区精品| 91精品伊人久久大香线蕉| 中文字幕人妻熟人妻熟丝袜美| 精品国产一区二区三区久久久樱花| 人人澡人人妻人| 又爽又黄a免费视频| 夜夜看夜夜爽夜夜摸| 99九九线精品视频在线观看视频| 亚洲精品456在线播放app| 永久网站在线| av卡一久久| 伊人久久国产一区二区| 大香蕉久久网| √禁漫天堂资源中文www| 另类精品久久| 亚洲av二区三区四区| 丰满乱子伦码专区| 丁香六月天网| 免费观看a级毛片全部| 高清欧美精品videossex| 免费观看av网站的网址| 在线观看免费高清a一片| 亚洲国产日韩一区二区| av又黄又爽大尺度在线免费看| 亚洲精品一区蜜桃| 日产精品乱码卡一卡2卡三| 国精品久久久久久国模美| 岛国毛片在线播放| 国产精品一区二区在线不卡| 又黄又爽又刺激的免费视频.| 99热网站在线观看| 欧美日韩亚洲高清精品| av免费观看日本| 99热6这里只有精品| 国产又色又爽无遮挡免| 亚洲精品国产色婷婷电影| 黄色欧美视频在线观看| 久久精品国产自在天天线| 欧美成人精品欧美一级黄| 22中文网久久字幕| 久久久久国产精品人妻一区二区| av福利片在线观看| 人人妻人人添人人爽欧美一区卜| 人人妻人人爽人人添夜夜欢视频 | 777米奇影视久久| 自线自在国产av| 国产一区二区在线观看av| 欧美日韩亚洲高清精品| 国产熟女午夜一区二区三区 | 夫妻午夜视频| 成年av动漫网址| 99久久精品热视频| 亚洲av综合色区一区| 看非洲黑人一级黄片| 超碰97精品在线观看| 日本-黄色视频高清免费观看| av不卡在线播放| 人体艺术视频欧美日本| 欧美 亚洲 国产 日韩一| 亚洲经典国产精华液单| 一区二区三区乱码不卡18| 亚洲中文av在线| 噜噜噜噜噜久久久久久91| 内射极品少妇av片p| 欧美性感艳星| 少妇高潮的动态图| 国精品久久久久久国模美| 黄色日韩在线| 天堂8中文在线网| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品一区三区| 国产在线视频一区二区| 噜噜噜噜噜久久久久久91| 一级毛片aaaaaa免费看小| 看非洲黑人一级黄片| 亚洲精品一区蜜桃|