• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impacts of Two Types of El Ni?o on the MJO during Boreal Winter

    2016-11-14 03:38:33BoPANGZeshengCHENZhipingWENandRiyuLU
    Advances in Atmospheric Sciences 2016年8期

    Bo PANG,Zesheng CHEN,Zhiping WEN,and Riyu LU

    1Center for Monsoon and Environment Research/School of Atmospheric Sciences,Sun Yat-Sen University,Guangzhou 510275

    2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    3State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou 510301

    Impacts of Two Types of El Ni?o on the MJO during Boreal Winter

    Bo PANG1,2,Zesheng CHEN3,Zhiping WEN*1,and Riyu LU2

    1Center for Monsoon and Environment Research/School of Atmospheric Sciences,Sun Yat-Sen University,Guangzhou 510275

    2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    3State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou 510301

    The features of the MJO during two types of El Ni?o events are investigated in this paper using the daily NCEP-2 reanalysis data,OLR data from NOAA,and Real-time Multivariate MJO index for the period 1979–2012.The results indicate that the MJO exhibits distinct features during eastern Pacific(EP)El Ni?o events,as compared to central Pacific (CP)El Ni?o events.First,the intensity of the MJO is weakened during EP El Ni?o winters from the tropical eastern Indian Ocean to the western Pacific,but enhanced during CP El Ni?o winters.Second,the range of the MJO eastward propagation is different during the two types of El Ni?o events.During EP El Ni?o winters,the MJO propagates eastwards to 120°W,but only to 180°during CP El Ni?o winters.Finally,the frequency in eight phases of the MJO may be affected by the two types of El Ni?o.Phases 2 and 3 display a stronger MJO frequency during EP El Ni?o winters,but phases 4 and 5 during CP El Ni?o winters.

    MJO,eastern Pacific El Ni?o,central Pacific El Ni?o

    1.Introduction

    The MJO is a large-scale eastward-propagating circulation in the atmosphere.Madden and Julian(1971)found a 40–50-dayoscillationwhenanalyzingthe zonalwind anomalies of Canton Island.They pointed out that the MJO is characterized by the planetary scale of wavenumber 1 and eastward propagation(Madden and Julian,1972).Yasunari (1980)confirmed that zonal wind has low-frequency oscillation at the time scale of 40–50days.Weickmann et al.(1985) and Knutson et al.(1986)showed that the MJO also has a vertical baroclinic structure.Many subsequent studies have demonstrated that the active area of the MJO is in the South Asiamonsoonregion,tropicalwesternPacificandeasternPacific(Madden and Julian,1994;Zhang,2005).

    Since the MJO is the most dominant signal in tropical intraseasonalvariability,andENSOisthemajorsourceofinterannual variability in the tropics,many previous studies have investigatedthe interaction between the MJO and ENSO.For example,the MJO can trigger El Ni?o through sea–air interaction(Lau and Chan,1986).Before El Ni?o occurs,MJO activity is greatly enhanced over the tropical western Pacific(Li and Zhou,1994),suggesting an impact of the MJO on the occurrence of El Ni?o events.MJO activity in late boreal spring is favorable to the development of El Ni?o in the subsequent autumn and winter(Hendon et al.,2007).On the other hand,ENSO can also influence the activity of the MJO. During El Ni?o,MJO amplitude is relatively weak,implying a weakening effect of El Ni?o on MJO intensity(Li and Zhou,1994).During warm ENSO episodes,MJO convective activity shifts eastward to the central and eastern Pacific, with decreased intensity across the eastern Indian Ocean and Maritime Continent(Hendon et al.,1999).Moreover,the strong warm SST anomaly in the central Pacific promotes rapid growth of the MJO in the western Pacific convective phases(Marshall et al.,2016).These previous studies indicate a two-way interaction between enhanced MJO activity and the developmentof El Ni?o(Kessler andKleeman,2000; Marshall et al.,2016).Besides,the MJO extends further east to the central Pacific during El Ni?o events,which is associated with the warmer SST beneath(Kessler,2001;Tam and Lau,2005).Further study suggests that the lifetime of the MJO is also dependent on the state of ENSO:the MJO propagates faster throughthe Maritime Continent and western Pacific during El Ni?o(Pohl and Matthews,2007).

    Recently,a different type of El Ni?o,characterized by a warm SST anomaly in the central Pacific,has been widelydiscussed(Larkin and Harrison,2005;Ashok et al.,2007). There are many terms to describe this phenomenon,such as“dateline El Ni?o”(Larkin and Harrison,2005),“El Ni?o Modoki”(Ashok et al.,2007),and“central Pacific El Ni?o”(Kao and Yu,2009).In this study,we name the two types of El Ni?o events as“eastern Pacific El Ni?o”(EP El Ni?o)and“central Pacific El Ni?o”(CP El Ni?o),respectively.During EP El Ni?o,SST,precipitation and wind anomalies all display dipolar patterns;whereas,they all display tripole patterns during CP El Ni?o(Ashok et al.,2007;Weng et al., 2007;Kao and Yu,2009).It is important to note that some studies have raised doubt about the independence of CP El Ni?o events(Trenberthand Stepaniak,2001;Trenberth et al., 2002);however,the two types of El Ni?o do seem to exert different influences on both regional climate and global climate via teleconnection(Larkin and Harrison,2005;Feng and Li,2011;Chen et al.,2014).Moreover,recent studies have shown that CP El Ni?o events have occurred more frequently since the beginning of the 1990s,as compared to EP El Ni?o events(Yeh et al.,2009;Zhang et al.,2011).Some studies even suggest that the frequency of CP El Ni?o occurrence will keep on increasing in the 21st century(Kim and Yu,2012).Therefore,it is necessary to examine the different responses of the MJO to the two types of El Ni?o events.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    However,few studies have thus far compared the MJO’s activity between the two types of El Ni?o events,although many have examined the interaction between the MJO and ENSO.Hendon et al.(1999)showed that enhanced MJO activity occurs along with an SST anomaly pattern like CP El Ni?o.Gushchina and Dewitte(2012)demonstrated that the MJO is intensified prior to the peak of EP El Ni?o,while it is increased during the mature and decaying phases of CP El Ni?o.Yuan et al.(2015)furthershowed the seasonal changes ofMJO kineticenergyduringthetwotypesofElNi?oevents. However,these studies mainly focused on comparing MJO intensity during the evolution of the two types of El Ni?o.It remains unclear whether the two types of El Ni?o have different influences on MJO simultaneously—not only on MJO intensity,but also on its eastward propagation.Besides,previous studies have generally used the zonal wind at 850 hPa to describe the MJO,which may be greatly constrained by the underlying surface.

    The purpose of the present work is to explorewhether the MJO’s activity—includingits intensity,eastwardpropagation and active phases—is distinct against the background of the two different types of El Ni?o events.Since the most active MJO eventsoccurin December–February(Wheeler andHendon,2004),we focus on studying the differences during this season,i.e.,borealwinter.Instead of 850-hPazonal wind,we use OLR and 200-hPa velocity potential to depict the MJO. The remainderof the paper is organizedas follows:Section 2 describedthedatasets andmethodsusedin this work.Section 3 presents the impacts on MJO intensity during the two types of El Ni?o winters.Section 4 compares the MJO’s eastward propagation,and conclusions are given in section 5.

    2.Data and methods

    2.1.Data

    The datasets used in this study include:

    (1)Daily NCEP-2 reanalysis horizontal wind data(resolution:2.5°×2.5°)from 1979 to 2012;

    (2)Daily OLR(horizontal resolution:2.5°×2.5°),provided by NOAA,from 1979 to 2012;

    (3)MonthlySST data(resolution:1°×1°),obtainedfrom NOAA,from 1979 to 2012;

    (4)Real-time Multivariate MJO(RMM)index(Wheeler and Hendon,2004),obtained from the Australia Meteorological Bureau(http://www.bom.gov.au/climate/mjo/graphics/ rmm.74toRealtime.txt),from 1979 to 2012.

    Boreal winter in this paper is defined as the period from December to February.For the sake of simplicity,we use the year of December to represent the year for a particular winter.For example,the“1979 winter”indicates the period fromDecember 1979to February1980.All the daily data are dealt to 365 days in each year,which means the data on 29th February in leap years are removed.

    The 30–60-day filtered OLR and 200-hPa velocity potential data are utilized to depict the spatial pattern of the MJO.In particular,the intensity of the MJO is quantified by the variance of these two variables.The RMM index is used to describe the phases of propagation.This index is based on a multivariable EOF analysis of daily OLR,200-hPa and 850-hPa zonal wind anomalies.The principal components of the first two EOFs(RMM1 and RMM2)can be plotted on a phase-spacediagram.Itisgenerallydividedintoeightphases, and each phase corresponds to a particular stage of the MJO life cycle.

    2.2.Methods

    To separate the characteristics of the MJO during the two types of El Ni?o events,the Butterworth bandpass filter and composite analysis are used.An F-test is used to compute the confidence level for the composite of variance anomaly. The degrees of freedom are n-2,where n is the number of cases.

    Following former studies(e.g.,Ashok et al.,2007;Weng et al.,2007),the Ni?o3 index and El Ni?o Modoki index (EMI)are used to classify EP El Ni?oand CP El Ni?o events: Ni?o3 index is defined as the mean SST anomaly averaged over the equatorial eastern Pacific[(5°S–5°N,150°–90°W)]; and

    EMI=SSTAC-0.5SSTAE-0.5SSTAW,(1)

    where SSTAC,SSTAE,and SSTAWrepresent the area-mean SST anomaly,averaged over the central Pacific[(10°S–10°N,165°E–140°W)],eastern Pacific[(15°S–5°N,110°–70°W)]and western Pacific[(10°S–20°N,125°–145°E)],respectively.

    Fig.1.Standardized Ni?o3 index(black line)and EMI(red line)averaged during boreal winter.

    Figure 1 shows the standardized Ni?o3 index and EMI in boreal winter from 1979 to 2011.A typical EP(CP)El Ni?o event is defined when the Ni?o3 index(EMI)is greater than or equal to one standard deviation,which is represented by the dotted line in Fig.1.There are two years(1991 and 2009)that meet the criterion of both indices,and thus they are not taken into consideration in this study.Based on the above criteria,there are three EP El Ni?o years(1982,1986 and 1997)and four CP El Ni?o years(1990,1994,2002 and 2004).

    3.Comparison of MJO intensity during the two types of El Ni?o

    In order to quantify the MJO intensity,three categories of index—cloudiness,dynamical,and combined cloudiness and dynamical—were generalized by Straub(2013).In this study,we utilize OLR dataas the cloudinessindexand uppertropospheric zonal winds as dynamical indices to explore the differences of the MJO in response to the two types of El Ni?o events.The variance of 30–60-day OLR and 200-hPa velocity potential in the tropics are calculated to identify the MJO intensity.

    Figure 2 shows the distribution of the variance anomaly of 30–60-day OLR,and the SST anomaly,which is represented by the contour lines of 1°C and 2°C,during the two types of El Ni?o winters.The differences between EP and CP El Ni?o winters are also presented.In the EP El Ni?o winters(Fig.2a),the negativevarianceanomaly appears over the west of the dateline,including the Indian Ocean and the western Pacific,and the positive one appears over the east of the dateline.The negative center lies over the Maritime Continent,while the positive center lies over the central Pacific (near 130°W),which agrees with the results of Hendon et al. (1999).By contrast,for the CP El Ni?o winters(Fig.2b), the positive anomalies appear over the west of the Maritime Continent and the central Pacific near the dateline.Moreover,the warm SST anomaly corresponds to the enhanced MJO convective anomaly during both types of El Ni?o winters.The difference between EP and CP El Ni?o events(Fig. 2c)is significantly negative from the tropical eastern Indian Ocean to the western Pacific,which exceeds the 99%confidence level.Thus,it can be concluded that the intensity of 30–60-dayOLR fromthe tropicaleasternIndianOceanto the western Pacific is weaker during EP El Ni?o winters,while it is stronger during CP winters.

    Figure 3 shows the variance anomaly of 30–60-day velocity potential at 200 hPa during the two types of El Ni?o winters.The negative variance anomaly occurs over almost the whole of the tropics,and the strongest negative center lies over the eastern Indian Ocean during EP El Ni?o winters (Fig.3a).However,when CP El Ni?o occurs(Fig.3b),three positive centers of variance anomaly appear over the tropical ocean.The strongest two lie over the eastern Indian Ocean and western Pacific,respectively.A weak negative anomalyover the tropical north-central Pacific is also seen.The distinct difference of 30–60-day velocity potential between the two types of El Ni?o winters can be seen in the easternIndian Ocean and western Pacific(Fig.3c).The same conclusion that 30–60-day velocity potential is weakened during EP El Ni?o winters and strengthened during CP El Ni?o winters, can be derived.

    Fig.2.Composite anomalies of 30–60-day OLR variance(units:W2m-4;color-shaded)and SST(units:°C;red contours)during(a)EP El Ni?o winters and(b)CP El Ni?o winters,and(c)the differences in the 30–60-day OLR variance between EP and CP El Ni?o winters(dots indicate regions that are statistically significant at the 99%confidence level).

    Fig.3.As in Fig.2 but for velocity potential(units:10-12m4s-2)at 200 hPa.

    4.Comparison of MJO propagation during the two types of El Ni?o

    4.1.Extent of MJO eastward propagation

    Generally speaking,MJO-related convection emerges over the tropical western Indian Ocean,then weakens over the Maritime Continent,strengthens again over the western Pacific,and finally quickly dies out over the dateline(e.g., Madden and Julian,1971;Yuan et al.,2014).

    To understand the influence of the two types of El Ni?o events on the eastward propagation of MJO-related convection,composite patterns of 30–60-day OLR for each of the eight MJO phases are shown in Figs.4 and 5,based on the RMM index.The intensity and propagation of the MJO are quite different between the two types of El Ni?o events.During EP El Ni?o winters(Fig.4),the MJO emerges over the tropical eastern Indian Ocean,then develops from the Maritime Continent to the western Pacific,and finally weakens over the central Pacific.The convection can spread to the tropical central Pacific(near 120°W).By contrast,during CP El Ni?o winters(Fig.5),the MJO emerges over the western Indian Ocean,and can maintain or even enhance its intensity over the region west of 120°E,which is in agreement with previous studies(Kessler,2001;Tam and Lau,2005). However,thepropagationtendstobeconcentratedtothewest of the dateline,and convection anomalies become greatly reduced to the east of 180°.

    These eastward-propagationfeatures of the MJO are also illustrated by Fig.6,which shows the composite tropical (10°S–10°N)OLR anomalies based on the eight phases of the MJO.During EP El Ni?o winters(Fig.6a),the MJO occurs near 60°E in phase 2.When the 30–60-day convection moves to 120°E in phase 4,it reaches its strongest intensity. It then weakens in phases 5 and 6,and strengthens again in phase 7.Finally,it dies out near 120°W.During CP El Ni?o winters,the MJO starts from the west of 60°E in phase 1.It continuously intensifies from phases 2 to 4,and then weakens and maintains its intensity until 180°.Comparing the extent of eastward propagation,the MJO can spread to 120°W during EP El Ni?o winters and stop propagating near 180°during CP El Ni?o winters.Another difference between EP and CP El Ni?o winters is that the MJO during CP El Ni?o winters tends to have a standing oscillation feature over the eastern Indian Ocean and western Pacific,which is mainly the result of the MJO in 1990[Fig.S1 in Electronic Supplementary Material(ESM)],when this feature of standing oscillation was predominant.

    Therefore,the above results suggest that the two types of El Ni?o may have different impacts on the eastward propagation of the MJO.During EP El Ni?o winters,the abnormally warm sea area is situated in the eastern Pacific,and the MJO can propagate to the eastern Pacific.By contrast,during CP El Ni?o winters,with the SST positive anomaly moving to the central Pacific,the MJO can only propagate to the dateline.

    4.2.Phase occurrences of MJO eastward propagation

    Fig.4.Composite anomalies of 30–60-day OLR(units:W m-2)during EP El Ni?o winters by phase.

    Fig.5.As in Fig.4 but for CP El Ni?o winters(units:W m-2).

    Fig.6.Composite anomalies of 30–60-day OLR(units:W m-2)in the tropics(averaged over 10°S–10°N) during(a)EP El Ni?o winters and(b)CP El Ni?o winters.

    Figure 6 also demonstrates that the phase speed of the MJO displays different features during the two types of El Ni?o winters.During EP El Ni?o,the MJO moves slowly in phases 2 and 3(roughly 0.16°d-1),but rapidly in phases 4 and 5(0.74°d-1).This means that the phase speed of the MJO is significantly slower over the Indian Ocean and faster over the Maritime Continent during EP El Ni?o.However, during CP El Ni?o,the MJO propagates relatively quickly in phases 2 and 3(0.43°d-1),but slowly in phases 4 and 5 (0.21°d-1).These phase speeds are estimated by the longitudes of MJO propagation and corresponding days

    In addition,we have counted the numbers of MJO days and calculated the proportion in each phase during the two types of El Ni?o winters,and compared them with normal winters,i.e.,the winters of both Ni?o3 index and EMI anomalies being lower than one standard deviation(Table 1). Overall,the occurrence distributions in different phases is relatively equal,but slightly more frequent in phases 6 and 7 during normal winters,which accounts for 30%of total occurrence.However,it decreases sharply when El Ni?o occurs,especially during EP events(only 20%).The frequency of MJO occurrenceis relatively high in phases 2 and 3 during EP El Ni?o winters,in which it approaches 35%of the total occurrence.Phases 4 and 5(only 18%)show the least frequent occurrence.In contrast,the MJO occurs more often in phases 4 and 5(nearly 40%)during CP El Ni?o winters,and less frequently in phases 8 and 1(less than 15%).This suggests that the MJO may occur more frequently over the tropical Indian Ocean during EP El Ni?o winters,while it may favor the Maritime Continent during CP El Ni?o winters.

    Table 1.Proportions of different MJO phases during normal winters,EP El Ni?o winters and CP El Ni?o winters(bold numbers indicate the two largest proportions in each column).

    5.Summary and discussion

    The impacts of two types of El Ni?o on the MJO during borealwinterare investigatedin this study.It is foundthatthe characteristicsofMJO activity arequitedifferentbetweenthe two types of El Ni?o.

    The variance of 30–60-day OLR and 200-hPa velocity potential are applied to identify the MJO intensity.Composites of MJO intensity are presented for EP El Ni?o and CP El Ni?o,as wellas theirdifferences.Itis foundthatthestrongest difference occurs between the tropical eastern Indian Ocean and western Pacific.Both variables lead to the conclusion that the intensity of the MJO is weak during EP El Ni?o,but stronger during CP El Ni?o.

    Additionally,the propagation features of MJO-related convection are contrasted between the two types of El Ni?o. The composite of 30–60-day OLR for the eight MJO phases is based on the RMM index.The evolution of the MJOpresents the extent of eastward propagationduring the different types of El Ni?o.For EP El Ni?o,MJO-related convectionemergesovertheeasternIndianOceanandcanpropagate further eastward into the central Pacific(to nearly 120°W). DuringCP El Ni?o winters,MJO-relatedconvectionemerges over the western Indian Ocean and can only propagate to the dateline,and there are no clear convection anomalies to the east of 180°.The implication of this finding is that the propagation extent of the MJO may be bounded to the abnormally warm area over the tropical Pacific.

    We also find that the frequency in the eight phases of the MJO differs between the two types of El Ni?o.In general,MJO-related convection appears more frequently over the westernPacific duringborealwinter(Lafleuret al.,2015). However,the occurrence of MJO-related convection is relatively high(nearly 35%)over the Indian Ocean(phases 2 and 3),while it is low(only 18%)over the Maritime Continent (phases 4 and 5)during EP El Ni?o.During CP El Ni?o winters,the most frequent occurrence lies over the Maritime Continent(nearly40%)and the least frequentoccurrencelies over the Western Hemisphere(less than 15%).

    This study does not investigate why there are differences in MJO intensity,propagation and occurrence against the background of the two types of El Ni?o.Our hypothesis, however,is that the intensity of the MJO may be linked to the anomalous convection.During EP El Ni?o winters,there are positive OLR anomalies over the eastern Indian Ocean and western Pacific(Fig.S2 in ESM),which may weaken the 30–60-dayconvection.During EP El Ni?o winters,the enhanced convection appears over the tropical eastern Pacific,which supports the eastward propagation of 30–60-day convection. However,during CP El Ni?o winters,the enhanced convection moves to the central Pacific,which limits the eastward propagation.In addition to these possible effects of convection on MJO intensity and propagation,MJO occurrencemay also be affected by convection.Pohl and Matthews(2007) hypothesized that the moisture conditions may influence the propagation speed of the MJO.In this study,during EP El Ni?o,humidity in the lower troposphere is higher over the western Indian Ocean,and lower over the Maritime Continent(Fig.S3 in ESM).According to the hypothesis of Pohl and Matthews(2007),these moisture anomalies may induce slower propagation speeds over the Indian Ocean and higher speeds over the Maritime Continent,thus resulting in greater andless occurrenceoverthesetworegions,respectively.During CP El Ni?o,however,the humidity anomalies are much weaker in the Indian Ocean and Maritime Continent,implying that other mechanisms may be at work.In summary,the mechanisms responsible for the differences in MJO intensity, propagationandoccurrencebetweenthetwo typesof El Ni?o should be further studied.

    Acknowledgements.The authors greatly appreciate the valuable and detailed comments of the three anonymous reviewers. This research was jointly supported by National Natural Science Foundation of China(Grant No.41530530)and the National Key Basic Research and Development Projects of China(Grant No. 2014CB953901).

    Electronic supplementary material:Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00376-016-5272-2.

    REFERENCES

    Ashok,K.,S.K.Behera,S.A.Rao,H.Y.Weng,and T.Yamagata,2007:El Ni?o Modoki and its possible teleconnection. J.Geophys.Res.:Oceans,112,C11007.

    Chen,Z.S.,Z.P.Wen,R.G.Wu,P.Zhao,and J.Cao,2014:Influence of two types of El Ni?os on the East Asian climate during boreal summer:A numerical study.Climate Dyn.,43, 469–481.

    Feng,J.,and J.P.Li,2011:Influence of El Ni?o Modoki on spring rainfall over south China.J.Geophys.Res.:Atmos., 116,D13102.

    Gushchina,D.,and B.Dewitte,2012:Intraseasonal tropical atmospheric variability associated with the two flavors of El Ni?o. Mon.Wea.Rev.,140,3669–3681.

    Hendon,H.H.,C.D.Zhang,and J.D.Glick,1999:Interannual variation of the Madden–Julian oscillation during austral summer.J.Climate,12,2538–2550.

    Hendon,H.H.,M.C.Wheeler,and C.D.Zhang,2007:Seasonal dependence of the MJO-ENSO relationship.J.Climate,20, 531–543.

    Kao,H.Y.,and J.Y.Yu,2009:Contrasting eastern-Pacific and central-Pacific types of ENSO.J.Climate,22,615–632.

    Kessler,W.S.,2001:EOF representations of the Madden–Julian Oscillation and its connection with ENSO.J.Climate,14, 3055–3061.

    Kessler,W.S.,and R.Kleeman,2000:Rectification of the Madden–Julian Oscillation into the ENSO cycle.J.Climate, 13,3560–3575.

    Kim,S.T.,and J.Y.Yu,2012:The two types of ENSO in CMIP5 models.Geophys.Res.Lett.,39,L11704.

    Knutson,T.R.,K.M.Weickmann,and J.E.Kutzbach,1986: Global-scale intraseasonal oscillations of outgoing longwave radiation and 250 mb zonal wind during Northern Hemisphere summer.Mon.Wea.Rev.,114,605–623.

    Lafleur,D.M.,B.S.Barrett,and G.R.Henderson,2015:Some climatological aspects of the Madden-Julian Oscillation(MJO). J.Climate,28,6039–6053.

    Larkin,N.K.,and D.E.Harrison,2005:On the definition of El Ni?o and associated seasonal average U.S.weather anomalies.Geophys.Res.Lett.,32,L13705.

    Lau,K.M.,and P.H.Chan,1986:The 40–50 day oscillation and the El Ni?o/Southern Oscillation:A new perspective.Bull. Amer.Meteor.Soc.,67,533–534.

    Li,C.Y.,and Y.P.Zhou,1994:Relationship between intraseasonal oscillation in the tropical atmosphere and ENSO.Acta Geophysica Sinica,37,17–26.(in Chinese)

    Madden,R.A.,and P.R.Julian,1971:Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific.J.Atmos. Sci.,28,702–708.

    Madden,R.A.,and P.R.Julian,1972:Description of global-scale circulation cells in the tropics with a 40–50 day period.J.Atmos.Sci.,29,1109–1123.

    Madden,R.A.,and P.R.Julian,1994:Observations of the 40–50-day tropical oscillation—A review.Mon.Wea.Rev.,122,814–837.

    Marshall,A.G.,H.H.Hendon,and G.M.Wang,2016:On the role of anomalous ocean surface temperatures for promoting the record Madden–Julian Oscillation in March 2015.Geophys.Res.Lett.,43,472–481.

    Pohl,B.,and A.J.Matthews,2007:Observed changes in the lifetime and amplitude of the Madden-Julian Oscillation associated with interannual ENSO sea surface temperature anomalies.J.Climate,20,2659–2674.

    Straub,K.H.,2013:MJO initiation in the real-time multivariate MJO index.J.Climate,26,1130–1151.

    Tam,C.Y.,and N.C.Lau,2005:Modulation of the Madden–Julian Oscillation by ENSO:Inferences from observations and GCM simulations.J.Meteor.Soc.Japan,83,727–743.

    Trenberth,K.E.,and D.P.Stepaniak,2001:Indices of El Ni?o evolution.J.Climate,14,1697–1701.

    Trenberth,K.E.,D.P.Stepaniak,and J.M.Caron,2002:Interannual variations in the atmospheric heat budget.J.Geophys. Res.,107(D8),AAC4-1-ACC4-15.

    Weickmann,K.M.,G.R.Lussky,and J.E.Kutzbach,1985:Intraseasonal(30–60 day)fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon.Wea.Rev.,113,941–961.

    Weng,H.Y.,K.Ashok,S.K.Behera,S.A.Rao,and T.Yamagata, 2007:Impacts of recent El Ni?o Modoki on dry/wet conditions in the Pacific Rim during boreal summer.Climate Dyn., 29,113–129.

    Wheeler,M.C.,and H.H.Hendon,2004:An all-season real-time multivariate MJO index:Development of an index for monitoring and prediction.Mon.Wea.Rev.,132,1917–1932.

    Yasunari,T.,1980:A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuations during the summer monsoon over India.J.Meteor.Soc.Japan,58,225–229.

    Yeh,S.W.,J.S.Kug,B.Dewitte,M.H.Kwon,B.P.Kirtman,and F.F.Jin,2009:El Ni?o in a changing climate.Nature,461, 511–514.

    Yuan,Y.,C.Y.Li,and J.Ling,2015:Different MJO activities between EP El Ni?o and CP El Ni?o.Scientia Sinica Terrae,45, 318–334.(in Chinese)

    Yuan,Y.,H.Yang,and C.Y.Li,2014:Possible influences of the tropical Indian Ocean dipole on the eastward propagation of MJO.Journal of Tropical Meteorology,20,173–180.

    Zhang,C.D.,2005:Madden-Julian oscillation.Rev.Geophys.,43, RG2003.

    Zhang,W.J.,F.F.Jin,J.P.Li,and H.L.Ren,2011:Contrasting impacts of two-type El Ni?o over the western North Pacific during boreal autumn.J.Meteor.Soc.Japan,89,563–569.

    Pang,B.,Z.S.Chen,Z.P.Wen,and R.Y.Lu,2016:Impacts of two types of El Ni?o on the MJO during boreal winter.Adv.Atmos.Sci.,33(8),979–986,

    10.1007/s00376-016-5272-2.

    17 December 2015;revised 23 March 2016;accepted 12 April 2016)

    Zhiping WEN

    Email:eeswzp@mail.sysu.edu.cn

    亚洲精品乱码久久久v下载方式| 免费观看精品视频网站| 日韩欧美一区视频在线观看 | 校园人妻丝袜中文字幕| 毛片女人毛片| 精品亚洲乱码少妇综合久久| 国产伦在线观看视频一区| 亚洲国产高清在线一区二区三| 免费高清在线观看视频在线观看| 一级片'在线观看视频| 免费大片18禁| 五月天丁香电影| 国产精品久久久久久久久免| 久久精品国产亚洲av天美| 中国美白少妇内射xxxbb| 国产午夜福利久久久久久| 精品久久久久久久久亚洲| 又粗又硬又长又爽又黄的视频| 少妇猛男粗大的猛烈进出视频 | 午夜免费观看性视频| 久久久久久久久久久免费av| 中文欧美无线码| 天堂√8在线中文| av国产久精品久网站免费入址| 超碰97精品在线观看| 天堂网av新在线| 欧美激情久久久久久爽电影| 男的添女的下面高潮视频| www.色视频.com| 欧美另类一区| 69人妻影院| 男人舔奶头视频| 午夜激情欧美在线| 国产精品国产三级国产av玫瑰| 精品国内亚洲2022精品成人| 自拍偷自拍亚洲精品老妇| 中文天堂在线官网| 永久免费av网站大全| 国产真实伦视频高清在线观看| av免费在线看不卡| 亚洲精品乱久久久久久| 青春草亚洲视频在线观看| 国模一区二区三区四区视频| 国产成人福利小说| 青青草视频在线视频观看| av在线播放精品| 国产免费视频播放在线视频 | 久久精品熟女亚洲av麻豆精品 | 久久久久久九九精品二区国产| 日韩精品青青久久久久久| 哪个播放器可以免费观看大片| 美女国产视频在线观看| 舔av片在线| 亚洲av免费在线观看| 99热网站在线观看| 美女黄网站色视频| 麻豆国产97在线/欧美| 中文精品一卡2卡3卡4更新| 99久久中文字幕三级久久日本| 久久久久久伊人网av| 日韩三级伦理在线观看| 91午夜精品亚洲一区二区三区| 精品久久久久久久末码| 禁无遮挡网站| 色视频www国产| 丝袜喷水一区| 日韩一区二区视频免费看| 可以在线观看毛片的网站| 午夜视频国产福利| 亚洲av中文字字幕乱码综合| 成年版毛片免费区| 99视频精品全部免费 在线| 免费无遮挡裸体视频| 精品不卡国产一区二区三区| 国产午夜福利久久久久久| 在线天堂最新版资源| 少妇熟女aⅴ在线视频| 成人毛片a级毛片在线播放| 看非洲黑人一级黄片| 精华霜和精华液先用哪个| www.色视频.com| 3wmmmm亚洲av在线观看| 美女国产视频在线观看| 亚洲欧美日韩卡通动漫| 高清欧美精品videossex| 成年人午夜在线观看视频 | 亚洲精品国产av成人精品| 国产乱来视频区| 尤物成人国产欧美一区二区三区| 大又大粗又爽又黄少妇毛片口| 亚洲伊人久久精品综合| 成人毛片60女人毛片免费| 寂寞人妻少妇视频99o| 亚洲成色77777| 亚洲av日韩在线播放| 国内揄拍国产精品人妻在线| av免费在线看不卡| 一个人免费在线观看电影| 国产成人福利小说| 亚洲aⅴ乱码一区二区在线播放| 国产综合精华液| 在线 av 中文字幕| 成年av动漫网址| 国产欧美日韩精品一区二区| 国产黄片美女视频| 日日啪夜夜撸| 免费电影在线观看免费观看| 亚洲内射少妇av| av在线天堂中文字幕| 在线观看美女被高潮喷水网站| 亚洲自偷自拍三级| 国产精品日韩av在线免费观看| 国产av国产精品国产| 亚洲va在线va天堂va国产| 2021少妇久久久久久久久久久| 99久国产av精品| 丝袜喷水一区| 特级一级黄色大片| 亚洲成人av在线免费| 国产熟女欧美一区二区| 精品一区二区三区人妻视频| 午夜福利高清视频| 亚洲精品久久久久久婷婷小说| 五月伊人婷婷丁香| 丰满人妻一区二区三区视频av| 一级二级三级毛片免费看| 免费观看性生交大片5| 国产淫片久久久久久久久| 99久久精品国产国产毛片| 久久久久久久久久久免费av| ponron亚洲| 波野结衣二区三区在线| 你懂的网址亚洲精品在线观看| 亚洲欧美精品自产自拍| 精品久久久久久久久亚洲| 亚洲av成人av| 美女内射精品一级片tv| 亚洲欧美中文字幕日韩二区| 国产精品国产三级国产专区5o| av线在线观看网站| 亚洲在线自拍视频| 大香蕉久久网| 国内精品美女久久久久久| 深夜a级毛片| 国产精品一区二区三区四区久久| 嫩草影院精品99| 国产综合精华液| av国产久精品久网站免费入址| 在线免费观看不下载黄p国产| 欧美潮喷喷水| av网站免费在线观看视频 | 免费观看精品视频网站| 久久99热这里只频精品6学生| 欧美+日韩+精品| 国产成人精品久久久久久| 日韩欧美精品v在线| 日韩精品有码人妻一区| 99久久中文字幕三级久久日本| 美女大奶头视频| 韩国av在线不卡| 亚洲熟妇中文字幕五十中出| 国产成人精品婷婷| 久久6这里有精品| 亚洲成人久久爱视频| 麻豆av噜噜一区二区三区| 欧美xxxx性猛交bbbb| 蜜桃亚洲精品一区二区三区| 久久久久久久国产电影| 亚洲欧美成人精品一区二区| 一个人看的www免费观看视频| 亚洲第一区二区三区不卡| 国产免费福利视频在线观看| 哪个播放器可以免费观看大片| 男人舔女人下体高潮全视频| 亚洲人成网站高清观看| 91精品一卡2卡3卡4卡| 肉色欧美久久久久久久蜜桃 | 久久鲁丝午夜福利片| 夜夜看夜夜爽夜夜摸| 亚洲av国产av综合av卡| 国内揄拍国产精品人妻在线| 一级片'在线观看视频| 两个人视频免费观看高清| 韩国av在线不卡| 成人欧美大片| 精品国产一区二区三区久久久樱花 | 联通29元200g的流量卡| 欧美不卡视频在线免费观看| 亚洲av中文av极速乱| 网址你懂的国产日韩在线| 亚洲成人一二三区av| 一级av片app| 精品久久久久久久人妻蜜臀av| 欧美激情久久久久久爽电影| 国产女主播在线喷水免费视频网站 | 搡女人真爽免费视频火全软件| 免费不卡的大黄色大毛片视频在线观看 | 六月丁香七月| 亚洲精品乱码久久久v下载方式| 免费观看av网站的网址| 男女边吃奶边做爰视频| 91精品国产九色| 一级毛片黄色毛片免费观看视频| 国产精品日韩av在线免费观看| 男人狂女人下面高潮的视频| .国产精品久久| 日本猛色少妇xxxxx猛交久久| 三级国产精品片| 国产毛片a区久久久久| 国产成人免费观看mmmm| 久久久久精品性色| 最近手机中文字幕大全| 亚洲国产精品国产精品| 国产老妇女一区| 亚洲精品亚洲一区二区| 国产一区二区亚洲精品在线观看| 日本一二三区视频观看| 老女人水多毛片| 亚洲成色77777| 国产黄色免费在线视频| 青春草视频在线免费观看| 赤兔流量卡办理| 亚洲成人精品中文字幕电影| 国产一区亚洲一区在线观看| 一个人免费在线观看电影| 久久久色成人| 如何舔出高潮| 少妇熟女aⅴ在线视频| 国产精品无大码| 国产亚洲午夜精品一区二区久久 | 日日啪夜夜爽| 日韩欧美国产在线观看| 少妇高潮的动态图| 夫妻午夜视频| 国产亚洲av片在线观看秒播厂 | 最近手机中文字幕大全| 精品少妇黑人巨大在线播放| 国产av不卡久久| 亚洲av电影不卡..在线观看| 街头女战士在线观看网站| 亚洲精品国产av成人精品| 亚洲在久久综合| 国产精品一区二区三区四区久久| 极品少妇高潮喷水抽搐| 日韩欧美精品v在线| 精品一区二区三区视频在线| 亚洲成色77777| 国产精品精品国产色婷婷| 观看免费一级毛片| 最新中文字幕久久久久| 午夜激情欧美在线| 国产免费福利视频在线观看| 69av精品久久久久久| 看黄色毛片网站| 亚洲综合色惰| 一级av片app| 精品人妻偷拍中文字幕| 六月丁香七月| 白带黄色成豆腐渣| 中国国产av一级| 成人综合一区亚洲| 日日撸夜夜添| 免费看av在线观看网站| 男女边摸边吃奶| 精品久久久精品久久久| 成人一区二区视频在线观看| 亚洲自偷自拍三级| 伊人久久国产一区二区| 免费看a级黄色片| av女优亚洲男人天堂| 夫妻性生交免费视频一级片| 国产免费视频播放在线视频 | 一区二区三区免费毛片| 国产亚洲精品av在线| 国产男人的电影天堂91| 亚洲图色成人| eeuss影院久久| 国产中年淑女户外野战色| 你懂的网址亚洲精品在线观看| 成人午夜高清在线视频| kizo精华| 狂野欧美激情性xxxx在线观看| 成人美女网站在线观看视频| 国产精品一及| 亚洲av在线观看美女高潮| 久久99蜜桃精品久久| 午夜爱爱视频在线播放| 夜夜看夜夜爽夜夜摸| 在线观看免费高清a一片| 特级一级黄色大片| 我要看日韩黄色一级片| 青春草视频在线免费观看| 亚洲av男天堂| 99久久人妻综合| 亚洲精品成人久久久久久| 国产精品国产三级国产专区5o| 国产免费福利视频在线观看| 午夜精品在线福利| 在线天堂最新版资源| 国精品久久久久久国模美| 亚洲无线观看免费| 久久精品综合一区二区三区| av专区在线播放| 亚洲精品乱久久久久久| 99热这里只有精品一区| 自拍偷自拍亚洲精品老妇| 国产黄色视频一区二区在线观看| 国产高潮美女av| 亚洲国产最新在线播放| 伊人久久精品亚洲午夜| 欧美性猛交╳xxx乱大交人| 天堂av国产一区二区熟女人妻| 亚洲欧美成人综合另类久久久| 国产视频内射| 国产黄色免费在线视频| 欧美xxxx性猛交bbbb| 午夜福利网站1000一区二区三区| 国产淫片久久久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 国产av不卡久久| 免费黄频网站在线观看国产| 亚州av有码| 免费黄网站久久成人精品| 免费观看a级毛片全部| 色视频www国产| 久久久午夜欧美精品| 麻豆成人午夜福利视频| 我的老师免费观看完整版| 禁无遮挡网站| 三级国产精品欧美在线观看| 在现免费观看毛片| 久久久久国产网址| 亚洲精品亚洲一区二区| 高清视频免费观看一区二区 | 欧美日韩视频高清一区二区三区二| 建设人人有责人人尽责人人享有的 | 人妻一区二区av| av播播在线观看一区| 在线观看美女被高潮喷水网站| 亚洲国产最新在线播放| 国产乱人偷精品视频| 精品一区二区三区人妻视频| 男女国产视频网站| 国产久久久一区二区三区| 亚洲精品自拍成人| 亚洲婷婷狠狠爱综合网| 久久久精品免费免费高清| 国产一区二区在线观看日韩| 好男人在线观看高清免费视频| av在线亚洲专区| 亚洲精品乱久久久久久| 国产69精品久久久久777片| 欧美日韩一区二区视频在线观看视频在线 | 岛国毛片在线播放| 五月玫瑰六月丁香| 晚上一个人看的免费电影| 国产免费福利视频在线观看| 日韩成人av中文字幕在线观看| 深夜a级毛片| 成年人午夜在线观看视频 | 自拍偷自拍亚洲精品老妇| 亚洲综合精品二区| 中国美白少妇内射xxxbb| 久久久精品欧美日韩精品| 日韩欧美一区视频在线观看 | 亚洲精华国产精华液的使用体验| 亚洲最大成人av| 亚洲欧美成人精品一区二区| 午夜亚洲福利在线播放| 黄色配什么色好看| 嫩草影院新地址| 内射极品少妇av片p| 校园人妻丝袜中文字幕| 大香蕉久久网| 欧美日韩国产mv在线观看视频 | 麻豆成人av视频| 最近视频中文字幕2019在线8| 久久久欧美国产精品| 国产高清国产精品国产三级 | 精品国内亚洲2022精品成人| 成人特级av手机在线观看| 免费看不卡的av| 欧美性猛交╳xxx乱大交人| 亚洲性久久影院| 深爱激情五月婷婷| 99re6热这里在线精品视频| 校园人妻丝袜中文字幕| 白带黄色成豆腐渣| 久久韩国三级中文字幕| 免费av不卡在线播放| 18禁在线无遮挡免费观看视频| 在线a可以看的网站| videossex国产| 国产有黄有色有爽视频| 国内精品宾馆在线| 日韩人妻高清精品专区| 久久精品国产亚洲网站| 日产精品乱码卡一卡2卡三| 久久精品久久久久久久性| 日本色播在线视频| 狠狠精品人妻久久久久久综合| 欧美bdsm另类| 国产大屁股一区二区在线视频| 久久久久久久久久黄片| 99久久精品一区二区三区| 日韩强制内射视频| 特级一级黄色大片| 欧美成人a在线观看| 插逼视频在线观看| 99久久精品国产国产毛片| 永久免费av网站大全| 在线免费十八禁| 亚洲精品日韩在线中文字幕| 国产精品久久久久久久久免| 色综合亚洲欧美另类图片| 欧美高清性xxxxhd video| 免费播放大片免费观看视频在线观看| 日日啪夜夜爽| 亚洲内射少妇av| 亚洲精华国产精华液的使用体验| av在线播放精品| 岛国毛片在线播放| 欧美日韩国产mv在线观看视频 | av福利片在线观看| 男人和女人高潮做爰伦理| 久久热精品热| 男人狂女人下面高潮的视频| 久久久成人免费电影| 别揉我奶头 嗯啊视频| 97超视频在线观看视频| 80岁老熟妇乱子伦牲交| 久久久精品94久久精品| 国产精品99久久久久久久久| 一个人观看的视频www高清免费观看| 国产成人精品福利久久| 免费观看的影片在线观看| 两个人的视频大全免费| 秋霞在线观看毛片| 久久国产乱子免费精品| 国产在视频线在精品| 国产成人精品婷婷| 久久久久免费精品人妻一区二区| 一个人观看的视频www高清免费观看| 国产av码专区亚洲av| 在现免费观看毛片| 2021天堂中文幕一二区在线观| 欧美极品一区二区三区四区| 国产一区亚洲一区在线观看| 亚洲精品一二三| 午夜亚洲福利在线播放| 人体艺术视频欧美日本| 最近的中文字幕免费完整| 国产精品福利在线免费观看| 国产在线一区二区三区精| 亚洲国产欧美在线一区| 成年女人在线观看亚洲视频 | 色视频www国产| 欧美日韩一区二区视频在线观看视频在线 | 搞女人的毛片| 亚洲国产欧美人成| 欧美一级a爱片免费观看看| 3wmmmm亚洲av在线观看| 免费黄色在线免费观看| 老司机影院毛片| 久久久国产一区二区| 别揉我奶头 嗯啊视频| 91av网一区二区| 精品人妻熟女av久视频| 国产成人精品久久久久久| 成人无遮挡网站| 黄色一级大片看看| 欧美日韩视频高清一区二区三区二| 看黄色毛片网站| 麻豆国产97在线/欧美| 国产大屁股一区二区在线视频| 国产一区二区在线观看日韩| 亚洲精品中文字幕在线视频 | 久久99蜜桃精品久久| 国产视频内射| 国产av在哪里看| 日韩一区二区三区影片| 日韩av不卡免费在线播放| 狂野欧美白嫩少妇大欣赏| 大话2 男鬼变身卡| 亚洲欧美一区二区三区国产| 97人妻精品一区二区三区麻豆| 中文在线观看免费www的网站| 久久精品综合一区二区三区| 大香蕉久久网| 在线免费十八禁| av免费观看日本| 丝袜喷水一区| 国产精品女同一区二区软件| 夫妻性生交免费视频一级片| 51国产日韩欧美| 少妇丰满av| 国产精品麻豆人妻色哟哟久久 | 久久久久久久久久久免费av| 好男人在线观看高清免费视频| 中文欧美无线码| videos熟女内射| 久久久久久国产a免费观看| 久久久久国产网址| 男人爽女人下面视频在线观看| 免费高清在线观看视频在线观看| 内地一区二区视频在线| 国产亚洲午夜精品一区二区久久 | 国产一区二区在线观看日韩| 中文字幕久久专区| av在线播放精品| 大话2 男鬼变身卡| 国产精品久久久久久久久免| xxx大片免费视频| 熟妇人妻久久中文字幕3abv| 大香蕉97超碰在线| 日本与韩国留学比较| 午夜久久久久精精品| 噜噜噜噜噜久久久久久91| 免费av不卡在线播放| 狂野欧美白嫩少妇大欣赏| 成人国产麻豆网| 日韩欧美一区视频在线观看 | 一区二区三区高清视频在线| 日本黄色片子视频| 97超视频在线观看视频| 特级一级黄色大片| 国产精品嫩草影院av在线观看| 日韩欧美精品v在线| 一级爰片在线观看| 亚洲av一区综合| 精品熟女少妇av免费看| 国产69精品久久久久777片| 美女黄网站色视频| 舔av片在线| 欧美区成人在线视频| 狂野欧美白嫩少妇大欣赏| 草草在线视频免费看| 美女被艹到高潮喷水动态| 亚洲aⅴ乱码一区二区在线播放| 国产女主播在线喷水免费视频网站 | 91久久精品电影网| 晚上一个人看的免费电影| 高清av免费在线| 欧美不卡视频在线免费观看| 51国产日韩欧美| www.色视频.com| 亚洲国产日韩欧美精品在线观看| 丰满少妇做爰视频| 国产亚洲5aaaaa淫片| 精品人妻一区二区三区麻豆| 噜噜噜噜噜久久久久久91| 九九在线视频观看精品| 亚洲成人一二三区av| 中文精品一卡2卡3卡4更新| 人妻制服诱惑在线中文字幕| 国产片特级美女逼逼视频| 男女下面进入的视频免费午夜| 日韩视频在线欧美| 国精品久久久久久国模美| 国产永久视频网站| 欧美3d第一页| 黑人高潮一二区| 久久久久国产网址| 51国产日韩欧美| 亚洲av男天堂| 内射极品少妇av片p| av女优亚洲男人天堂| 亚洲av成人精品一二三区| 欧美高清成人免费视频www| 亚洲精品国产av成人精品| 亚洲精品日韩av片在线观看| 美女被艹到高潮喷水动态| 性插视频无遮挡在线免费观看| 亚洲激情五月婷婷啪啪| 国产久久久一区二区三区| 听说在线观看完整版免费高清| 欧美区成人在线视频| 一级av片app| 国产亚洲午夜精品一区二区久久 | 国产精品国产三级国产av玫瑰| 十八禁网站网址无遮挡 | 久久久久精品久久久久真实原创| 看黄色毛片网站| 午夜福利视频1000在线观看| av国产免费在线观看| 精品久久久久久久人妻蜜臀av| 日韩欧美精品免费久久| 亚洲精品日韩av片在线观看| 秋霞伦理黄片| 亚洲综合精品二区| eeuss影院久久| 国产又色又爽无遮挡免| 18禁裸乳无遮挡免费网站照片| 国产 一区精品| 国产淫语在线视频| 欧美日韩国产mv在线观看视频 | 日产精品乱码卡一卡2卡三| 99热这里只有是精品50| 天美传媒精品一区二区| 日韩人妻高清精品专区| 丝袜喷水一区| 欧美激情在线99| 日产精品乱码卡一卡2卡三| 夜夜爽夜夜爽视频| 亚洲婷婷狠狠爱综合网| 精品人妻视频免费看| 啦啦啦韩国在线观看视频| av国产久精品久网站免费入址| 久久国产乱子免费精品| 赤兔流量卡办理| 亚洲av免费高清在线观看| 婷婷六月久久综合丁香| 搞女人的毛片| 少妇人妻精品综合一区二区| 日韩大片免费观看网站|