• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase transition,electrical and optical switching properties in the well-crystallized VO2(A) nanorods

    2016-11-18 09:29:41JINChengXIONGKuangweiZHANGHuiJINShaowei
    關(guān)鍵詞:變溫電學(xué)水熱

    JIN Cheng,XIONG Kuangwei,ZHANG Hui,JIN Shaowei

    (School of Physics and Materials Science,Anhui University,Hefei 230601,China)

    ?

    Phase transition,electrical and optical switching properties in the well-crystallized VO2(A) nanorods

    JIN Cheng,XIONG Kuangwei,ZHANG Hui,JIN Shaowei*

    (School of Physics and Materials Science,Anhui University,Hefei 230601,China)

    Well-crystallized VO2(A) nanorods were facilely prepared by one-step hydrothermal approach in V2O5-H2C2O4-H2O system.Structure and size of as-obtained products were examined by X-ray diffraction (XRD),scanning and transmission electron microscopies(TEM).DSC curves showed the phase transition of VO2(A) nanorods was 167.8 ℃ upon heating.Varying-temperature XRD patterns showed that the structural transition of the VO2(A) product occurred between 160 ℃ and 180 ℃ on the heating.The magnetic susceptibility exhibited a sudden increase at about 450 K with increasing temperature.The resistance of the VO2(A) sample was measured by four probe method,the hysteresis showed that the electronic phase transition of VO2(A) was strongly first order in nature.The hopping activation energy was calculated based on Arrhenius plot,which was 0.39 eV for the low-temperature VO2(AL),and 0.37 eV for the high-temperature VO2(AH) respectively.Variable-temperature infrared spectra revealed that the VO2(A) nanorods had good optical switching character in the infrared light region,which was concerned with the reversible structure transition of the VO2(A).The research results indicated the VO2(A) nanostructures could be applied in the infrared light switching device.

    vanadium oxides;VO2(A) nanorods;hydrothermal synthesis;electrical property;optical property

    0 Introduction

    Amongst the transition metal compounds,vanadium oxides are the most widely studied materials in recent years as the variety of vanadium-oxygen system inclusive the series of multiple vanadium valencies provide intriguing study within both the theoretical structural and structure-property correlation[1-3].Among them,vanadium dioxides (VO2) has attracted a special interest for researchers because of its polymorphic configurations with multipurpose applications.It is reported that VO2has at least nine polymorphs (except for hydrate) both in the stable and metastable forms,among which the rutile VO2(R)[4],monoclinic VO2(M)[5]and triclinic VO2(T)[6]are similar in structure,other VO2phases designated as tetragonal VO2(A)[7],monoclinic VO2(B)[8],tetragonal VO2(C)[9],monoclinic VO2(D)[10],paramontroseite VO2[11]and VO2with a BCC (body-centered cubic) structure[12].

    All of the VO2polymorphs,the VO2(M),VO2(R),VO2(B) and VO2(A) phases are all based on oxygen BCC lattice having the vanadium ions in the octahedral sites,the M,R phases are different than the A,B phases in the light of the mutual orientation of the fourfold axis of the oxygen octahedral.The M,R phases themselves undergo an insulator/metal transition at 340 K,with a many thousand-fold increase in its conductivity[5].This transition has ascribed to paring of vanadium ions in the low temperature monoclinic(M) phase;V4+-V4+ions dimerizing along the c-axis leads to a shift of the π*band away from the Fermi level and removal of the d‖band degeneracy[13].By contrast,the metastable phase VO2(A) also displays a similar reversible phase transition at a temperature about 435 K,has been rarely reported because of the harsh growth conditions.The VO2(A) was first prepared by the hydrothermal reaction of a V2O4-V2O5-H2O system[14],the crystal structure of VO2(A) had not been clarified until 1998.Subsequently,based on the crystal structure,phase transition mechanism and electrical properties of VO2(A) have been studied[15-16],and a crystallographic slip mechanism was proposed to explain the transformation from VO2(B) to VO2(A)[17].The recent interest has also focused on the hydrothermal preparation of VO2(A),the attaching and recrystallization mechanism has been proposed for explaining the formation of VO2(A) nanorods[18],and the structure transition,electrical conductivity and the optical transmittance property in infrared region (IR) were studied limited on the VO2(A) nanostructures[19-20].

    In present paper,the well-crystallized VO2(A) nanorods were successfully prepared by one-step hydrothermal method at 230 ℃ for 24 h under a 1∶1.5 molar ratio of V2O5to oxalic acid.To clarify the structure phase transition,electrical and magnetic properties,and optical switching properties in the VO2(A) nanorods,the varying-temperature XRD,the temperature dependence of susceptibility and resistivity,as well as the infrared spectra were performed for the VO2(A) nanorods.Our results indicated that the phase transition from the low-temperature VO2(AL) phase to the high-temperature VO2(AH) phase is about 167.8 ℃ on heating step,the electronic phase transition is strongly first order in nature for the VO2(A) nanorods.The hopping activation energy of the VO2(A) was also calculated based on Arrhenius plot.A reversible optical switching was observed in infrared light region from 680 cm-1to 660 cm-1for the VO2(A) nanorods.

    1 Experimental section

    1.1 Sample preparation

    All chemical reagents used in the experiments,including vanadium pentoxide (V2O5) and oxalic acid di-hydrate (H2C2O4·2H2O) were of analytical grade without further purification.In a typical hydrothermal process,300 mg of V2O5and 312 mg of H2C2O4·2H2O powders were dispersed into 20 mL of the distilled water under magnetic stirring to produce a clear,blue solution.After,20 mL mixed solution was transferred into a Teflon-lined autoclave (50 mL) with stainless steel shell (the filling ratio is 40%),which was sealed and sustained at 230 ℃ holding for 24 h,then cooled to room temperature naturally.The final precipitates were collected by filtering,washed with distilled water and ethanol alternately,and then dried in air at 80 ℃ for 10 h.

    1.2 Characterization and measurements

    The morphologies and sizes of the resulted product were observed by a field-emission scanning electron microscopy (FESEM,S-4800) at an acceleration voltage of 10 kV,and a transmission electron microscope (TEM,JEOL-2010,JAP) operated at 200 kV.The crystal structure of the as-obtained product was examined by X-ray diffraction (XRD) with Philips X’Pert diffractometer (Cu Kα,λ=1.540 6 ?),the operating voltage and current were kept at 40 kV and 30 mA.In order to study the phase transition of the VO2(A),we carried out the differential scanning calorimetry (DSC,Q2000) measurements under nitrogen atmosphere over a temperature range from 20 ℃ to 200 ℃ along heating/cooling cycles.The magnetic susceptibility of the VO2(A) nanorods was measured from 300 K to 560 K under the heating/cooling cycle using a quantum design physical measurement system (PPMS).The temperature dependent of the resistivity was carried out on the as-pressed pellet of the VO2(A) product in argon ambient.To press a pellet [diameter(Φ)1.35 cm1 mm],the mass of 500 mg VO2(A) nanopowders was applied,four electric contacts were established using silver epoxy.The optical transmittance properties of the VO2(A) products were measured by Fourier transform infrared spectroscopy (FT-IR,Nicolet 8700) at various temperatures with an adapted heating controlled cell and over a range from 400 cm-1to 4 000 cm-1with a resolution of 4 cm-1.

    2 Results and discussion

    2.1 Structure and morphological

    Fig.1 XRD pattern(a),overview SEM image (b) of VO2(A) nanorods that were obtained by hydrothermal reaction at 230 ℃ for 24 h under a molar ratio (1∶1.5) of V2O5 to oxalic acid,TEM image (c) for a single VO2(A)nanorod,high-resolution TEM image (d) of the circular area in Fig.1c

    2.2 Phase transition

    By means of the driving force of increasing temperature,the first-order phase transition from the primitive tetragonal VO2(A) to the high-temperature body-centered tetragonal VO2(AH) phase usually involves a substantial entropy component.For the VO2(A),the phase transition is due to slight deviation of the V4+-V4+bond length on heating step,which is similar to that change from rutile VO2(R) to monoclinic VO2(M)[7,15].Fig.2a shows the XRD patterns of the as-obtained VO2(A) product,it can be seen that the shape of the XRD patterns has almost no change with temperature except the slight shift of certain peaks and disappearance of (211) and (311) diffraction peaks above the transition temperature (>160 ℃),indicating that the crystal structure does not change drastically but the lattice spacing along the c-axis is halved through the transition[16].As shown in Fig.2b,the lattice parameters of the a-axis and c-axis show a non-linear increase and decrease,respectively with the increasing temperature.The abrupt change of lattice parameters above the critical temperature (>160 ℃) is expected in the VO2(A) nanorods,indicating a structure transition occurs from a low-temperature primitive tetragonal VO2(AL) to a high-temperature body-centered tetragonal VO2(AH) phase[16].

    Fig.2 Variable-temperature XRD patterns (a) of VO2(A) nanorods,the disappearance peaks of (211) and (311)were marked by arrows,temperature dependence (b) of the lattice parameters of the VO2(A) nanorods

    Fig.3 shows the differential scanning calorimetry (DSC) curves for the as-prepared VO2(A) nanorods.In the DSC scan,the thermal behavior of the VO2(A) sample was characterized when it was heated (from 20 ℃ to 200 ℃) and then cooled at 10 ℃·min-1.During the heating step,a single endothermic peak was observed at 167.8 ℃,this can be assigned to conversion of the primitive tetragonal VO2(A) into body-centered tetragonal VO2(AH).On cooling,a wide exothermic peak was recorded at 134 ℃,which is ascribed to the transformation of the VO2(AH) into the VO2(AL) form.A similar results was also reported in the VO2(A) nanobelts,where solid-solid transition from VO2(AL) to VO2(AH) occurred at fast heating/cooling rates .In this work,the endothermic peak on heating occurred at 167.8 ℃ which is higher than that datum (162 ℃) of Oka’s report[16].The endothermic peak of 167.8 ℃ in the DSC curve is close to that value of the Ref.[21],the exothermic peak is about 34 ℃ lower than the endothermic peak.This higher transition temperature (167.8 ℃) and a wide hysteresis loop in DSC curve could be considered to be due to the nonstoichiometry in the VO2(A) nanorods and/or the scaling to nanoscale dimensions,as described in VO2(M) nanostructures[21].

    Fig.3 DSC curves of the VO2(A) nanorods on the heating and cooling cycle

    To further study the phase transition of the VO2(A) nanorods,the susceptibility as a function of temperature was also recorded when it was heated (from 300 K to 560 K) and then cooled (from 560 K to 300 K) under a 10 000 Oe field,as shown in Fig.4.The magnetic susceptibility on heating showed a sudden increasing at about 450 K.On the cooling it gradually decreased to the starting value and showed a large hysteresis.The magnetic hysteresis is closely concerned with the reversible structural transition of the VO2(A).The susceptibility change on heating showed a striking resemblance to the case of the VO2(R)[22].The decrease of susceptibility with reducing temperature can be ascribed to the dimerization of the V—V pairs which leads to formation of the non-magnetic V4+-V4+bonding in low temperature phase of VO2(A)[16,23].

    Fig.4 Susceptibility as a function of temperature was measured for the VO2(A) nanorods under a 10 000 Oe field over the temperature range of 300 K to 560 K

    2.3 Electrical and optical switching features

    To study electrical property of the VO2(A),we carried out the resistance measurement on the as-pressed pellet of the VO2(A) powders using the silver epoxy as four contacts (Fig.5a).The temperature dependent resistivity showed a semiconducting behavior over the temperature range of 293—483 K.As shown in Fig.5a,the pronounced hysteresis is observed,indicating that the electronic transition of the VO2(A) is strongly first order in nature.The electrical resistivity seems to rather high because it measured on an as-pressed pellet of the VO2(A) powders not sintered.The resistivity curve on heating exhibited a clear deflection at the transition temperature (Tc1=430 K),indicating that high-temperature phase (HTP) becomes more conductive than low-temperature phase (LTP) of the VO2(A).Also several tens-fold decrease of the resistivity is observed through the phase transition on the heating cycle,it is dissimilar to that of the rutile VO2(R)[5].To illustrate the electrical transition,the differential of logarithm of the resistivity (logρ )for the pressed VO2(A) sample was also plotted,as an inset in Fig.5a.The insets in Fig.5a correspond to the differential of logρ on the heating (right top) and cooling (left below).It is also noted that the differential of logρ on the heating (right inset of Fig.5a) displays a periodic jump around the transition temperature of Tc1,but it is not occurred upon the cooling cycle (left inset).A plausible reason for this difference in the VO2(A) may be twinning domains which are induced on the LTP to HTP transition but disappears on the reverse transition[16].

    To understand the electrical conductivity of the VO2(A),direct current (DC) conductivity as a function of inverse temperature was depicted in Fig.5b.Mott had proposed an optical phonon assisted hopping model of the small polar to explain conductivity of the transition metal oxides[24-25],where the small polar hopping induced conductivity at high temperature (T>180 K) is given by

    (1)

    or

    (2)

    where σ is the polar hopping induced conductivity,ν0is longitudinal optical phonon frequency,α is the rate of wave-function decay,R is the average hopping distance,c is the fraction of sites occupied by electrons or polarons,A is the fixed numerical calculated by constant above and W is the activation energy (i.e.energy barrier) which hinder the electrons in order to hop to nearest neighbour site.Fig.5b displays the plot of ln(T/R) versus reciprocal temperature on the heating cycle.According to the slope of the linear fitting curve in high temperature range (293—483 K),we evaluated the activation energy W of the VO2(A) nanorods is 0.39 eV for the low-temperature VO2(AL) and 0.37 eV for the high-temperature phase VO2(AH) ,respectively.The energy of 0.39 eV is larger than the reported energy of 0.28 eV in the individual nanobelt of the VO2(A)[26].This disparity in the activation energy is considered to be caused by the different measurement ways (the pressed powders vs.an individual nanobelt).Above results indicated that the electrons (or polarons) hopping to the nearest neighbour site are more easy for the high-temperature VO2(AH) form,while the VO2(AH) phase is more conductive than the VO2(AL).

    Fig.5 A plot (a) of resistivity versus temperature for the VO2(A) sample during the heating and then cooling,DC conductivity (b) as a function of T-1 on the heating cycle

    Contrast with the rutile VO2(R),the optical properties of the VO2(A) nanostructures in infrared region (IR) are limited reported.In our work,a series of infrared spectra of the VO2(A) product with various temperatures were shown in Fig.6.The infrared spectra exhibited the existence of varying vibrations of V—O bonds.The 935 cm-1band observed for the VO2(A) is attributed to the stretching of the short V=O bonds[27].The vibration band at 600 cm-1to 550 cm-1can be described as the delocalization of the electrons involving in the V4+-V4+bonds between VO6octahedral[16].The bands at 675 cm-1and 428 cm-1are attributed to the stretching vibrations of V—O—V bonds gradually disappear with increasing temperature[28],which is a directly evidence for the occurrence of the first order phase transition in the VO2(A) nanorods.The infrared spectra in Fig.6b displays a clear process of the phase transition of the VO2(A) before and after the temperature of phase transiting (Tc),indicating the phase transition occurred at 170 ℃ in heating cycle,this is consistent with the results of DSC and XRD.The VO2(A) product has optical switching property at absorption bands from 680 cm-1to 660 cm-1,suggesting the VO2(A) can be applied in many optical devices,such as infrared light switching device,optical data storage and so on.In Fig.6c,two IR curves below Tc(one is from the heating process,the other is from cooling) are basically coincided,revealing the phase transition of VO2(A) nanorods is reversibility.

    Fig.6 Variable-temperature infrared spectra of the VO2(A) nanoeods:all of IR curves (a) with various temperatures,typical IR curves (b) to reveal the phase transition of the VO2(A) before and after Tc,three IR curves (c)

    3 Conclusion

    The well-crystallized VO2(A) nanorods were facilely prepared via hydrothermal approach based on the reduction of V2O5by oxalic acid.An endothermic peak at 167.8 ℃,a wide exothermic peak at 134 ℃ was detected in the DSC curve of the VO2(A) nanorods.An expanded a-axis and contracted c-axis was evidenced with increasing temperature.The susceptibility on heating displayed a sudden increasing at 450 K,the decrease of susceptibility with reducing temperature is ascribed to the dimerization of V—Vpairs which lead to formation of the non-magnetic V4+-V4+bonding in low-temperature phase VO2(AL).The resistivity showed a pronounced hysteresis,indicating that the electronic transition of VO2(A) is strongly first-order in nature.The hopping activation energy for the low- and high-temperature phase of VO2(A) is evaluated to be 0.39 eV and 0.37 eV,respectively.The infrared spectra results suggested the VO2(A) nanostructures could be employed as the infrared light switching materials.

    [1] PARK J H,COY J M,KASIRGA T S,et al.Measurement of a solid-state triple point at the metal-insulator transition in VO2[J].Nature,2013,500:431-434.

    [2] ROZANSKA X,FORTRIE R,SAUER J.Size-dependent catalytic activity of supported vanadium oxide species:oxidative dehydrogenation of propane[J].J Am Chem Soc,2014,136 :7751-7761.

    [3] WEI J,JI H,GUO W,et al.Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams[J].Nat Nanotechnol,2012,7:357-362.

    [4] EYERT V,HOCK K H.Electronic structure of V2O5:role of octahedral deformations[J].Phys Rev B,1998,57:12727-12737.

    [5] MORIN F J.Oxides which show a metal-to-insulator transition at the Neel temperature[J].Phys Rev Lett,1959 ,3 (1):34-36.

    [6] MATSUISHI T.On the phase transformation of VO2[J].Jpn J Appl Phys,1967,6:1060-1071.

    [7] YAO T,OKA Y,YAMAMOTO N.Powder X-ray crystal structure of VO2(A)[J].J Solid State Chem,1990,86:116-124.

    [9] HAGRMAN D,ZUBIETA J,WARREN C J ,et al.A new polymorph of VO2prepared by soft chemical methods[J].J Solid State Chem,1998,138:178-182.

    [10] LIU L,CAO F,YAO T,et al.New-phase VO2micro/nanostructures:investigation of phase transformation and magnetic property[J].New J Chem,2012,36:619-625.

    [11] WU C,ZHU Z P ,WANG W,et al.Synthetic paramontroseite VO2with good aqueous lithium-ion battery performance[J].Chem Commun,2008,39:3891-3893.

    [12] WANG Y Q,ZHANG Z J,ZHU Y,et al.Nanostructured VO2photocatalysts for hydrogen production[J].ACS Nano,2008,2:1492-1496.

    [13] ZYLBERSZTEJN A,MOTT N F.Metal-insulator transition in vanadium dioxide[J].Phys Rev B,1975,11:4383-4386.

    [15] YAO T,OKA Y,YAMAMOTO N.A structural study of the high-temperature phase of VO2(A)[J].J Solid State Chem,1994,112:196-198.

    [16] OKA Y,SATO S,YAO T,et al.Crystal structures and transition mechanism of VO2(A)[J].J Solid State Chem,1998,141:594-598.

    [17] GALY J.A proposal for VO2(B)?VO2(A) phase transition:a simple crystallographic slip[J].J Solid State Chem,1999,148:224-228.

    [18] WEI N,JIN C,XIONG K W,et al.Hydrothermal synthesis,growth mechanism and optical property of VO2(A) nanorods[J].Journal of Anhui University (Natural Science Edition),2016,40 (1):42-49.

    [19] ZHONG Y L,ZHANG Y F,LIU X,et al.Synthesis of VO2(A) nanostructures by a hydrothermal method and their transition to VO2(M)[J].Adv Mater Res,2011,295-297:368-372.

    [20] LIU P C,ZHU K J,GAO Y F,et al.Ultra-long VO2(A) nanorods using the high-temperature mixing method under hydrothermal conditions:synthesis,evolution and thermochromic properties[J].CrystEngComm,2013,15:2753-2760.

    [21] JI S D,ZHANG F,JIN P.Selective formation of VO2(A) or VO2(R) polymorph by controlling the hydrothermal pressure[J].J Solid State Chem,2011,184:2285-2292.

    [22] TAKAHASHI K,YASUOKA H,UEDA Y,et al.NMR Studies of VO2and V1-xWxO2[J].J Phys Soc Jpn,1983,52:3953-3959.

    [23] WHITTAKER L,JAYE C,FU Z,et al.Depressed phase transition in solution-grown VO2nanostructures[J].J Am Chem Soc,2009,131:8884-8894.

    [24] LI L,FANG X,ZHAI T,et al.Electrical transport and high-performance photoconductivity in individual ZrS2nanobelts[J].Adv Mater,2010,22:4151-4156.

    [25] PARK J,LEE E,LEE K W,et al.Electrical transport and quasipersistent photocurrent in vanadium oxide nanowire networks[J].Appl Phys Lett,2006,89:183114.

    [26] LI M,KONG F Y,LI L,et al.Synthesis,field-emission and electric properties of metastable phase VO2(A) ultra-long nanobelts[J].Dalton Trans,2011,40:10961-10965.

    [27] VALMALETTE J C,GAVARRI J R.High efficiency thermochromic VO2(R) resulting from the irreversible transformation of VO2(B)[J].Mater Sci Eng B,1998,54:168-173.

    [28] HOU J W,ZHANG J W,WANG Z P,et al.The phase transition of W-doped VO2nanoparticles synthesized by an improved thermolysis method[J].J Nanosci Nanotechnol,2013,13:1543-1548.

    (責(zé)任編輯 鄭小虎)

    良好結(jié)晶VO2(A)納米桿的相變、電學(xué)和光轉(zhuǎn)變特性

    金 誠,熊狂煒,張 惠,金紹維*

    (安徽大學(xué) 物理與材料科學(xué)學(xué)院,安徽 合肥 230601)

    在VO2-草酸體系中,利用一步水熱合成法制備結(jié)晶良好的VO2(A)納米桿.成品的結(jié)構(gòu)和尺寸分別通過X射線衍射(XRD)、掃描電鏡(SEM)和透射電子顯微鏡(TEM)表征.差示掃描量熱(DSC)曲線顯示在加熱過程中VO2的相轉(zhuǎn)變溫度為167.8 ℃.變溫X射線衍射(XRD)圖譜顯示加熱時VO2(A)在160~180 ℃發(fā)生相變.溫度升高到450 K時,磁化率突然增加.使用4探針法測量VO2(A)樣品的電阻率,滯后現(xiàn)象顯示VO2(A)的相變?yōu)?級相變.根據(jù)阿侖尼烏斯曲線,得出低溫VO2(AL)和高溫VO2(AH)的活化能分別為0.39 eV和0.37 eV.變溫紅外光譜顯示VO2(A)納米桿在紅外區(qū)域具有良好的光學(xué)轉(zhuǎn)換特性,此特性與VO2(A)的可逆結(jié)構(gòu)轉(zhuǎn)變有關(guān).研究結(jié)果表明VO2(A)納米材料可應(yīng)用于紅外開關(guān)裝置.

    釩氧化物;VO2(A)納米桿;水熱合成;電學(xué)性質(zhì);光學(xué)性質(zhì)

    10.3969/j.issn.1000-2162.2016.06.008

    Received date:2016-03-11

    Supported by the National Science Foundation of China(11174001,51402002)

    Author’s brief:JIN Cheng(1990-),male,born in Anqing of Anhui Province,master degree candidate of Anhui University;*JIN Shaowei (corresponding author),professor of Anhui University,doctoral student supervisor,E-mail:jinsw@mail.ustc.edu.cn.

    O614.51 Document code:A Article ID:1000-2162(2016)06-0037-09

    猜你喜歡
    變溫電學(xué)水熱
    電學(xué)
    對一個電學(xué)故障題的思考
    氯乙烯生產(chǎn)中變溫吸附脫水工藝的使用及改進
    Lesson Seventy-four An atypical presentation of a typical arrhythmia
    水熱還是空氣熱?
    巧用電學(xué)知識 妙解環(huán)保問題
    凍融處理對甘薯變溫壓差膨化干燥動力學(xué)的影響
    非共面四頻激光陀螺變溫零偏周期性波動
    Mn摻雜ZnSe量子點變溫發(fā)光性質(zhì)研究
    簡述ZSM-5分子篩水熱合成工藝
    一二三四在线观看免费中文在| 国产精品一区二区免费欧美| 欧美黄色淫秽网站| 亚洲色图 男人天堂 中文字幕| 波多野结衣一区麻豆| tocl精华| 欧美日韩一级在线毛片| 桃红色精品国产亚洲av| 91国产中文字幕| 桃红色精品国产亚洲av| 久99久视频精品免费| 午夜精品久久久久久毛片777| 久久这里只有精品19| 制服人妻中文乱码| 999久久久精品免费观看国产| 人妻 亚洲 视频| 大陆偷拍与自拍| 啦啦啦 在线观看视频| 又黄又爽又免费观看的视频| 久久国产亚洲av麻豆专区| 亚洲情色 制服丝袜| 国产激情欧美一区二区| 国产1区2区3区精品| 久久影院123| 9色porny在线观看| 精品一区二区三区av网在线观看| 精品久久久久久久久久免费视频 | 欧美另类亚洲清纯唯美| 国产精品99久久99久久久不卡| 亚洲av成人不卡在线观看播放网| 亚洲中文av在线| 亚洲熟女精品中文字幕| xxxhd国产人妻xxx| 一进一出抽搐gif免费好疼 | 日韩一卡2卡3卡4卡2021年| 窝窝影院91人妻| 国产一区二区三区视频了| 国产91精品成人一区二区三区| 电影成人av| 极品人妻少妇av视频| 99国产精品99久久久久| 嫩草影视91久久| 亚洲精品国产精品久久久不卡| tocl精华| 91在线观看av| 午夜福利视频在线观看免费| 欧美在线一区亚洲| 三级毛片av免费| 日日摸夜夜添夜夜添小说| 免费在线观看影片大全网站| 一二三四社区在线视频社区8| 中文欧美无线码| 精品第一国产精品| 国产欧美日韩一区二区三区在线| 一个人免费在线观看的高清视频| bbb黄色大片| 亚洲精品av麻豆狂野| 飞空精品影院首页| 免费高清在线观看日韩| 国产单亲对白刺激| 一本大道久久a久久精品| 涩涩av久久男人的天堂| 亚洲av熟女| 狂野欧美激情性xxxx| 成人永久免费在线观看视频| 一区福利在线观看| 欧美亚洲 丝袜 人妻 在线| 欧美精品av麻豆av| 久久香蕉精品热| 99热只有精品国产| 超色免费av| 久久午夜综合久久蜜桃| ponron亚洲| 国产精品.久久久| 久久久精品国产亚洲av高清涩受| 超碰成人久久| 久久精品国产亚洲av香蕉五月 | 飞空精品影院首页| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久电影中文字幕 | 中文字幕人妻丝袜制服| 成人18禁在线播放| 久久久久久久国产电影| 午夜亚洲福利在线播放| 日本撒尿小便嘘嘘汇集6| 亚洲欧美一区二区三区久久| avwww免费| 69av精品久久久久久| 久久久久久久久久久久大奶| 国产人伦9x9x在线观看| 国产欧美日韩一区二区三区在线| 亚洲精品中文字幕一二三四区| 777米奇影视久久| 国产精品国产高清国产av | 可以免费在线观看a视频的电影网站| svipshipincom国产片| 99精品在免费线老司机午夜| 水蜜桃什么品种好| 亚洲第一av免费看| 深夜精品福利| 中文字幕另类日韩欧美亚洲嫩草| 十八禁人妻一区二区| 日本a在线网址| av超薄肉色丝袜交足视频| 又大又爽又粗| 欧美精品一区二区免费开放| 国产精品秋霞免费鲁丝片| 色尼玛亚洲综合影院| 国产成人精品久久二区二区免费| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久视频播放| 亚洲精品av麻豆狂野| 午夜免费成人在线视频| 久久亚洲真实| 成人影院久久| www.自偷自拍.com| 一夜夜www| 欧美中文综合在线视频| 亚洲成人免费电影在线观看| 亚洲精品粉嫩美女一区| 777米奇影视久久| 麻豆成人av在线观看| 一二三四社区在线视频社区8| 无人区码免费观看不卡| 黄色成人免费大全| av有码第一页| 国产成人免费观看mmmm| 欧美成人午夜精品| 90打野战视频偷拍视频| 午夜久久久在线观看| 九色亚洲精品在线播放| 在线天堂中文资源库| av片东京热男人的天堂| 一级黄色大片毛片| 欧美黑人欧美精品刺激| 波多野结衣一区麻豆| 亚洲av成人一区二区三| 成年动漫av网址| 最新的欧美精品一区二区| 夜夜躁狠狠躁天天躁| 大型黄色视频在线免费观看| cao死你这个sao货| 久久国产精品人妻蜜桃| 亚洲成人免费av在线播放| 最近最新中文字幕大全免费视频| 精品一区二区三区av网在线观看| 无遮挡黄片免费观看| 国产精品久久久久久人妻精品电影| av一本久久久久| 超碰97精品在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲免费av在线视频| 成年人午夜在线观看视频| 亚洲视频免费观看视频| 亚洲成a人片在线一区二区| 精品福利观看| 国产精品九九99| 久久久久久亚洲精品国产蜜桃av| 久久香蕉精品热| 国产精品.久久久| 精品久久蜜臀av无| 老汉色∧v一级毛片| 丝袜美腿诱惑在线| 国产精品一区二区在线不卡| 亚洲少妇的诱惑av| 久久久久国内视频| 香蕉久久夜色| 欧美在线黄色| a级片在线免费高清观看视频| 热99国产精品久久久久久7| 岛国在线观看网站| 中文字幕制服av| 日韩成人在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀| 69av精品久久久久久| 欧美日韩福利视频一区二区| 日本撒尿小便嘘嘘汇集6| 久久国产精品人妻蜜桃| 欧美国产精品va在线观看不卡| 动漫黄色视频在线观看| 精品视频人人做人人爽| 国内毛片毛片毛片毛片毛片| 日本一区二区免费在线视频| 欧美日韩av久久| 成年人免费黄色播放视频| 久久久久国产一级毛片高清牌| 麻豆成人av在线观看| 成人亚洲精品一区在线观看| 久久午夜综合久久蜜桃| 久久国产精品男人的天堂亚洲| 99riav亚洲国产免费| 99国产精品99久久久久| 99热只有精品国产| 一级片'在线观看视频| 久久久久久免费高清国产稀缺| 老司机影院毛片| 欧美在线一区亚洲| 国精品久久久久久国模美| 国产一区有黄有色的免费视频| 久久性视频一级片| www日本在线高清视频| 亚洲av成人av| 成年女人毛片免费观看观看9 | 久久亚洲精品不卡| 日韩一卡2卡3卡4卡2021年| 少妇 在线观看| 午夜福利在线免费观看网站| 亚洲情色 制服丝袜| 久久久国产欧美日韩av| 一级作爱视频免费观看| 国产亚洲av高清不卡| 国产精品一区二区在线观看99| 国产亚洲欧美98| 黑人巨大精品欧美一区二区mp4| 亚洲精品美女久久av网站| 中文字幕人妻熟女乱码| 中文字幕av电影在线播放| 成人国产一区最新在线观看| 成在线人永久免费视频| 欧美色视频一区免费| 免费av中文字幕在线| 天天躁日日躁夜夜躁夜夜| 国产深夜福利视频在线观看| 天堂动漫精品| 美女午夜性视频免费| 麻豆国产av国片精品| 久久精品亚洲熟妇少妇任你| www.999成人在线观看| 久久精品国产99精品国产亚洲性色 | 黑人猛操日本美女一级片| 日本vs欧美在线观看视频| av电影中文网址| 午夜影院日韩av| 国产精品自产拍在线观看55亚洲 | 手机成人av网站| 黑人巨大精品欧美一区二区蜜桃| 国产一区二区激情短视频| 亚洲av欧美aⅴ国产| 亚洲成国产人片在线观看| 一级毛片高清免费大全| 大型黄色视频在线免费观看| 亚洲精品国产精品久久久不卡| 久久久国产成人免费| 人妻丰满熟妇av一区二区三区 | 国产又爽黄色视频| 欧美日韩亚洲综合一区二区三区_| 久久ye,这里只有精品| 激情视频va一区二区三区| 香蕉丝袜av| 淫妇啪啪啪对白视频| 午夜福利欧美成人| 久久精品国产99精品国产亚洲性色 | 精品一区二区三区四区五区乱码| 少妇粗大呻吟视频| a级毛片在线看网站| 少妇猛男粗大的猛烈进出视频| 少妇被粗大的猛进出69影院| 精品一区二区三区四区五区乱码| 国产精品综合久久久久久久免费 | 91麻豆精品激情在线观看国产 | 99国产精品一区二区三区| 岛国毛片在线播放| 淫妇啪啪啪对白视频| 久久亚洲精品不卡| 久久久国产一区二区| 每晚都被弄得嗷嗷叫到高潮| 19禁男女啪啪无遮挡网站| 精品国产一区二区三区久久久樱花| 亚洲性夜色夜夜综合| av片东京热男人的天堂| 色婷婷久久久亚洲欧美| 亚洲久久久国产精品| av片东京热男人的天堂| 手机成人av网站| 日本黄色日本黄色录像| 亚洲免费av在线视频| 亚洲欧美精品综合一区二区三区| 午夜免费观看网址| 久久九九热精品免费| 久久人人爽av亚洲精品天堂| 妹子高潮喷水视频| 亚洲av日韩精品久久久久久密| av片东京热男人的天堂| 亚洲三区欧美一区| 亚洲精品国产精品久久久不卡| 日本vs欧美在线观看视频| 变态另类成人亚洲欧美熟女 | 欧美黄色淫秽网站| 欧美精品啪啪一区二区三区| 亚洲国产看品久久| 超色免费av| 99精品在免费线老司机午夜| 一进一出抽搐gif免费好疼 | 亚洲av欧美aⅴ国产| 淫妇啪啪啪对白视频| 一区二区日韩欧美中文字幕| 精品久久蜜臀av无| 一级a爱片免费观看的视频| 免费在线观看亚洲国产| 亚洲精品中文字幕在线视频| 香蕉国产在线看| 久热爱精品视频在线9| а√天堂www在线а√下载 | 桃红色精品国产亚洲av| 在线观看66精品国产| 欧美日韩乱码在线| 在线国产一区二区在线| 亚洲av电影在线进入| 窝窝影院91人妻| 美女高潮喷水抽搐中文字幕| 国产人伦9x9x在线观看| 1024香蕉在线观看| 久久久久精品国产欧美久久久| 日韩成人在线观看一区二区三区| 少妇的丰满在线观看| 久久人人97超碰香蕉20202| 久久九九热精品免费| 麻豆成人av在线观看| 精品福利永久在线观看| 757午夜福利合集在线观看| 香蕉丝袜av| 王馨瑶露胸无遮挡在线观看| 19禁男女啪啪无遮挡网站| 久久久国产一区二区| 国产一区有黄有色的免费视频| 日本撒尿小便嘘嘘汇集6| www.自偷自拍.com| aaaaa片日本免费| 成人av一区二区三区在线看| 欧美色视频一区免费| 动漫黄色视频在线观看| 后天国语完整版免费观看| 丰满饥渴人妻一区二区三| a级毛片在线看网站| 一边摸一边抽搐一进一出视频| videosex国产| 国产精品一区二区免费欧美| 亚洲av成人av| 黄色毛片三级朝国网站| 啦啦啦 在线观看视频| 人人妻人人添人人爽欧美一区卜| 男女床上黄色一级片免费看| 欧美大码av| 久久天堂一区二区三区四区| 久久热在线av| 99re6热这里在线精品视频| 亚洲情色 制服丝袜| a级片在线免费高清观看视频| 成人影院久久| 男女床上黄色一级片免费看| 亚洲 欧美一区二区三区| 亚洲第一青青草原| 黄色片一级片一级黄色片| 久久久久久久国产电影| 老司机午夜十八禁免费视频| 免费看a级黄色片| bbb黄色大片| 国产欧美日韩一区二区三区在线| 久久久精品国产亚洲av高清涩受| 国产日韩欧美亚洲二区| 国产成人免费观看mmmm| 久久国产精品男人的天堂亚洲| 可以免费在线观看a视频的电影网站| 波多野结衣av一区二区av| 日本vs欧美在线观看视频| 精品一区二区三区视频在线观看免费 | 亚洲人成77777在线视频| 国精品久久久久久国模美| 久久香蕉国产精品| 热re99久久国产66热| 女人久久www免费人成看片| 一级毛片高清免费大全| 国产精品av久久久久免费| 亚洲欧美一区二区三区久久| videosex国产| 国产成+人综合+亚洲专区| 免费观看人在逋| 99国产精品一区二区三区| а√天堂www在线а√下载 | 操出白浆在线播放| 韩国精品一区二区三区| 99热网站在线观看| 国产精品影院久久| 精品久久蜜臀av无| 两个人免费观看高清视频| 高清av免费在线| 一a级毛片在线观看| 国产激情久久老熟女| 成年动漫av网址| 成人18禁在线播放| 一本一本久久a久久精品综合妖精| 久久影院123| 男女床上黄色一级片免费看| 99国产精品99久久久久| 中文字幕另类日韩欧美亚洲嫩草| 老熟妇乱子伦视频在线观看| 欧美日韩成人在线一区二区| 国产高清视频在线播放一区| 精品国产一区二区久久| 涩涩av久久男人的天堂| 欧美一级毛片孕妇| 亚洲国产精品sss在线观看 | 色综合欧美亚洲国产小说| 在线观看66精品国产| 麻豆乱淫一区二区| av有码第一页| 久久热在线av| 国产精品香港三级国产av潘金莲| cao死你这个sao货| 欧美精品av麻豆av| 99久久人妻综合| 丝袜人妻中文字幕| 黑人操中国人逼视频| 午夜免费观看网址| 成人国语在线视频| 久久久久久久国产电影| 这个男人来自地球电影免费观看| svipshipincom国产片| 国产99久久九九免费精品| 精品亚洲成国产av| 国产精品美女特级片免费视频播放器 | 成人永久免费在线观看视频| 19禁男女啪啪无遮挡网站| 在线播放国产精品三级| 欧美+亚洲+日韩+国产| 99riav亚洲国产免费| 激情在线观看视频在线高清 | 国产亚洲精品一区二区www | 久久人人爽av亚洲精品天堂| 精品视频人人做人人爽| 亚洲免费av在线视频| 成年人午夜在线观看视频| 成人18禁在线播放| 国产激情久久老熟女| 天天躁夜夜躁狠狠躁躁| 国产精华一区二区三区| 无限看片的www在线观看| 日韩欧美三级三区| 99久久国产精品久久久| 无限看片的www在线观看| 女性生殖器流出的白浆| 国产在线精品亚洲第一网站| 精品久久久久久,| 午夜老司机福利片| 在线观看www视频免费| 亚洲av第一区精品v没综合| netflix在线观看网站| 国产有黄有色有爽视频| 国产精品1区2区在线观看. | 亚洲色图av天堂| 亚洲一区二区三区欧美精品| 三上悠亚av全集在线观看| 麻豆国产av国片精品| 日本五十路高清| 欧美丝袜亚洲另类 | www.自偷自拍.com| 亚洲成a人片在线一区二区| 午夜福利欧美成人| 91老司机精品| 午夜福利免费观看在线| 两性午夜刺激爽爽歪歪视频在线观看 | 超色免费av| 国产欧美日韩一区二区三区在线| 中文字幕色久视频| 丰满的人妻完整版| 免费观看精品视频网站| 日韩欧美免费精品| 老司机靠b影院| 亚洲人成电影免费在线| 国产成人系列免费观看| 久久午夜综合久久蜜桃| 午夜福利免费观看在线| 欧美日韩精品网址| 一级作爱视频免费观看| 亚洲第一av免费看| 久久午夜综合久久蜜桃| 一个人免费在线观看的高清视频| 下体分泌物呈黄色| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩成人在线观看一区二区三区| 国产高清国产精品国产三级| 人人妻人人澡人人爽人人夜夜| 又黄又爽又免费观看的视频| 制服诱惑二区| 色在线成人网| 国产aⅴ精品一区二区三区波| 女性生殖器流出的白浆| 欧美日韩瑟瑟在线播放| 亚洲色图 男人天堂 中文字幕| 国产男靠女视频免费网站| 欧美国产精品一级二级三级| 国产精品九九99| 欧美性长视频在线观看| 成年人黄色毛片网站| 男女午夜视频在线观看| 免费av中文字幕在线| 国产午夜精品久久久久久| 久久精品亚洲精品国产色婷小说| 一级,二级,三级黄色视频| 国产高清视频在线播放一区| 精品午夜福利视频在线观看一区| 中文字幕人妻丝袜一区二区| 天天躁日日躁夜夜躁夜夜| 久久精品91无色码中文字幕| www.自偷自拍.com| 免费av中文字幕在线| 亚洲中文av在线| 色老头精品视频在线观看| 国产av又大| 亚洲av成人不卡在线观看播放网| aaaaa片日本免费| 日本五十路高清| 亚洲综合色网址| 精品乱码久久久久久99久播| 免费在线观看日本一区| 久久久久精品人妻al黑| 午夜日韩欧美国产| 国产黄色免费在线视频| 日韩制服丝袜自拍偷拍| 熟女少妇亚洲综合色aaa.| 国产精品二区激情视频| 欧美性长视频在线观看| 成人黄色视频免费在线看| 国产精品久久久av美女十八| 欧美久久黑人一区二区| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕人妻熟女乱码| av欧美777| 黄色毛片三级朝国网站| 国产精品 国内视频| 久久人人97超碰香蕉20202| 国产精品免费大片| 国产午夜精品久久久久久| a级毛片黄视频| 欧美色视频一区免费| 久久国产精品男人的天堂亚洲| 怎么达到女性高潮| 久久久久久久精品吃奶| 中文字幕制服av| 国产成人啪精品午夜网站| 国产午夜精品久久久久久| 下体分泌物呈黄色| 美女 人体艺术 gogo| 国产主播在线观看一区二区| 美女福利国产在线| 亚洲精华国产精华精| 国产在线一区二区三区精| 国产成人欧美在线观看 | 国产精品免费大片| 999久久久精品免费观看国产| 国产一区二区激情短视频| 女人爽到高潮嗷嗷叫在线视频| 高清黄色对白视频在线免费看| 国产视频一区二区在线看| 99riav亚洲国产免费| 欧美日韩黄片免| 亚洲一卡2卡3卡4卡5卡精品中文| 乱人伦中国视频| 18禁裸乳无遮挡动漫免费视频| 午夜福利欧美成人| 黄色丝袜av网址大全| 日韩欧美三级三区| 丝袜美足系列| 亚洲av日韩在线播放| av免费在线观看网站| 在线观看午夜福利视频| 女人被躁到高潮嗷嗷叫费观| 欧美人与性动交α欧美精品济南到| 大型黄色视频在线免费观看| 99热网站在线观看| 国产xxxxx性猛交| 午夜成年电影在线免费观看| 久久精品国产亚洲av香蕉五月 | 男人舔女人的私密视频| e午夜精品久久久久久久| 在线观看一区二区三区激情| 熟女少妇亚洲综合色aaa.| 欧美老熟妇乱子伦牲交| 黄片播放在线免费| 露出奶头的视频| 亚洲自偷自拍图片 自拍| 交换朋友夫妻互换小说| 激情视频va一区二区三区| bbb黄色大片| 亚洲第一av免费看| 亚洲欧洲精品一区二区精品久久久| 亚洲熟妇中文字幕五十中出 | 老司机在亚洲福利影院| 日韩大码丰满熟妇| 国产成人欧美| 女人被狂操c到高潮| 黄色女人牲交| 亚洲色图综合在线观看| 人人妻人人澡人人爽人人夜夜| 在线十欧美十亚洲十日本专区| 在线观看午夜福利视频| 欧美日韩亚洲高清精品| 亚洲色图 男人天堂 中文字幕| 最近最新中文字幕大全电影3 | 色老头精品视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 自拍欧美九色日韩亚洲蝌蚪91| 国产欧美日韩一区二区三| 窝窝影院91人妻| 黄频高清免费视频| 国产亚洲精品久久久久久毛片 | 好男人电影高清在线观看| 老司机午夜福利在线观看视频| 亚洲成人国产一区在线观看| 757午夜福利合集在线观看| 很黄的视频免费| 99re6热这里在线精品视频| 国产精品98久久久久久宅男小说| 成人国语在线视频| 成人免费观看视频高清|