• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I(COI) gene

    2016-11-15 11:36:13XiuFengLIChongHANCaiRongZHONGJunQiuXUJianRongHUANG
    Zoological Research 2016年5期

    Xiu-Feng LI, Chong HAN, Cai-Rong ZHONG, Jun-Qiu XU, Jian-Rong HUANG,*

    1School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China

    2Management Bureau of Dongzhaigang Mangrove Natural Reserve, Haikou 571129, China

    Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I(COI) gene

    Xiu-Feng LI1, Chong HAN1, Cai-Rong ZHONG2, Jun-Qiu XU1, Jian-Rong HUANG1,*

    1School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China

    2Management Bureau of Dongzhaigang Mangrove Natural Reserve, Haikou 571129, China

    Sphaeroma terebrans, a wood-boring isopoda, is distributed worldwide in tropical and subtropical mangroves. The taxonomy of S. terebrans is usually based on morphological characteristics, with its molecular identification still poorly understood. The number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod are considered as the major morphological characteristics in S. terebrans, which can cause difficulty in regards to accurate identification. In this study, we identified S. terebrans via molecular and morphological data. Furthermore, the validity of the mitochondrial cytochrome c oxidase subunit I (COI) gene as a DNA barcode for the identification of genus Sphaeroma, including species S. terebrans, S. retrolaeve, and S. serratum, was examined. The mitochondrial COI gene sequences of all specimens were sequenced and analysed. The interspecific Kimura 2-parameter distances were higher than intraspecific distances and no intraspecificinterspecific distance overlaps were observed. In addition, genetic distance and nucleotide diversity (π)exhibited no differences within S. terebrans. Our results revealed that the mitochondrial COI gene can serve as a valid DNA barcode for the identification of S. terebrans. Furthermore, the number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod were found to be unreliable taxonomic characteristics for S. terebrans.

    Sphaeroma terebrans; DNA barcode;COI gene; Molecular identification

    lNTRODUCTlON

    Mangroves are biologically and globally important ecosystems(Giri et al., 2011). Their aerial roots provide an important substrate in which many species of animals live and reproduce(Nagelkerken et al., 2008). Sphaeroma terebrans, a woodboring isopoda, is found worldwide in tropical and subtropical mangroves (Estevez, 1978), where it preferentially burrows into the aerial roots for shelter and reproductive habitat (Harrison & Holdich, 1984; John, 1970). In recent years, substantial S. terebrans outbreaks have seriously affected mangrove stands in China, especially in Hainan island (Fan et al., 2014).1

    The effects of S. terebrans on mangroves have been studied by many researchers (Estevez & Simon, 1975; Estevez, 1978;Jones & Icely 1981; Kensley & Schotte, 1999; Perry, 1988;Rehm & Humm, 1973); however, the taxonomic standards of S. terebrans remain poorly understood. Due to some minor morphological differences, including the number and arrangement of the tubercles on the pereonite, the structure of the pereopod, and the presence of tubercles furnished with bristle-like hairs on the abdomen, S. terebrans was previously named as S. vastator (Bate, 1866) and S. destructor(Richardson, 1897). Based on morphological identification,Estevez & Simon (1975) concluded that S. vastator and S. destructor were synonyms of S. terebrans.

    The classic use of morphological characteristics for species delimitation can result in under- or over-estimation of biodiversity due to factors such as phenotypic plasticity(Knowlton, 1993). DNA barcode, which can supplement taxonomic datasets in the process of species delimitation(Schindel & Miller, 2005), is a practical tool that can be used for the identification of various species within a known taxonomic framework and for linking different biological life stages of the same species (Feng et al., 2011; Puillandre et al., 2009;Schindel & Miller, 2005). The mitochondrial COI gene has been proposed as a universal barcode, and has been successfully applied in the identification of Portunidae, fish, bivalve molluscs,and hoverflies (Blair et al., 2006; Hebert et al., 2003; Ma et al.,2012; Persis et al., 2009; St?hls et al., 2009). The COI gene sequences of S. terebrans have been analysed in America and Africa (Baratti et al., 2005, 2011), with results suggesting that cosmopolitan S. terebrans is comprised of more than one species. Therefore, its taxonomic status needs to be revaluated.

    The aim of the present study was to provide a reliable and valid way to delimit S. terebrans. In this study, the validity of the mitochondrial COI gene as a DNA barcode marker for the identification of three species of Sphaeroma, namely, S. terebrans, S. retrolaeve, and S. serratum, was examined. To detect if there was any cryptic species in S. terebrans, the COI gene sequences of individuals with morphological differences were analysed. Our study should be useful in the identification of the genus Sphaeroma and for further research on S. terebrans.

    MATERlALS AND METHODS

    Sampling and scoring of morphological characteristics

    The S. terebrans specimens were collected from three localities in China (Figure 1). Prior to DNA extraction, all specimens were examined under an anatomical lens and assigned to groups according to comparison with previous morphological descriptions (Harrison & Holdich, 1984). The morphological differences of S. terebrans were then photographed by a TM3030Plus tabletop microscope. The S. terebrans individuals were sorted according to the following morphological characteristics: the number and arrangement of tubercles on the pereonite, number of teeth on the uropodal exopod, shape of the pleotelson, setae distribution, and length of the second and seventh pereopods. These are considered to be major characteristics for the diagnosis of S. terebrans within Sphaeroma (Harrison & Holdich, 1984). The S. retrolaeve specimens were collected from Hainan and Beihai mangroves. All samples were preserved in 95% alcohol.

    Figure 1 Sample collection sites of S. terebransHK: Haikou, Hainan, WC: Wenchang, Hainan, BH: Beihai, Guangxi,ZJ: Zhanjiang, Guangdong

    DNA extraction, PCR amplification, and sequencing

    The genomic DNA of S. terebrans and S. retrolaeve were obtained from the pereopods. DNA extractions were performed using a TaKaRa MiniBEST Universal Genomic DNA Extraction Kit Ver.5.0 following the manufacturer's protocols. The primers mtd10 5'-TTGATTTTTTGGTCATCCAGAAGT-3' (Roehrdan. 1993) and Florence 5'-CCTAAAAAATGTTGAGGGAA-3' were used for amplification of the mitochondrial COI gene (Baratti et al., 2005). We followed PCR protocols as per Baratti et al.(2005). The PCR products were electrophoresed using 1% agarose gel and sequenced by Shanghai Majorbio Bio-Pharm Technology Co., Ltd.

    Data analysis

    All sequences were aligned using ClustalW (Thompson et al.,1997). Interspecific and intraspecific sequence divergences were calculated using the Kimura 2-parameter (K2P) model with the pairwise deletion option in MEGA 5.0 (Kimura, 1980). Haplotypes were identified and analysed using DNA SP version 4.1 (Librado & Rozas, 2009). Nucleotide diversity (π) and haplotype diversity(h) were calculated according to Nei (1987)using DNA SP version 4.1 (Rozas & Rozas, 1999). Based on the K2P model, neighbor joining (NJ) and maximum likelihood(ML) trees were constructed using MEGA 5.0 (Kimura, 1980;Tamura et al., 2011), with the Cymodoce fuscina voucher from the NCBI (GenBank Accession No. KJ410468) used as an outgroup. Node supports for the two approaches (NJ and ML)were inferred with bootstrap analysis (1 000 replicates).

    RESULTS

    Prior to DNA extraction, we assigned S. terebrans specimens into A1-A5 and B morphotypes (Figure 2). The number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod varied within S. terebrans, which were assigned into seven groups (Table 1).

    Partially aligned COI sequences 498 bp in length were obtained from 70 S. terebrans individuals and 10 S. retrolaeve individuals. The COI sequences of S. serratum and C. fuscina voucher were downloaded from the NCBI. Details of these sequences are shown in Table 2. There were fifteen haplotypes for S. terebrans and two for S. retrolaeve. Haplotype sequences were deposited in the NCBI under accession numbers KU558703-KU558719.

    All haplotype sequences were aligned and edited, and no insertion or deletion sites were found in any of the sequences. The intraspecific distances in S. terebrans ranged from 0.001 to 0.013 (Table 3). The maximum interspecific distance (1.394)was between S. serratum and C. fuscina voucher, while the minimum interspecific distance (0.24) was between S. serratum and S. retrolaeve. No overlaps between interspecific and intraspecific distances were found, suggesting the existence of a distinct barcoding gap. The NJ phylogenetic tree is shown inFigure 3. Distinct clusters corresponding to species were found with high bootstrap support.

    Figure 2 Diagnostic morphological characteristics of S. terebransA1-A5 are uropodal exopods with different numbers of teeth. B is the seventh pereopod with different propodus length.

    The S. terebrans individuals were sorted into seven groups according to their morphological traits, and partial COI sequences of S. terebrans were aligned and compiled. The intraspecific distances ranged from 0.001 to 0.003 within the SS,SW, WW, WL, and LL groups. The intraspecific distance between PL and PS was 0.001 (Table 4). The mean haplotype diversity (h) was 0.555%, and ranged from 0.200% (PL group)to 0.866% (WW group) (Table 5). The highest nucleotide diversity (π) was found in the WW group (0.004), while the lowest was found in the PL group (0.000) (Table 5). Results suggested that there were no mitochondrial genetic variations within S. terebrans.

    Phylogenetic analysis of genus Sphaeroma was performed using NJ and ML methods, which yielded similar results. The NJ tree revealed that the three species of Sphaeroma and one species of Cymodoce formed monophyletic clusters (Figure 3). The nearest relationship was observed between S. retrolaeve and S. serratum, while the most distant relationship was found between S. terebrans and C. fuscina voucher.

    DlSCUSSlON

    The rapid and effective identification of closely related woodborer Sphaeroma species is important for the research andrestoration of eroded mangroves. Identification of S. terebrans based on morphological characteristics alone is weak and, to some extent, ambiguous. Based on morphological characteristics,Some individuals of S. terebrans were previously named S. vastator (Bate, 1866) and S. destructor (Richardson, 1897). In this study, clear evidence was provided for the identification of S. terebrans individuals, which exhibited differences in morphological characteristics. The validity of using the mitochondrial COI gene sequence as a DNA barcode for the identification of genus Sphaeroma was examined, and included three Sphaeroma species, namely, S. terebrans, S. retrolaeve and S. serratum,with C. fuscina voucher (Sphaeromatidae) used as an outgroup. A distinct barcoding gap was found between the intraspecific and interspecific distances in each species. The NJ phylogenetic tree consisted of four distinct clusters, each containing individuals from one species only. These results indicate that the partial mitochondrial COI gene is an effective DNA barcode for the identification of the genus Sphaeroma.

    Table 1 List of sampling localities and morphological differences of S. terebrans

    Table 2 List of COl sequences, GenBank accession numbers, and geographic sources of samples

    Table 3 Pairwise genetic distances (Kimura 2-parameter) of three Sphaeroma species and one Cymodoce species based on COl sequences

    Figure 3 Neighbor-joining phylogenetic tree of individual haplotypes of three species of Sphaeroma and one species of Cymodoce

    Table 4 lntraspecific genetic distances (Kimura 2-parameter) of S. terebrans with morphological differences based on COl sequences

    Table 5 Number of haplotypes, haplotype diversity(h), and nucleotide diversity(π) of different groups

    Individuals of S. terebrans had different numbers of teeth on the uropodal exopod and different lengths of the propodus of the seventh pereopod. These individuals were sorted into seven groups, with each group containing 10 individuals. The genetic distance and nucleotide divergence showed no variation among the different groups. Therefore, these results revealed that the COI gene sequences of individuals with morphological differences were almost no difference. Although Harrison & Holdich (1984) determined that the propodus of the seventh pereopod of subadult males is relatively short, Our investigations showed that the length of the pereopodal propodus in S. terebrans was not necessarily linked with gender. Previous research concluded that cosmopolitan S. terebrans was comprised of more than one species (Baratti et al., 2011,2005), but morphological taxonomic details of S. terebrans were not mentioned. In our research, specimens in China were carefully checked according to morphological characteristics and were assigned into different groups, with molecular methods used for further identification. This combination of morphological taxonomy and molecular divergence should provide results of greater reliable.

    CONCLUSlONS

    In this study, the mitochondrial COI gene was found to be an effective DNA barcode for the identification of Sphaeroma species, whereas the number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod were found to be invalid taxonomic characteristics. The phylogenetic relationships determined in this study will be of use for studying the species composition of Sphaeroma in eroded mangroves in China and for establishing a good foundation for the restoration of mangrove ecosystems.

    Baratti M, Goti E, Messana G. 2005. High level of genetic differentiation in the marine isopod Sphaeroma terebrans (Crustacea Isopoda Sphaeromatidae) as inferred by mitochondrial DNA analysis. Journal of Experimental Marine Biology and Ecology, 315(2): 225-234.

    Baratti M, Filippelli M, Messana G. 2011. Complex genetic patterns in the mangrove wood-borer Sphaeroma terebrans Bate, 1866 (Isopoda,Crustacea, Sphaeromatidae) generated by shoreline topography and rafting dispersal. Journal of Experimental Marine Biology and Ecology, 398(1-2):73-82.

    Bate CS. 1866. II.-Carcinological Gleanings.-No. II. Annals and Magazineof Natural History, 17(97): 24-31.

    Blair D, Waycott M, Byrne L, Dunshea G, Smith-Keune C, Neil KM. 2006. Molecular discrimination of Perna (Mollusca: Bivalvia) species using the polymerase chain reaction and species-specific mitochondrial primers. Marine Biotechnology, 8(4): 380-385.

    Estevez ED. 1978. Ecology of Sphaeroma terebrans Bate, a wood boring isopod, in a Florida mangrove forest. Ph. D. thesis, University of South Florida, Tampa, 1-154.

    Estevez ED, Simon JL. 1975. Systematics and ecology of Sphaeroma(Crustacea: Isopoda) in the mangrove habitats of Florida. In: Proceedings of the International Symposium on Biology and Management of Mangroves. Gainesville: Institute of Food and Agricultural Sciences, University of Florida.

    Fan HQ, Liu WA, Zhong CR, Ni X. 2014. Analytic study on the damages of wood-boring isopod, Sphaeroma, to China mangroves. Guangxi Sciences,21(2): 140-146, 152. (in Chinese)

    Feng YW, Li Q, Kong LF, Zheng XD. 2011. DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes. Molecular Biology Reports, 38(1):291-299.

    Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1):154-159.

    Harrison K, Holdich DM. 1984. Hemibranchiate sphaeromatids (Crustacea:Isopoda) from Queensland, Australia, with a world-wide review of the genera discussed. Zoological Journal of the Linnean Society, 81(4): 275-387.

    Hebert PDN, Ratnasingham S, de Waard JR. 2003. Barcoding animal life:cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270(S1): S96-S99. John PA. 1970. Observations on the boring activity of Sphaeroma terebrans Spence Bate, a wood boring isopod. Zoologischer Anzeiger, 185(5-6): 379-387.

    Jones DA, Icely JD. 1981. Excirolana bowmani, a new mangrove-boring isopod from Kenya (Isopoda, Cirolanidae). Crustaceana, 40(3): 266-271.

    Kensley B, Schotte M. 1999. New records of isopods from the Indian River Lagoon, Florida (Crustacea: Peracarida). Proceedings of the Biological Society of Washington, 112(4): 695-713.

    Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2): 111-120.

    Knowlton N. 1993. Sibling species in the sea. Annual Review of Ecology and Systematics, 24(1): 189-216.

    Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451-1452.

    Ma HY, Ma CY, Ma LB. 2012. Molecular identification of genus Scylla(Decapoda: Portunidae) based on DNA barcoding and polymerase chain reaction. Biochemical Systematics and Ecology, 41: 41-47.

    Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton LG,Meynecke JO, Pawlik J, Penrose HM, Sasekumar A, Somerfield PJ. 2008. The habitat function of mangroves for terrestrial and marine fauna: a review. Aquatic Botany, 89(2): 155-185.

    Nei M. 1987. Molecular Evolutionary Genetics. Columbia: Columbia University Press.

    Perry DM. 1988. Effects of associated fauna on growth and productivity in the red mangrove. Ecology, 69(4): 1064-1075.

    Persis M, Reddy ACS, Rao LM, Khedkar GD, Ravinder K, Nasruddin K. 2009. COI (cytochrome oxidase-I) sequence based studies of Carangid fishes from Kakinada coast, India. Molecular Biology Reports, 36(7): 1733-1740.

    Puillandre N, Strong EE, Bouchet P, Boisselier MC, Couloux A, Samadi S. 2009. Identifying gastropod spawn from DNA barcodes: possible but not yet practicable. Molecular Ecology Resources, 9(5): 1311-1321.

    Rehm A, Humm HJ. 1973. Sphaeroma terebrans: a threat to the mangroves of southwestern Florida. Science, 182(4108): 173-174.

    Richardson H. 1897. Description of a new species of Sphaeroma. Proceedings of the Biological Society of Washington, 11: 105-107.

    Roehrdanz RL. 1993. An improved primer for PCR amplification of mitochondrial DNA in a variety of insect species. Insect Molecular Biology,2(2): 89-91.

    Rozas J, Rozas R. 1999. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics, 15(2): 174-175.

    Schindel DE, Miller SE. 2005. DNA barcoding a useful tool for taxonomists. Nature, 435(7038): 17.

    St?hls G, Vujic A, Pérez-Ba?on C, Radenkovic S, Rojo S, Petanidou T. 2009. COI barcodes for identification of Merodon hoverflies (Diptera,Syrphidae) of Lesvos Island, Greece. Molecular Ecology Resources, 9(6):1431-1438.

    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2731-2739.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24): 4876-4882.

    15 July 2016; Accepted: 08 September 2016

    s: This project was funded by the GEF China Wetlands System Project, Science and Technology Foundation of Macao (045/2010/A) and Special Fund for Marine-Scientific Research in the Public Interest (201305021)

    , E-mail: lsshjr@mail.sysu.edu.cn

    10.13918/j.issn.2095-8137.2016.5.307

    日韩一卡2卡3卡4卡2021年| 伊人久久大香线蕉亚洲五| 国产欧美日韩一区二区精品| 男女床上黄色一级片免费看| 国产亚洲av高清不卡| 亚洲情色 制服丝袜| 大码成人一级视频| 久久亚洲真实| 午夜福利欧美成人| 国产亚洲av高清不卡| 成年人午夜在线观看视频| aaaaa片日本免费| 色精品久久人妻99蜜桃| 亚洲精品美女久久av网站| 午夜福利欧美成人| 欧美成人午夜精品| 美女福利国产在线| 99久久国产精品久久久| 大香蕉久久网| 欧美在线黄色| 中文字幕av电影在线播放| 多毛熟女@视频| 午夜精品久久久久久毛片777| 美女高潮喷水抽搐中文字幕| 亚洲欧美日韩另类电影网站| 国产av国产精品国产| 国产男女内射视频| 欧美日韩视频精品一区| 深夜精品福利| 极品少妇高潮喷水抽搐| 老司机在亚洲福利影院| 精品欧美一区二区三区在线| 国产成人影院久久av| 国产精品一区二区在线观看99| 午夜福利一区二区在线看| 丝袜在线中文字幕| 久久国产精品影院| 国产精品久久久久成人av| 性少妇av在线| cao死你这个sao货| 90打野战视频偷拍视频| 一进一出好大好爽视频| 中文字幕制服av| 777久久人妻少妇嫩草av网站| 少妇猛男粗大的猛烈进出视频| 久久国产精品人妻蜜桃| 首页视频小说图片口味搜索| 69av精品久久久久久 | 巨乳人妻的诱惑在线观看| 侵犯人妻中文字幕一二三四区| netflix在线观看网站| 黄色丝袜av网址大全| 桃花免费在线播放| 国产成人精品无人区| 大陆偷拍与自拍| kizo精华| 亚洲精品在线观看二区| 久久久久网色| 美女福利国产在线| e午夜精品久久久久久久| 国产精品免费一区二区三区在线 | 操出白浆在线播放| 免费观看人在逋| 精品少妇黑人巨大在线播放| 日韩 欧美 亚洲 中文字幕| 超碰97精品在线观看| 老司机深夜福利视频在线观看| 人人妻人人添人人爽欧美一区卜| 欧美一级毛片孕妇| 汤姆久久久久久久影院中文字幕| 别揉我奶头~嗯~啊~动态视频| 欧美日韩精品网址| 精品国产一区二区久久| 亚洲全国av大片| 欧美日韩亚洲国产一区二区在线观看 | 黄色丝袜av网址大全| 国产单亲对白刺激| 高清毛片免费观看视频网站 | 中国美女看黄片| cao死你这个sao货| 叶爱在线成人免费视频播放| 亚洲av电影在线进入| 女性生殖器流出的白浆| 1024香蕉在线观看| 在线永久观看黄色视频| 天天影视国产精品| 国产精品久久久av美女十八| 下体分泌物呈黄色| 在线观看免费高清a一片| 国产在线精品亚洲第一网站| 亚洲欧洲日产国产| 日韩大片免费观看网站| 久久精品国产99精品国产亚洲性色 | 亚洲色图av天堂| 美女国产高潮福利片在线看| 国产在视频线精品| 黄色毛片三级朝国网站| 国产av国产精品国产| 亚洲av成人一区二区三| 看免费av毛片| 久久99热这里只频精品6学生| 在线观看免费高清a一片| 啦啦啦中文免费视频观看日本| 青青草视频在线视频观看| 黄片播放在线免费| 国产精品免费大片| 国产一区二区在线观看av| 欧美日韩一级在线毛片| 欧美乱妇无乱码| 久久性视频一级片| 交换朋友夫妻互换小说| 天天操日日干夜夜撸| 叶爱在线成人免费视频播放| 国产亚洲精品久久久久5区| 99国产精品一区二区蜜桃av | 欧美老熟妇乱子伦牲交| 欧美变态另类bdsm刘玥| 久久久精品免费免费高清| 啦啦啦免费观看视频1| 亚洲第一av免费看| 久久精品国产a三级三级三级| 欧美 日韩 精品 国产| 老熟妇仑乱视频hdxx| 国产野战对白在线观看| 涩涩av久久男人的天堂| 亚洲专区国产一区二区| 亚洲欧美精品综合一区二区三区| 亚洲午夜精品一区,二区,三区| 欧美精品啪啪一区二区三区| 国产精品99久久99久久久不卡| 国产精品99久久99久久久不卡| 午夜福利影视在线免费观看| 99国产精品一区二区三区| 曰老女人黄片| 999久久久精品免费观看国产| 不卡一级毛片| 黄网站色视频无遮挡免费观看| 色老头精品视频在线观看| 欧美性长视频在线观看| 欧美日韩av久久| 久久国产精品影院| 欧美性长视频在线观看| 亚洲专区字幕在线| 王馨瑶露胸无遮挡在线观看| 一区二区三区乱码不卡18| 精品国产国语对白av| 亚洲午夜理论影院| 精品少妇内射三级| 9191精品国产免费久久| 国产亚洲精品一区二区www | 亚洲欧洲精品一区二区精品久久久| 久久午夜综合久久蜜桃| 人人妻人人添人人爽欧美一区卜| 精品少妇内射三级| 超碰成人久久| av免费在线观看网站| 日韩免费av在线播放| 亚洲va日本ⅴa欧美va伊人久久| 视频在线观看一区二区三区| 亚洲一码二码三码区别大吗| 日本黄色日本黄色录像| 久久久欧美国产精品| 男女床上黄色一级片免费看| 国产免费av片在线观看野外av| 一级a爱视频在线免费观看| 国产在线精品亚洲第一网站| 一级毛片电影观看| 在线播放国产精品三级| 在线播放国产精品三级| 国产日韩一区二区三区精品不卡| 99精品在免费线老司机午夜| 99国产精品99久久久久| 国产精品电影一区二区三区 | 桃红色精品国产亚洲av| 国产色视频综合| 性少妇av在线| 亚洲人成电影免费在线| 亚洲伊人久久精品综合| 亚洲国产欧美一区二区综合| 一级片免费观看大全| 亚洲国产欧美一区二区综合| 亚洲人成电影观看| 国产精品成人在线| 69精品国产乱码久久久| 99久久国产精品久久久| 午夜成年电影在线免费观看| 黄色怎么调成土黄色| 久久精品国产综合久久久| 99国产精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 成人国产av品久久久| 欧美久久黑人一区二区| 激情视频va一区二区三区| 一本大道久久a久久精品| 高清欧美精品videossex| 黑人操中国人逼视频| 水蜜桃什么品种好| 一二三四在线观看免费中文在| 一边摸一边抽搐一进一出视频| 激情在线观看视频在线高清 | 美女福利国产在线| 亚洲午夜理论影院| 欧美国产精品va在线观看不卡| 手机成人av网站| 亚洲精品在线美女| 男人舔女人的私密视频| av欧美777| 久久久久精品人妻al黑| 久久中文字幕人妻熟女| 欧美日韩中文字幕国产精品一区二区三区 | svipshipincom国产片| 黑人欧美特级aaaaaa片| 中文字幕精品免费在线观看视频| 亚洲欧美精品综合一区二区三区| 99久久人妻综合| 亚洲男人天堂网一区| 中文字幕人妻丝袜制服| 99riav亚洲国产免费| 麻豆国产av国片精品| 成人国产av品久久久| 美女国产高潮福利片在线看| 在线观看免费视频日本深夜| 建设人人有责人人尽责人人享有的| 国产欧美日韩一区二区三区在线| 午夜福利乱码中文字幕| 国产午夜精品久久久久久| 天堂中文最新版在线下载| 色精品久久人妻99蜜桃| 亚洲人成电影免费在线| 欧美成人免费av一区二区三区 | 亚洲精品美女久久av网站| 国产精品.久久久| 俄罗斯特黄特色一大片| 国产精品 国内视频| 汤姆久久久久久久影院中文字幕| 国产精品美女特级片免费视频播放器 | 免费少妇av软件| 飞空精品影院首页| 午夜福利欧美成人| 亚洲中文av在线| 亚洲国产欧美一区二区综合| 青草久久国产| 亚洲国产av新网站| 国产人伦9x9x在线观看| 不卡av一区二区三区| 国产高清视频在线播放一区| 亚洲精品久久成人aⅴ小说| 亚洲av日韩精品久久久久久密| 两性夫妻黄色片| 亚洲avbb在线观看| 精品少妇久久久久久888优播| 女性被躁到高潮视频| 嫩草影视91久久| 精品乱码久久久久久99久播| 国产精品一区二区在线观看99| 亚洲一区二区三区欧美精品| 国产欧美日韩综合在线一区二区| 久久久国产一区二区| 久久人妻av系列| 久久精品亚洲精品国产色婷小说| 国产精品99久久99久久久不卡| 欧美 日韩 精品 国产| 国产不卡av网站在线观看| 国产伦人伦偷精品视频| 别揉我奶头~嗯~啊~动态视频| 婷婷丁香在线五月| 久久久久精品国产欧美久久久| 免费在线观看视频国产中文字幕亚洲| 亚洲国产成人一精品久久久| 欧美黑人精品巨大| 视频区欧美日本亚洲| 亚洲欧美一区二区三区黑人| 黄色片一级片一级黄色片| 精品第一国产精品| 九色亚洲精品在线播放| 在线观看人妻少妇| 欧美日韩中文字幕国产精品一区二区三区 | 夫妻午夜视频| 黄色毛片三级朝国网站| 手机成人av网站| 久久人人97超碰香蕉20202| 久久天堂一区二区三区四区| 久久精品人人爽人人爽视色| 1024视频免费在线观看| 亚洲成国产人片在线观看| 淫妇啪啪啪对白视频| 国产精品熟女久久久久浪| 一边摸一边抽搐一进一出视频| 欧美+亚洲+日韩+国产| 精品乱码久久久久久99久播| 香蕉丝袜av| 69精品国产乱码久久久| 男女高潮啪啪啪动态图| 超碰成人久久| 狠狠精品人妻久久久久久综合| 少妇被粗大的猛进出69影院| 亚洲,欧美精品.| 另类亚洲欧美激情| 免费黄频网站在线观看国产| 91成人精品电影| www.自偷自拍.com| 999精品在线视频| 黑人巨大精品欧美一区二区mp4| 成年版毛片免费区| 亚洲自偷自拍图片 自拍| 久久 成人 亚洲| 久久人人爽av亚洲精品天堂| 成人三级做爰电影| 老司机福利观看| 成人国产av品久久久| 亚洲成国产人片在线观看| 久久午夜综合久久蜜桃| 变态另类成人亚洲欧美熟女 | 97在线人人人人妻| 十八禁网站网址无遮挡| 制服诱惑二区| 国产成人欧美在线观看 | 免费人妻精品一区二区三区视频| 成人国产av品久久久| 丝袜在线中文字幕| 久久中文看片网| 18禁美女被吸乳视频| 成人国产av品久久久| 国产xxxxx性猛交| 国产精品久久久久久人妻精品电影 | 制服人妻中文乱码| 99热网站在线观看| 岛国在线观看网站| 国产午夜精品久久久久久| 亚洲人成伊人成综合网2020| 一边摸一边抽搐一进一出视频| 国产av一区二区精品久久| 女警被强在线播放| 国产精品久久久久成人av| 国产av一区二区精品久久| 中文字幕人妻熟女乱码| 欧美精品啪啪一区二区三区| 蜜桃在线观看..| 18禁黄网站禁片午夜丰满| 高清欧美精品videossex| 日韩欧美三级三区| 日本vs欧美在线观看视频| 欧美日韩国产mv在线观看视频| 91字幕亚洲| 国内毛片毛片毛片毛片毛片| 国产成人av激情在线播放| 久9热在线精品视频| 又黄又粗又硬又大视频| 老汉色av国产亚洲站长工具| 国产激情久久老熟女| 亚洲国产成人一精品久久久| 亚洲精品中文字幕一二三四区 | 国产精品99久久99久久久不卡| 两个人免费观看高清视频| 久久久国产精品麻豆| 伊人久久大香线蕉亚洲五| 国产精品影院久久| 久热这里只有精品99| www.999成人在线观看| 国产伦人伦偷精品视频| 啪啪无遮挡十八禁网站| 国产精品成人在线| 亚洲国产av影院在线观看| 久久久国产一区二区| 国产日韩一区二区三区精品不卡| 99久久99久久久精品蜜桃| 天天躁日日躁夜夜躁夜夜| a级毛片黄视频| 国产精品久久久久久精品古装| 午夜精品国产一区二区电影| 一个人免费看片子| 久久精品熟女亚洲av麻豆精品| 久久av网站| 久久av网站| 久久中文字幕人妻熟女| 国产伦人伦偷精品视频| 免费看十八禁软件| 如日韩欧美国产精品一区二区三区| 人人妻人人澡人人看| 黄色怎么调成土黄色| 999精品在线视频| av有码第一页| 日本vs欧美在线观看视频| 激情在线观看视频在线高清 | 又黄又粗又硬又大视频| 日韩成人在线观看一区二区三区| 亚洲精品中文字幕一二三四区 | 悠悠久久av| 精品乱码久久久久久99久播| 波多野结衣一区麻豆| 中文字幕av电影在线播放| 日韩免费av在线播放| 亚洲精品国产精品久久久不卡| 国产成人一区二区三区免费视频网站| 黄色毛片三级朝国网站| 老熟妇仑乱视频hdxx| videosex国产| 亚洲成a人片在线一区二区| 搡老熟女国产l中国老女人| 国产精品久久久av美女十八| 性色av乱码一区二区三区2| 丰满人妻熟妇乱又伦精品不卡| 精品一区二区三区视频在线观看免费 | 国产深夜福利视频在线观看| 黄色视频,在线免费观看| 99热网站在线观看| 在线十欧美十亚洲十日本专区| 80岁老熟妇乱子伦牲交| 嫁个100分男人电影在线观看| 国精品久久久久久国模美| 午夜免费成人在线视频| 亚洲一码二码三码区别大吗| 欧美精品av麻豆av| 亚洲精品中文字幕在线视频| 露出奶头的视频| 十分钟在线观看高清视频www| 亚洲欧美精品综合一区二区三区| 国产欧美日韩精品亚洲av| 99久久精品国产亚洲精品| 超碰成人久久| 久热这里只有精品99| 男女边摸边吃奶| 久久午夜综合久久蜜桃| 精品一区二区三区视频在线观看免费 | 不卡一级毛片| 午夜福利免费观看在线| 少妇的丰满在线观看| 欧美精品亚洲一区二区| 亚洲男人天堂网一区| 国产极品粉嫩免费观看在线| 成人永久免费在线观看视频 | 亚洲成a人片在线一区二区| 老熟妇乱子伦视频在线观看| 日韩欧美一区二区三区在线观看 | 国产野战对白在线观看| 男女边摸边吃奶| 真人做人爱边吃奶动态| 国产日韩欧美在线精品| 日韩人妻精品一区2区三区| 熟女少妇亚洲综合色aaa.| 麻豆成人av在线观看| 女人久久www免费人成看片| 少妇的丰满在线观看| 亚洲 欧美一区二区三区| 首页视频小说图片口味搜索| 国产精品1区2区在线观看. | 一级黄色大片毛片| 五月开心婷婷网| 亚洲国产av影院在线观看| 一二三四在线观看免费中文在| 美女高潮喷水抽搐中文字幕| 精品国产一区二区久久| 97人妻天天添夜夜摸| 国产欧美亚洲国产| 高清av免费在线| 韩国精品一区二区三区| 男女边摸边吃奶| 色综合婷婷激情| 18禁国产床啪视频网站| 可以免费在线观看a视频的电影网站| 欧美日韩av久久| 在线天堂中文资源库| 可以免费在线观看a视频的电影网站| 精品国产超薄肉色丝袜足j| 99国产综合亚洲精品| 国产一区二区 视频在线| 搡老岳熟女国产| 制服诱惑二区| 99九九在线精品视频| 在线永久观看黄色视频| aaaaa片日本免费| 色老头精品视频在线观看| 国产在线视频一区二区| 欧美一级毛片孕妇| 精品福利观看| 国产欧美亚洲国产| 精品午夜福利视频在线观看一区 | 999精品在线视频| 国产av精品麻豆| 久久久久久久久免费视频了| 丁香六月天网| 亚洲色图 男人天堂 中文字幕| 美女国产高潮福利片在线看| 黄色视频不卡| 亚洲精品国产一区二区精华液| 老司机靠b影院| 亚洲精华国产精华精| 我要看黄色一级片免费的| 亚洲熟妇熟女久久| 亚洲欧洲日产国产| 午夜免费成人在线视频| 视频在线观看一区二区三区| 午夜福利影视在线免费观看| 老汉色av国产亚洲站长工具| 高清在线国产一区| 波多野结衣av一区二区av| 美女主播在线视频| 国产精品亚洲一级av第二区| 在线看a的网站| 亚洲av成人一区二区三| 久久中文看片网| 日韩中文字幕视频在线看片| 亚洲av成人不卡在线观看播放网| 99国产精品一区二区蜜桃av | 我的亚洲天堂| 久久狼人影院| 女人精品久久久久毛片| 亚洲国产欧美日韩在线播放| 久久免费观看电影| 热99国产精品久久久久久7| 国产亚洲欧美在线一区二区| 久久热在线av| 成年动漫av网址| 日本wwww免费看| 建设人人有责人人尽责人人享有的| 国产av精品麻豆| 在线观看免费高清a一片| 91麻豆精品激情在线观看国产 | 亚洲 国产 在线| 这个男人来自地球电影免费观看| 欧美 亚洲 国产 日韩一| 国产精品.久久久| 国产日韩一区二区三区精品不卡| 国产高清激情床上av| 亚洲第一欧美日韩一区二区三区 | 久久中文看片网| 老司机午夜福利在线观看视频 | avwww免费| 女人精品久久久久毛片| 亚洲精品国产区一区二| 亚洲精华国产精华精| 无限看片的www在线观看| 国产午夜精品久久久久久| 91大片在线观看| 啦啦啦免费观看视频1| 久久这里只有精品19| 欧美亚洲日本最大视频资源| 中亚洲国语对白在线视频| 亚洲av片天天在线观看| 免费在线观看完整版高清| 熟女少妇亚洲综合色aaa.| 91成人精品电影| 国产国语露脸激情在线看| 欧美 日韩 精品 国产| 亚洲五月婷婷丁香| 侵犯人妻中文字幕一二三四区| 欧美精品一区二区大全| av电影中文网址| 日韩视频一区二区在线观看| 中文字幕高清在线视频| 欧美日本中文国产一区发布| 国产aⅴ精品一区二区三区波| 亚洲精品久久成人aⅴ小说| 亚洲成国产人片在线观看| 国产在线一区二区三区精| 欧美日韩福利视频一区二区| 精品一区二区三区视频在线观看免费 | 亚洲精品国产精品久久久不卡| 大码成人一级视频| 乱人伦中国视频| 午夜老司机福利片| 午夜精品国产一区二区电影| 欧美乱妇无乱码| 成人特级黄色片久久久久久久 | 十分钟在线观看高清视频www| 97在线人人人人妻| 在线观看免费午夜福利视频| 在线亚洲精品国产二区图片欧美| 如日韩欧美国产精品一区二区三区| 久久久精品区二区三区| 汤姆久久久久久久影院中文字幕| 亚洲三区欧美一区| 亚洲一区二区三区欧美精品| 老司机在亚洲福利影院| 啪啪无遮挡十八禁网站| 欧美日韩精品网址| 大型av网站在线播放| 国产老妇伦熟女老妇高清| 国内毛片毛片毛片毛片毛片| 亚洲av成人一区二区三| 日韩熟女老妇一区二区性免费视频| 亚洲精品av麻豆狂野| 日韩熟女老妇一区二区性免费视频| 久久99热这里只频精品6学生| 精品人妻熟女毛片av久久网站| 淫妇啪啪啪对白视频| 宅男免费午夜| 色播在线永久视频| 99在线人妻在线中文字幕 | 国产片内射在线| 国产精品免费一区二区三区在线 | 交换朋友夫妻互换小说| 王馨瑶露胸无遮挡在线观看| 精品久久久久久久毛片微露脸| 精品国产乱子伦一区二区三区| 日韩欧美三级三区| 高潮久久久久久久久久久不卡| 男女床上黄色一级片免费看| 久久人人爽av亚洲精品天堂| 国产在线视频一区二区| 大片免费播放器 马上看| 国产精品自产拍在线观看55亚洲 | 中文字幕高清在线视频| 99精国产麻豆久久婷婷| 日韩免费高清中文字幕av| 亚洲av第一区精品v没综合| 下体分泌物呈黄色| 亚洲av国产av综合av卡| 另类精品久久| 亚洲人成电影免费在线| 丝瓜视频免费看黄片| 日本vs欧美在线观看视频| 国产日韩欧美亚洲二区| 老司机午夜福利在线观看视频 | 国产一区二区三区在线臀色熟女 |