• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of Ethanol Extraction of Total Flavonoids from Suaeda salsa and Its Antioxidant, Hypoglycemic and Hypolipidemic Activities

    2016-11-14 11:19:44GONGYanlingLIUFeiJINHong
    食品科學(xué) 2016年8期
    關(guān)鍵詞:降血脂降糖黃酮

    GONG Yanling, LIU Fei, JIN Hong

    (Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China)

    Optimization of Ethanol Extraction of Total Flavonoids from Suaeda salsa and Its Antioxidant, Hypoglycemic and Hypolipidemic Activities

    GONG Yanling, LIU Fei, JIN Hong

    (Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China)

    Suaeda salsa an annual herb of Chenopodiaceae Suaeda well accepted as both a folk medicinal and food plant. In the current study, the extraction of total flavonoids from S. salsa and the in vitro antioxidant, hypoglycemic and hypolipidemic activities of the extracts were investigated. The total flavonoids was extracted by refluxing with ethanol and the selection and optimization of main experimental parameters were carried out using single factor experiments combined with central composite design-response surface methodology (CCD-RSM). The total flavonoids extracted from S. salsa were tested for hydroxyl and oxygen radical scavenging activity, and inhibitory activities against α-amylase and lipase in vitro. Results revealed that the optimal conditions for the extraction of total flavonoids were as following: liquid-tosolid ratio, 31.40:1; ethanol concentration, 83.12%; reflux temperature, 90 ℃, and reflux time, 128.40 min. Under these optimized conditions, the predicted and actual values of total flavonoids yield were 0.896% and 0.932%, respectively. The in vitro antioxidant tests revealed that the total flavonoids could scavenge hydroxyl and oxygen radicals and showed inhibitory activity against α-amylase and lipase. The optimal extraction conditions obtained in this experiment are simple to perform and have good reproducibility. The results have demonstrated that the total flavonoids from S. salsa can be used as a potential source of natural antioxidant, hypoglycemic and hypolipidemic ingredients, which provides new pharmacological basis for the development of S. salsa.

    Suaeda salsa; total flavonoids; antioxidant activity; hypoglycemic activity; hypolipidemic activity

    Suaeda salsa, an annual herb of Chenopodiaceae Suaeda, is mainly distributed in Asia, Europe, northeast,northwest and coastal provinces of China, especially widely growing in sandy and saline alkali soil in coastal beaches. Suadeda salsa is well accepted as a medicinal and food plant in folks owning to its detoxification and digestion promoting activities[1]. The main constitutes of Suadeda salsa include flavonoids, fatty acids, terpenoids, polysaccharides, pigments,and fat soluble components etc.[2-3]. Modern pharmacological study revealed that Suadeda salsa has anti-inflammatory,antioxidant, lipid-lowering and immunity-improving activities[4-5]. An et al.[6]separated compounds from Suadeda salsa which are hepatoprotective against tacrine-induced cytotoxicity in human liver cancer HepG2cells. To date,the domestic and foreign researches mainly focused on the plant physiology and salt tolerance of Suadeda salsa. As a pioneer halophyte, Suadeda salsa possesses more efficient abilities over non-halophytic plants, such as a more efficient antioxidant system, synthesizing more osmo-protectants to keep a favorable water gradient potential and to maintain normal cellular function[7-8]. Similar to most halophytes,Suadeda salsa exhibits physiological mechanisms with heavy metal-tolerant activity[9-10]. Recent researches revealed that Suadeda salsa could tolerate several pollutants, including heavy metals and petroleum hydrocarbons[11-13], which made it possible to be a potential plant in pollution indication around heavy metal-contaminated coast. But few studies focused on the constituents, extraction technology and pharmacology activities to develop its medical values.

    In the present study, we aimed to explore the ethanol extraction of total flavonoids from Suaeda salsa and extraction parameters including liquid-to-solid ratio,ethanol concentration, reflux time and reflux temperature. The optimal extraction technique was optimized by central composite design-response surface methodology(CCD-RSM). The in vitro antioxidant, hypoglycemic and hypolipidemic activities of Suaeda salsa extracts were also evaluated.

    1 Materials and Methods

    1.1Plant material

    Suaeda salsa was collected from the gulf of Huanghai Sea in October 2013, washed with distilled water and dried for 72 h with a blowing drier at 60 ℃. Dried Suaeda salsa was then ground to powder with an herb grinder (FW135, Tianjin, China) and subsequently sieved to 20 mesh of particles. Suaeda salsa was identified as the over-ground part of Chenopodiaceae Suaeda (C. Suaeda) annual herb Suaeda glauca Bunge by Chinese medicine professor Jin Hong in our university and the specimen was stored in our laboratory.

    1.2Instruments and equipments

    Grinder (FW135, Tianjin Taisite Instrument Corporation); drying oven (GZX-9240MBE, Shanghai Boxun Medical Biological Instrument Corporation); multi-use of recycled water vacuum pump (SHB-Ⅲ, Zhengzhou Great Wall Branch Industry and Trade Corporation); rotary evaporators (RE-52C, Shanghai Yarong Biochemistry Instrument Factory).

    1.3Methods

    1.3.1Extraction process of total flavonoids from Suaeda salsa

    The dried Suaeda salsa powder was weighed 5.0 g and heating to reflux in ethanol. The extract was filtered, ethanol concentrated to a certain volume by rotary evaporator for measurement of the total flavonoids.

    1.3.2Determination of the total flavonoids and extraction yield

    The total flavonoid content in the extracts was determined by aluminum chloride colorimetric method reported by Sultana et al.[14]. Quercetin was used to make the calibration curve. 1 mL of extract solution was diluted in 30% ethanol and 0.3 mL of 5% sodium nitrite was added. After incubation at room temperature for 5 min, 10% aluminum chloride was added and after 6 min 2 mL of 1.0 mol/L sodium hydroxide was added. Absorbance of the solution was measured at 430 nm. The total flavonoid concentration in the extracts was expressed in terms of quercetin (mg/mL) using the following equation Y=0.842 85X-0.000 4, R2=0.998 7. The quality of the total flavonoids was calculated according to the concentration and the total flavonoids yield was calculated as follows: the quality of the total flavonoids in the extracts.

    1.3.3Simple-factor experiment

    The factors that may influence ethanol extraction include liquid-to-solid ratio, reflux time, ethanol concentration, and reflux temperature. In this part of experiment, the above factors were monitored.

    1.3.4Optimization of extraction conditions by CCD-RSM

    According to the results of single factor experiment,CCD-RSM was conducted to optimize extraction technique using the total flavonoids extraction ratio as the response value based on three factors, including liquid-to-solid ratio, reflux time and ethanol concentration. A fixed refluxtemperature of 90 ℃ was chosen. The coded and actual levels of the three variables were shown in Table 1.

    Table 1 Variables and their coded levels used in CCD

    1.3.5Sample preparation for activity determination

    Suaeda salsa was extracted using the conditions optimized by CCD-RSM. The extracts were filtered, ethanol recovered, concentrated and dried. The dried extracts were weighed accurately and dissolved in distilled water to a certain concentration for activity determination.

    1.3.6Evaluation of antioxidant activity in vitro

    1.3.6.1Determination of hydroxyl radical scavenging activity

    The hydroxyl radical scavenging activity was measured based on Fenton's reaction, as described previously[15], with a few minor modifications. Hydroxyl radicals were generated using 150 mmol/L of sodium phosphate buffer pH 7.4 containing 10 mmol/L of ferrous sulphate, 10 mmol/L ethylene diamine tetraacetic acid (EDTA), 2 mmol/L sodium salicylate and 30% hydrogen peroxide with different concentrations of samples. In control tubes, hydrogen peroxide was replaced by sodium phosphate buffer. The solutions were incubated at 37 ℃ for 60 min, and the absorbance was measured at 510 nm. Vitamin C was used as positive control. The scavenging activity was calculated as the following equation (1):

    Hydroxyl radical scavenging percentage/%=[(A0-Ai)/ A0]×100 (1)

    Where A0is the absorbance of the measure tubes; Aiis of the control tubes.

    1.3.6.2Determination of oxygen radical scavenging activity

    Oxygen radical scavenging activity was measured based on the pyrogallol autoxidation method described by Li Xican et al.[16]. Briefly, the different concentrations of samples was mixed with Tris-HCl buffer (0.05 mol/L, pH 8.2) containing EDTA (1 mmol/L) and pyrogallol (80 μL, 6 mmol/L), and then shaken rapidly at room temperature. The absorbance of the mixture was measured at 325 nm against the Tris-HCl buffer as blank per 30 s for 5 min. The reaction mixture without a sample was used as the negative control. The slope of the correlation of absorbance with time was calculated. The oxygen radical scavenging ability was calculated as equation (2):

    1.3.7Evaluation of hypoglycemic activity in vitro

    The hypoglycemic activity in vitro was evaluated by inhibition of α-amylase activity using enzyme-starch system[17]. A sample was mixed by stirring with 25 mL potato starch (4%) in a beaker, then 100 mg of α-amylase was added,stirred vigorously and incubated at 37 ℃ for 60 min. After the incubation period, 2 mL of 0.1 mol/L NaOH was added to terminate enzyme activity. The mixture was centrifuged at 3 000×g for 15 min and glucose content was measured in the supernatant. A control test was also run without the addition of test sample. Inhibition of α-amylase activity was calculated as equation (3):

    Where Asampleis the absorbance of sample; Acontrolis the absorbance of the control.

    1.3.8Evaluation of hypolipidemic activity in vitro

    Hypolipidemic activity in vitro was evaluated by inhibition of lipase activity which was determined by the rate of oleic acid released from triolein[18]. The substrate emulsion was prepared by sonicating triolein (160 mg) with 3 mL of TCA-Na (0.83 mg/mL) in a 0.1 mol/L Tris-HCl buffer (pH 7.4) for 60 min. Different concentrations of samples were mixed with the diluted substrate emulsion and sonicated for 60 min. The mixture was incubated with 0.1 mg/mL of pancreatic lipase (0.2 mL/0.108 U) for 30 min at 37 ℃. The enzyme reaction was terminated by incubation in boiling water for 2 min. The amount of oleic acid released in the suspension was measured by a commercially available kit. Inhibition of lipase activity was calculated as equation (4):

    1.4Statistical analysis

    Each experiment was performed in triplicate. The results were presented asThe CCD-RSM design was analyzed by Design-Expert 8.05b, and the results of pharmaceutical activity experiments were analyzed using t-test by SPSS 17.0. P < 0.05 was considered as statistically significant.

    2 Results and Analysis

    2.1Influence of single factor on the total flavonoids extraction from Suaeda salsa

    2.1.1Effect of liquid-to-solid ratio on the total flavonoids extraction from Suaeda salsa

    Fig.1 Effect of liquid-to-solid ratio on the total flavonoids yield from Suaeda salsa

    Extraction was carried out at different liquid-to-solid ratio while other extraction parameters were kept constant(ethanol concentration 60%, reflux temperature 60 ℃ and time 30 min). The effect of liquid-to-solid ratios on the total flavonoids extraction was shown in Fig.1. The total flavonoids yield was increased significantly when liquidto-solid ratio was changed from 10:1 to 30:1, and reached the maximum at 30:1, then decreased from 30:1 to 50:1. We chose 30:1 as the centeral condition of CCD.

    2.1.2Effect of ethanol concentration on the total flavonoids extraction from Suaeda salsa

    Fig.2 Effect of ethanol concentration on the total flavonoids yield from Suaeda salsa

    Extraction was carried out at different ethanol concentration while other extraction parameters were kept constant (liquid-to-solid ratio 15:1, reflux temperature 60 ℃and time 30 min). The effect of ethanol concentration on the total flavonoids extraction was shown in Fig.2. The extraction rate of the total flavonoids was increased with the increase of ethanol concentration from 50% to 80% and decreased at 90%. We chose 80% as the center condition of CCD.

    2.1.3Effect of reflux temperature on the total flavonoids extraction from Suaeda salsa

    Extraction was carried out at different reflux temperature while other extraction parameters were kept constant (liquidto-solid ratio 15:1, ethanol concentration 60% and reflux time 30 min). The effect of reflux temperature on the total flavonoids extraction was shown in Fig.3. The extraction rate of the total flavonoids was increased significantly with the increase of reflux temperature from 60 ℃ to 90 ℃ and showed a slight decrease at 100 ℃. We chose 90 ℃ as the center condition of CCD.

    Fig.3 Effect of reflux temperature on the total flavonoids yield from Suaeda salsa

    2.1.4Effect of reflux time on the total flavonoids extraction from Suaeda salsa

    Fig.4 Effect of reflux time on the total flavonoids yield from Suaeda salsa

    Extraction was carried out at different reflux time while other extraction parameters were kept constant (liquid-to-solid ratio 15:1, ethanol concentration 60% and reflux temperature 60 ℃). The effect of reflux time on the total flavonoids extraction was shown in Fig.4. The extraction rate of the total flavonoids was increased firstly and then decreased with the maximum value at 120 min. We chose 120 min as the center condition of CCD.

    2.2Optimization of the total flavonoids extraction from Suaeda salsa by CCD-RSM

    The experiments were arranged and the results obtained as shown in Table 2.

    Using the software of Design-Expert 8.05b for multiple regression analysis on the experimental data, the response variable (the total flavonoids yield) and the test variables are related by the following second-order polynomial equation:

    Y=0.88+0.016X1+0.038X2+0.015X3+0.011X1X2-8.125×10-3X1X3+9.125×10-3X2X3-0.038X12-0.043-0.019(R2=0.986 6)

    Table 2 Experimental designs by CCD-RSM with experimental results

    The analysis of variance (ANOVA) for the regression equation was shown in Table 3.

    Table 3 Analysis of variance of quadratic regression model

    P value of model was less than 0.000 1, indicating a very high degree of precision and reliability of the experimental values. The linear term, quadratic term and the interaction were significant, indicating that the relationship between the total flavonoids and the test variables was not simply a linear one.

    Fig.5 Response surface plots for total flavonoids yield from Suaeda salsa as affected by liquid-to-solid ratio, ethanol concentration and reflux time

    Three-dimensional response surface plots were presented in Fig.5. It was estimated that there was a high yield of the total flavonoids when liquid-to-solid ratio in the range of 24.06:1-35.94:1, ethanol concentration 74.06%-85.94% and reflux time 102.18-137.82 min. The optimal conditions of the total flavonoids extraction were as follows: liquid-to-solid ratio 31.40:1, ethanol concentration 83.12%,reflux temperature 90 ℃ and reflux time 128.40 min. The predicted total flavonoids yield was 0.896%. To confirm these above results, three triplicate tests were performed under optimal conditions. The total flavonoids yield value was (0.932±0.02)% (n=3). The average deviation was 0.65% and the RSD value was 0.88%, which clearly showed that the model fitted the experimental data and the optimal extraction procedure had good reproducibility.

    2.3Antioxidant activity of the total flavonoids extracts from Suaeda salsa

    Fig.6 Scavenging effects of total flavonoids from Suaeda salsa on hydroxyl (A) and oxygen (B) radicals

    Oxidative stress is the consequence of an imbalance between production and scavenging of free radicals leading to cell damage and tissue injury[19]. Oxidative stress is common in tissues and organs with high energy and metabolic demands, such as skeletal and heart muscle,liver and blood cells, participating in various pathological processes. One of the reasons for the occurrence of oxidative stress is the exhaustion of antioxidant systems, which results in accumulation of reactive oxygen species (ROS) or free radicals[20]. Therefore, screening of safe and efficient free radical scavenger gradually becomes the research hotspot. In this experiment the effects of the total flavonoids extracts from Suaeda salsa on free radical scavenging was measured. Results revealed that the total flavonoids extracts could scavenge the hydroxyl and oxygen radicals in vitro in a dosedependent manner, although the scavenging percentages were lower than that of VC at the same concentration (Fig.6). Total flavonoids are the most widely distributed constituents known as the most potent antioxidants from herbs. The antioxidant activity of flavonoids is related to the presence of a number of phenolic hydroxyl groups which are attached to the phenyl ring structures[21]. The total flavonoids from Suaeda salsa showed an antioxidant potential with a high development value.

    2.4Hypoglycemic and hypolipidemic activity of the total flavonoids extracts from Suaeda salsa

    α-Amylase and α-glucosidase are two important carbohydrate-hydrolyzing enzymes which participate in carbohydrate digestion. The inhibition of these two enzymes can delay carbohydrate digestion, resulting in a reduction in the glucose absorption rate and consequently delay the postprandial plasma glucose elevation. The inhibitors of these two enzymes may possess the potential to control postprandial hyperglycemia in diabetes mellitus[22-23]. In this experiment we preliminarily observed the inhibition of α-amylase by the total flavonoids from Suaeda salsa. Results revealed that the total flavonoids exhibited α-amylase inhibitory activity in a concentration-dependent manner(Fig.7A). At the concentration of 5 mg/mL, the inhibition reached 46.39%, lower than that of acarbose (70.62%). Since the total flavonoids are a mixture of various ingredients,the inhibition activity can be improved by increasing the concentration or purify the mixture.

    Fig.7 Inhibitory effects of total flavonoids from Suaeda salsa on α-amylase (A) and pancreatic lipase (B) activities

    Pancreatic lipase is an important enzyme involved in the hydrolysis of triacylglycerols because it is responsible for the hydrolysis of 50% to 70% of total dietary fats[24]. Pancreatic lipase mainly functions in the digestion and absorption of triglycerides (TG) into monoglycerides and fatty acids[25]. Inhibition of pancreatic lipase might be a valuable pathway for the treatment of diet-induced hyperglycemia in humans. As shown in Fig.7B, the total flavonoids from Suaeda salsa inhibited the pancreatic lipase activity in a dose-dependent manner at the concentrations ranging from 0.2 mg/mL to 1.0 mg/mL, lower than simvastatin, exhibiting its hypolipidemic potential.

    3 Conclusion

    The present study investigates the extraction technique of the total flavonoids from Suaeda salsa and its antioxidation,hypoglycemic and hypolipidemic activities. The extraction technique is optimized to be 83.12% ethanol, with a liquidto-solid ratio of 31.40:1 (mL/g), a reflux temperature of 90 ℃and a reflux time of 128.40 min, which gives the yield of the total flavonoids up to 0.932% of dry weight. Our investigation indicates that the total flavonoids from Suaeda salsa can scavenge hydroxyl and oxygen radicals and inhibit α-amylase and pancreatic lipase activities in vitro, exhibiting a potential for antioxidation, hypoglycemic and hypolipidemic values. Undoubtedly, further in vivo studies are required to confirm these results and the active ingredients need to be isolated and identified.

    References:

    [1] SHAO Qiuling, LI Yujuan. The development of Suaeda salsa[J]. Plants, 1999, 53: 43-48.

    [2] ZHANG Zesheng, WANG Li, YANG Jianbo, et al. Chemical constituents of Suaeda salsa[J]. Natural Product Research, 2012,24(6): 775-776.

    [3] ZHOU Dongsheng, WANG Qizhi, WANG Ming, et al. Reaserch progress on the chemical constituents of Suaeda salsa and their development and utilization[J]. Chinese Wild Plants Resources, 2011,30(1): 6-9.

    [4] ZHENG Weifa, CHEN Caifa, LI Wei. Chemical composition and anti inflammation of methanol/chloroform extracts from seeds and seedlings of Suaeda salsa (L.) Pall[J]. Chinese Traditional Patent Medicine, 2003, 25(12): 997-1002.

    [5] WANG Zhaojing. Studies on separation purification and antioxidant activity of a water-soluble polysaccharide SPA from Suaeda Spp.[J]. Journal of Liaoning University of TCM, 2009, 11(9): 168-169.

    [6] AN R B, SOHN D H, JEONG G S, et al. In vitro hepatoprotective compounds from Suaeda glauca[J]. Archives of Pharmacal Research, 2008, 31(5): 594-597. DOI:10.1007/s12272-001-1198-1.

    [7] ZHU Zhujun, WEI Guoqiang, LI Juan, et al. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of saltstressed cucumber (Cucumis sativus L.)[J]. Plant Science, 2004, 167: 527-533. DOI:10.1016/j.plantsci.2004.04.020.

    [8] LEFèVRE I, MARCHAL G, MEERTS P, et al. Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L.[J]. Environmental and Experimental Botany, 2009, 65: 142-152. DOI:10.1016/j.envexpbot.2008.07.005.

    [9] THOMAS J C, MALICK F K, ENDRESZL C, et al. Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum[J]. Physiologia Plantarum, 1998, 102: 360-368. DOI:10.1016/ j.physiolo.1998.10.036.

    [10] PRZYMUSINSKI R, RUCINSKA R, GWóZDZ E A. Increased accumulation of pathogenesis-related proteins in response of lupine roots to various abiotic stresses[J]. Environmental and Experimental Botany, 2004, 52: 53-61. DOI:10.1016/j.envexpbot.2004.01.006.

    [11] ZHU Minghe, DING Yongsheng, ZHENG Daochang, et al. Accumulation and tolerance of Cu, Zn, Pb and Cd in plant Suaeda heteroptera Kitag in tideland[J]. Marine Environmental Research,2005, 24(2): 13-16.

    [12] LIU Xianbin, XU Chongyan. Remediation effect of Suaeda salsa planting on the petroleum hydrocarbon polluted coastal zones[C]// The 2nd International Conference on Bioinformatics and Biomedical Engineering. Shanghai: IEEE, 2008: 4158-4161. DOI:10.1109/ ICBBE.2008.540.

    [13] XU Chongyan, LIU Xianbin, LIU Zhanguang, et al. Remedial effect of Suaeda salsa (L.) Pall. planting on the oil-polluted coastal zones[J]. Journal of Safety and Environment, 2007, 7: 37-39.

    [14] SULTANA B, ANWAR F, ASHRAF M. Effect of extraction solvent technique on the antioxidant activity of selected medicinal plant extracts[J]. Molecules, 2009, 114(6): 2167-2180. DOI:10.3390/ molecules14062167.

    [15] SMIRNOFF N, CUMBES Q J. Hydroxyl radical scavenging activity of compatible solutes[J]. Phytochemistry, 1989, 28: 1057-1060. DOI:10.1016/0031-9422(89)80182-7.

    [16] LI Xican, WU Xiaoting, HUANG Ling. Correlation between antioxidant activities and phenolic contents of Radix Angelica sinensis (Danggui)[J]. Molecules, 2009, 14: 5349-5361. DOI:10.3390/ molecules14125349.

    [17] OU S, KWOK K C, LI Y, et al. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose[J]. Journal of Agricultural and Food Chemistry, 2001, 49: 1026-1029. DOI:10.1021/ jf000574n.

    [18] IWATA E, HOTTA H, GOTO M. Hypolipidemic and bifidogenic potentials in the dietary fiber prepared from Mikan (Japanese mandarin orange: Citrus unshiu) albedo[J]. Journal of Nutritional Science and Vitaminology (Tokyo), 2012, 58(3): 175-180.

    [19] PIETRO C. Biomarkers of oxidative stress in ruminant medicine[J]. Immunopharmacology and Immunotoxicol, 2011, 33(2): 233-240. DOI:10.3109/08923973.2010.514917.

    [20] PUPPEL K, KAPUSTA A, KUCZY?SKA B. The etiology of oxidative stress in the various species of animals: a review[J]. Journal of the Science of Food and Agriculture, 2015, 95(11): 2179-2184. DOI:10.1002/jsfa.7015.

    [21] PRIYANKA C, KADAM D A, KADAM A S, et al. Free radical scavenging (DPPH) and ferric reducing ability (FRAP) of some gymnosperm species[J]. International Research Journal of Botany,2013, 3: 34-36.

    [22] BHANDARI M R, NILUBON J A, HONG G, et al. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed(Bergenia ciliata, Haw.)[J]. Food Chemistry, 2008, 106: 247-252. DOI:10.1016/j.foodchem.2007.05.077.

    [23] KIM J S, HYUN T K, KIM M J. The inhibitory effects of ethanol extracts from sorghum, foxtail millet and prosomilleton α-glucosidase and α-amylase activities[J]. Food Chemistry, 2011, 124: 1647-1651. DOI:10.1016/j.foodchem.2010.08.020.

    [24] BIRARI R B, BHUTANI K K. Pancreatic lipase inhibitors from natural sources: unexplored potential[J]. Drug Discovery Today, 2007,12: 879-889. DOI:10.1016/j.drudis.2007.07.024.

    [25] KIM T H, KIM J K, ITO H, et al. Enhancement of pancreatic lipase inhibitory activity of curcumin by radiolytic transformation[J]. Bioorganic and Medicinal Chemistry Letters, 2011, 21: 1512-1514. DOI:10.1016/j.bmcl.2010.12.122.

    響應(yīng)面試驗(yàn)優(yōu)化鹽地堿蓬總黃酮乙醇萃取工藝及其抗氧化、降糖、降脂活性

    公衍玲,劉 菲,金 宏
    (青島科技大學(xué)化工學(xué)院藥學(xué)系,山東 青島 266042)

    鹽地堿蓬系藜科堿蓬屬1a生草本植物,既可作藥物也可作為食物被人們廣泛接受。本研究?jī)?yōu)化了從堿蓬中提取總黃酮的工藝及條件,并研究了其體外抗氧化、降血糖、降血脂活性。通過(guò)乙醇回流提取法進(jìn)行總黃酮提取,使用單因素試驗(yàn)結(jié)合中心組合設(shè)計(jì)-響應(yīng)面法確定了最優(yōu)的工藝參數(shù)。并且將提取的總黃酮進(jìn)行體外清除羥自由基和氧自由基、抑制α-淀粉酶和脂肪酶實(shí)驗(yàn)??傸S酮的乙醇提取工藝優(yōu)化條件為液固比31.40∶1、乙醇體積分?jǐn)?shù)83.12%、回流溫度90 ℃、回流時(shí)間128.40 min。預(yù)測(cè)和實(shí)際的總黃酮產(chǎn)量分別為0.896%和0.932%。體外實(shí)驗(yàn)表明,總黃酮可以清除羥自由基和氧自由基,并且可以抑制α-淀粉酶和脂肪酶的活性。本實(shí)驗(yàn)中最優(yōu)提取條件容易實(shí)現(xiàn)并且有良好的重復(fù)性。結(jié)果表明,總黃酮作為一種潛在的抗氧化、降糖、降血脂的自然資源的成分,可為堿蓬的發(fā)展提供新的藥理學(xué)依據(jù)。

    鹽地堿蓬;總黃酮;抗氧化活性;降糖活性;降血脂活性

    10.7506/spkx1002-6630-201608001

    R932

    A

    1002-6630(2016)08-0001-07

    GONG Yanling, LIU Fei, JIN Hong. Optimization of ethanol extraction of total flavonoids from Suaeda salsa and its antioxidant, hypoglycemic and hypolipidemic activities[J]. Food Science, 2016, 37(8): 1-7. DOI:10.7506/spkx1002-6630-201608001. http://www.spkx.net.cn

    公衍玲, 劉菲, 金宏. 響應(yīng)面試驗(yàn)優(yōu)化鹽地堿蓬總黃酮乙醇萃取工藝及其抗氧化、降糖、降脂活性[J]. 食品科學(xué), 2016,37(8): 1-7. DOI:10.7506/spkx1002-6630-201608001. http://www.spkx.net.cn

    2015-07-31

    國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(81300281);山東省高??萍加?jì)劃項(xiàng)目(J15LK12)

    公衍玲(1975—),女,副教授,博士,研究方向?yàn)樗幬锘钚院Y選和藥效學(xué)。E-mail:hanyu_ma@126.com

    引文格式:

    猜你喜歡
    降血脂降糖黃酮
    降血脂的六個(gè)誤區(qū),你知道多少?
    快樂(lè)降糖“穴”起來(lái)
    大葉欖仁葉化學(xué)成分及其降糖活性
    中成藥(2018年12期)2018-12-29 12:25:38
    HPLC法同時(shí)測(cè)定降糖甲片中9種成分
    中成藥(2018年6期)2018-07-11 03:01:14
    降糖“益友”知多少
    HPLC法同時(shí)測(cè)定固本補(bǔ)腎口服液中3種黃酮
    中成藥(2017年8期)2017-11-22 03:19:40
    MIPs-HPLC法同時(shí)測(cè)定覆盆子中4種黃酮
    中成藥(2017年10期)2017-11-16 00:50:13
    DAD-HPLC法同時(shí)測(cè)定龍須藤總黃酮中5種多甲氧基黃酮
    中成藥(2017年4期)2017-05-17 06:09:50
    瓜馥木中一種黃酮的NMR表征
    高含量DHA/EPA甘油三酯的降血脂和保肝作用的研究
    久久精品亚洲精品国产色婷小说| 99久久国产精品久久久| 成人18禁在线播放| 亚洲av成人一区二区三| 日本黄色视频三级网站网址 | 午夜福利欧美成人| 亚洲熟妇熟女久久| 国产欧美日韩精品亚洲av| 日本a在线网址| 99久久精品国产亚洲精品| 欧美最黄视频在线播放免费 | 黄网站色视频无遮挡免费观看| 久久狼人影院| 中亚洲国语对白在线视频| 精品午夜福利视频在线观看一区| 国产1区2区3区精品| 999久久久精品免费观看国产| 国产免费av片在线观看野外av| 欧美日韩亚洲综合一区二区三区_| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲成人国产一区在线观看| 免费看a级黄色片| 一进一出好大好爽视频| 亚洲七黄色美女视频| a在线观看视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 久久热在线av| 女警被强在线播放| 中文字幕色久视频| 日日爽夜夜爽网站| 一边摸一边做爽爽视频免费| 侵犯人妻中文字幕一二三四区| 成人av一区二区三区在线看| 精品电影一区二区在线| 婷婷精品国产亚洲av在线 | 十分钟在线观看高清视频www| 黄色丝袜av网址大全| 国产99久久九九免费精品| 我的亚洲天堂| 色尼玛亚洲综合影院| xxx96com| 精品国产亚洲在线| 在线av久久热| 欧美乱妇无乱码| 老司机亚洲免费影院| 亚洲av成人一区二区三| 一边摸一边抽搐一进一出视频| 最新在线观看一区二区三区| 十分钟在线观看高清视频www| 午夜成年电影在线免费观看| 校园春色视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 怎么达到女性高潮| 9热在线视频观看99| 精品亚洲成a人片在线观看| 老汉色av国产亚洲站长工具| а√天堂www在线а√下载 | 精品久久久精品久久久| 午夜视频精品福利| 亚洲精品久久成人aⅴ小说| 免费观看人在逋| 国产欧美日韩综合在线一区二区| 高清在线国产一区| 无限看片的www在线观看| 国产精品亚洲一级av第二区| 村上凉子中文字幕在线| 宅男免费午夜| 18禁美女被吸乳视频| 日韩一卡2卡3卡4卡2021年| 91大片在线观看| 色婷婷久久久亚洲欧美| 12—13女人毛片做爰片一| 久久狼人影院| 亚洲九九香蕉| 黄片大片在线免费观看| bbb黄色大片| 三级毛片av免费| 日本vs欧美在线观看视频| 国产精品免费大片| 国产1区2区3区精品| 成人精品一区二区免费| 欧美日韩精品网址| av视频免费观看在线观看| 最近最新免费中文字幕在线| 人妻丰满熟妇av一区二区三区 | videosex国产| 99久久综合精品五月天人人| 老司机在亚洲福利影院| 亚洲精品美女久久av网站| 一级,二级,三级黄色视频| 国产精品永久免费网站| 欧美 日韩 精品 国产| 美女高潮到喷水免费观看| 精品一区二区三区四区五区乱码| 99久久99久久久精品蜜桃| 免费看a级黄色片| 亚洲av第一区精品v没综合| 法律面前人人平等表现在哪些方面| 女性被躁到高潮视频| 亚洲片人在线观看| 视频在线观看一区二区三区| 国产精品一区二区免费欧美| 极品少妇高潮喷水抽搐| 电影成人av| 操美女的视频在线观看| 变态另类成人亚洲欧美熟女 | 天天影视国产精品| 男人的好看免费观看在线视频 | 国产成人欧美| 国内毛片毛片毛片毛片毛片| 国产精品永久免费网站| 成人国产一区最新在线观看| 久久中文字幕人妻熟女| 色尼玛亚洲综合影院| 久久久久久免费高清国产稀缺| 国产一区二区三区综合在线观看| 夜夜夜夜夜久久久久| 欧美国产精品va在线观看不卡| 国产野战对白在线观看| 久久国产精品大桥未久av| 波多野结衣一区麻豆| 在线播放国产精品三级| 日本撒尿小便嘘嘘汇集6| 免费观看a级毛片全部| 久久久久久亚洲精品国产蜜桃av| 老司机福利观看| 日日爽夜夜爽网站| 水蜜桃什么品种好| 精品亚洲成国产av| 两个人免费观看高清视频| 亚洲熟妇熟女久久| 亚洲黑人精品在线| 精品久久久久久电影网| 久久人人爽av亚洲精品天堂| av电影中文网址| 国产高清视频在线播放一区| 亚洲熟妇熟女久久| 高清av免费在线| 黄色成人免费大全| 99国产精品免费福利视频| 久9热在线精品视频| 午夜日韩欧美国产| av欧美777| 亚洲人成电影观看| 女人爽到高潮嗷嗷叫在线视频| 丁香欧美五月| 欧美色视频一区免费| 午夜日韩欧美国产| 午夜免费观看网址| 亚洲成a人片在线一区二区| 757午夜福利合集在线观看| 国产欧美日韩一区二区三| 国产欧美日韩一区二区精品| 成年人午夜在线观看视频| 国产91精品成人一区二区三区| tocl精华| 成人永久免费在线观看视频| 免费在线观看完整版高清| 99热国产这里只有精品6| 成人永久免费在线观看视频| 美女高潮喷水抽搐中文字幕| 可以免费在线观看a视频的电影网站| 下体分泌物呈黄色| 国产精品.久久久| 老司机午夜福利在线观看视频| 变态另类成人亚洲欧美熟女 | 午夜视频精品福利| 亚洲国产欧美一区二区综合| 在线观看免费高清a一片| 亚洲国产毛片av蜜桃av| 亚洲一区二区三区欧美精品| 香蕉久久夜色| 天堂动漫精品| 亚洲国产中文字幕在线视频| 欧美 日韩 精品 国产| 少妇裸体淫交视频免费看高清 | 一级毛片高清免费大全| 午夜福利一区二区在线看| 久久九九热精品免费| 美女福利国产在线| 一进一出好大好爽视频| 国产精品亚洲av一区麻豆| 在线观看免费视频日本深夜| 天天添夜夜摸| 搡老乐熟女国产| 久久婷婷成人综合色麻豆| 精品国产一区二区三区久久久樱花| 老司机福利观看| 999精品在线视频| 91av网站免费观看| 欧美最黄视频在线播放免费 | 在线免费观看的www视频| 美女 人体艺术 gogo| 色老头精品视频在线观看| 十八禁网站免费在线| 国产区一区二久久| 欧美日韩亚洲高清精品| 麻豆av在线久日| 真人做人爱边吃奶动态| 99热只有精品国产| 精品欧美一区二区三区在线| 老熟妇仑乱视频hdxx| 大型av网站在线播放| 国产成人av激情在线播放| 久久国产乱子伦精品免费另类| 中国美女看黄片| 一级毛片高清免费大全| 深夜精品福利| 777米奇影视久久| 日本黄色视频三级网站网址 | 在线观看66精品国产| av有码第一页| 久久热在线av| 国产又爽黄色视频| 一进一出抽搐动态| 久久香蕉精品热| 99国产综合亚洲精品| 国产精品永久免费网站| 一级a爱片免费观看的视频| 香蕉国产在线看| 老司机亚洲免费影院| 日本黄色日本黄色录像| 在线播放国产精品三级| 亚洲第一av免费看| 很黄的视频免费| 亚洲成人免费电影在线观看| 99国产精品一区二区蜜桃av | 香蕉丝袜av| 久久影院123| 国产野战对白在线观看| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品一区二区www | www日本在线高清视频| 亚洲av美国av| 婷婷丁香在线五月| 男女午夜视频在线观看| 69精品国产乱码久久久| 亚洲熟女毛片儿| 午夜亚洲福利在线播放| 亚洲精品久久午夜乱码| 国产不卡av网站在线观看| 99热网站在线观看| 12—13女人毛片做爰片一| 久久久久久久久久久久大奶| 免费一级毛片在线播放高清视频 | 国产日韩欧美亚洲二区| 最近最新中文字幕大全免费视频| 黑人操中国人逼视频| 免费在线观看完整版高清| 精品欧美一区二区三区在线| 久久久久久久国产电影| 男人操女人黄网站| 一级黄色大片毛片| 亚洲av欧美aⅴ国产| 王馨瑶露胸无遮挡在线观看| 成年人免费黄色播放视频| 午夜成年电影在线免费观看| 啦啦啦免费观看视频1| 日本一区二区免费在线视频| 身体一侧抽搐| 母亲3免费完整高清在线观看| 成人18禁在线播放| 无遮挡黄片免费观看| 亚洲色图 男人天堂 中文字幕| 国产精品国产高清国产av | 亚洲午夜精品一区,二区,三区| 中文字幕人妻丝袜一区二区| 成人国语在线视频| 国产视频一区二区在线看| 欧美日韩中文字幕国产精品一区二区三区 | 成人手机av| 亚洲成国产人片在线观看| 欧美人与性动交α欧美软件| 国产av一区二区精品久久| 午夜精品在线福利| 国产在线精品亚洲第一网站| 欧美日韩黄片免| 天天添夜夜摸| 校园春色视频在线观看| 亚洲欧美激情在线| 欧美午夜高清在线| 麻豆国产av国片精品| 看黄色毛片网站| 国产男靠女视频免费网站| 日韩欧美免费精品| 多毛熟女@视频| 女人被躁到高潮嗷嗷叫费观| 亚洲aⅴ乱码一区二区在线播放 | 久久精品国产亚洲av高清一级| 国产成人啪精品午夜网站| 精品国产超薄肉色丝袜足j| 视频区欧美日本亚洲| 可以免费在线观看a视频的电影网站| 国产精品国产高清国产av | 成人18禁高潮啪啪吃奶动态图| 美女视频免费永久观看网站| 黄频高清免费视频| 免费av中文字幕在线| 悠悠久久av| 91av网站免费观看| 免费av中文字幕在线| 亚洲国产欧美日韩在线播放| 天天添夜夜摸| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕精品免费在线观看视频| 午夜福利乱码中文字幕| 99热国产这里只有精品6| 久热爱精品视频在线9| 国产主播在线观看一区二区| 国产欧美日韩综合在线一区二区| 女人被躁到高潮嗷嗷叫费观| av福利片在线| 国产99白浆流出| 1024视频免费在线观看| 变态另类成人亚洲欧美熟女 | 90打野战视频偷拍视频| 成人精品一区二区免费| 国产成人精品在线电影| 精品卡一卡二卡四卡免费| 国产午夜精品久久久久久| 9色porny在线观看| 中文字幕人妻丝袜一区二区| 一级毛片女人18水好多| 人人妻人人爽人人添夜夜欢视频| 伦理电影免费视频| 国产精品免费一区二区三区在线 | 十八禁高潮呻吟视频| 国产极品粉嫩免费观看在线| 久久久久久久国产电影| 无人区码免费观看不卡| 亚洲伊人色综图| 99热国产这里只有精品6| 身体一侧抽搐| 欧美日韩一级在线毛片| 久久久久久久国产电影| 精品国产一区二区久久| av线在线观看网站| 视频区图区小说| 久久久久久人人人人人| 精品熟女少妇八av免费久了| 成人av一区二区三区在线看| 国产极品粉嫩免费观看在线| 亚洲全国av大片| 国产熟女午夜一区二区三区| 18禁观看日本| 69精品国产乱码久久久| 中文字幕制服av| 男人操女人黄网站| 午夜精品国产一区二区电影| 精品无人区乱码1区二区| ponron亚洲| 国产欧美日韩一区二区精品| 午夜精品国产一区二区电影| 国产麻豆69| 三上悠亚av全集在线观看| 国产精华一区二区三区| 超碰97精品在线观看| 国产色视频综合| 动漫黄色视频在线观看| 色精品久久人妻99蜜桃| 在线十欧美十亚洲十日本专区| 在线观看美女被高潮喷水网站 | 国产精品1区2区在线观看.| 亚洲国产精品成人综合色| 天天一区二区日本电影三级| 久久6这里有精品| 亚洲欧美日韩东京热| 狠狠狠狠99中文字幕| 日本熟妇午夜| 亚洲五月天丁香| 免费无遮挡裸体视频| 老鸭窝网址在线观看| 一级毛片高清免费大全| 叶爱在线成人免费视频播放| 欧美高清成人免费视频www| 噜噜噜噜噜久久久久久91| 窝窝影院91人妻| 亚洲国产欧美人成| 午夜免费男女啪啪视频观看 | 99久久九九国产精品国产免费| 男女之事视频高清在线观看| 亚洲色图av天堂| 天美传媒精品一区二区| 国语自产精品视频在线第100页| 天天躁日日操中文字幕| 在线十欧美十亚洲十日本专区| 18禁美女被吸乳视频| 欧美激情久久久久久爽电影| 久久精品91无色码中文字幕| 全区人妻精品视频| 久9热在线精品视频| 欧美一区二区精品小视频在线| 在线观看日韩欧美| 亚洲精品一区av在线观看| 欧美中文日本在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久久久久久免 | av欧美777| 国内久久婷婷六月综合欲色啪| www.色视频.com| 久久国产精品人妻蜜桃| 亚洲精品美女久久久久99蜜臀| 亚洲在线自拍视频| 国产一区二区在线av高清观看| 欧美最黄视频在线播放免费| 黄色视频,在线免费观看| 久久久久免费精品人妻一区二区| 岛国在线免费视频观看| 欧美日韩精品网址| 国产亚洲av嫩草精品影院| 不卡一级毛片| x7x7x7水蜜桃| 丁香欧美五月| 级片在线观看| 国产精品三级大全| 搞女人的毛片| 免费人成视频x8x8入口观看| 免费看光身美女| 在线观看美女被高潮喷水网站 | 很黄的视频免费| 身体一侧抽搐| 日韩欧美精品免费久久 | 午夜福利在线观看免费完整高清在 | 在线观看66精品国产| 香蕉丝袜av| 在线国产一区二区在线| 国产av不卡久久| 精品一区二区三区av网在线观看| 久久这里只有精品中国| 亚洲欧美精品综合久久99| 国产高清视频在线播放一区| a在线观看视频网站| 波野结衣二区三区在线 | 国产成人av激情在线播放| 久久久久久久久大av| 欧美丝袜亚洲另类 | 内射极品少妇av片p| 成人午夜高清在线视频| 日本成人三级电影网站| 欧美乱妇无乱码| 伊人久久大香线蕉亚洲五| 两人在一起打扑克的视频| 丁香欧美五月| 中文在线观看免费www的网站| 日本精品一区二区三区蜜桃| 一级毛片女人18水好多| 听说在线观看完整版免费高清| 欧美绝顶高潮抽搐喷水| 亚洲精品久久国产高清桃花| 精品国产亚洲在线| 很黄的视频免费| 日本与韩国留学比较| 狂野欧美激情性xxxx| 国产免费av片在线观看野外av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久婷婷人人爽人人干人人爱| 国产精品影院久久| bbb黄色大片| 亚洲av成人不卡在线观看播放网| 欧美日韩福利视频一区二区| 精品一区二区三区视频在线观看免费| 中亚洲国语对白在线视频| 波野结衣二区三区在线 | 国内精品久久久久久久电影| 亚洲乱码一区二区免费版| 免费在线观看成人毛片| 每晚都被弄得嗷嗷叫到高潮| 一个人观看的视频www高清免费观看| 日本熟妇午夜| 日本a在线网址| 欧美乱色亚洲激情| 欧美日韩中文字幕国产精品一区二区三区| 国产精品电影一区二区三区| 国产亚洲欧美在线一区二区| 九色国产91popny在线| 宅男免费午夜| 高潮久久久久久久久久久不卡| 中文字幕人妻丝袜一区二区| 欧美大码av| 国产一区二区在线观看日韩 | 一级黄色大片毛片| a在线观看视频网站| 午夜福利在线观看免费完整高清在 | 尤物成人国产欧美一区二区三区| 亚洲精品日韩av片在线观看 | 亚洲av五月六月丁香网| 色精品久久人妻99蜜桃| 中文亚洲av片在线观看爽| 午夜免费激情av| 欧美日韩综合久久久久久 | 白带黄色成豆腐渣| 99久久无色码亚洲精品果冻| 亚洲色图av天堂| 免费看十八禁软件| 免费无遮挡裸体视频| 欧美成人一区二区免费高清观看| 日本成人三级电影网站| 国产成人影院久久av| 欧美日韩黄片免| 日韩高清综合在线| 成人特级黄色片久久久久久久| 好男人在线观看高清免费视频| 变态另类成人亚洲欧美熟女| 老鸭窝网址在线观看| 免费无遮挡裸体视频| 欧美黑人巨大hd| 亚洲美女视频黄频| 1024手机看黄色片| 99久久久亚洲精品蜜臀av| 午夜激情福利司机影院| 2021天堂中文幕一二区在线观| 少妇人妻精品综合一区二区 | 狂野欧美激情性xxxx| 村上凉子中文字幕在线| 丰满的人妻完整版| 毛片女人毛片| 久久久久久久久中文| 国产精品自产拍在线观看55亚洲| 亚洲午夜理论影院| 亚洲性夜色夜夜综合| 熟妇人妻久久中文字幕3abv| 啪啪无遮挡十八禁网站| 日本成人三级电影网站| 最近在线观看免费完整版| 在线观看av片永久免费下载| 非洲黑人性xxxx精品又粗又长| 大型黄色视频在线免费观看| 国内精品久久久久久久电影| 人人妻人人澡欧美一区二区| 欧美丝袜亚洲另类 | 国产精品嫩草影院av在线观看 | 午夜福利视频1000在线观看| 悠悠久久av| e午夜精品久久久久久久| 国产不卡一卡二| 亚洲男人的天堂狠狠| 亚洲激情在线av| 啦啦啦观看免费观看视频高清| 亚洲精品粉嫩美女一区| 久久精品国产综合久久久| 国产成人福利小说| 国产亚洲精品一区二区www| 日韩av在线大香蕉| 国产精品98久久久久久宅男小说| 最后的刺客免费高清国语| 12—13女人毛片做爰片一| 欧美色欧美亚洲另类二区| 神马国产精品三级电影在线观看| 日韩有码中文字幕| 亚洲真实伦在线观看| 色视频www国产| 成人三级黄色视频| 精品午夜福利视频在线观看一区| 免费看a级黄色片| 亚洲成a人片在线一区二区| 国产午夜精品久久久久久一区二区三区 | 身体一侧抽搐| 欧美日韩一级在线毛片| 91字幕亚洲| 久久久久性生活片| 美女免费视频网站| 午夜久久久久精精品| 长腿黑丝高跟| 成人精品一区二区免费| 免费观看人在逋| 免费无遮挡裸体视频| 嫁个100分男人电影在线观看| 亚洲专区国产一区二区| 午夜免费激情av| 好男人电影高清在线观看| 最新在线观看一区二区三区| 国产不卡一卡二| 色尼玛亚洲综合影院| 国产精品,欧美在线| 国产精品电影一区二区三区| 在线观看美女被高潮喷水网站 | 国产激情偷乱视频一区二区| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩东京热| 日韩高清综合在线| 好男人电影高清在线观看| 中出人妻视频一区二区| 国产一区在线观看成人免费| 成人亚洲精品av一区二区| 国产91精品成人一区二区三区| 精品久久久久久久久久免费视频| 欧美日韩中文字幕国产精品一区二区三区| 99久久99久久久精品蜜桃| av视频在线观看入口| av天堂中文字幕网| 成人av在线播放网站| 人人妻人人澡欧美一区二区| 特大巨黑吊av在线直播| 国产精品一及| 国产av麻豆久久久久久久| 国产伦人伦偷精品视频| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费激情av| 波多野结衣高清无吗| 欧美另类亚洲清纯唯美| 十八禁网站免费在线| 亚洲一区二区三区不卡视频| 亚洲黑人精品在线| 欧美日韩黄片免| av片东京热男人的天堂| 午夜a级毛片| 免费在线观看日本一区| 欧美性感艳星| 麻豆成人av在线观看| 18禁黄网站禁片午夜丰满| 欧美在线黄色| 国产在线精品亚洲第一网站| 噜噜噜噜噜久久久久久91| 岛国在线观看网站| 青草久久国产|