• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In vitro antiplasmodial and antioxidant activities of bisbenzylisoquinoline alkaloids from Alseodaphne corneri Kosterm

    2016-11-14 07:38:30AzeanaZahariAbdulwaliAblatYasodhaSivasothyJamaludinMohamadMuhammadChoudharyKhalijahAwang

    Azeana Zahari, Abdulwali Ablat, Yasodha Sivasothy, Jamaludin Mohamad, Muhammad I. Choudhary, Khalijah Awang*

    1Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

    2Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

    3H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi - 75270, Pakistan

    In vitro antiplasmodial and antioxidant activities of bisbenzylisoquinoline alkaloids from Alseodaphne corneri Kosterm

    Azeana Zahari1, Abdulwali Ablat2, Yasodha Sivasothy1, Jamaludin Mohamad2, Muhammad I. Choudhary3, Khalijah Awang1*

    1Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

    2Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

    3H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi - 75270, Pakistan

    Accepted 15 March 2016

    Available online 20 April 2016

    Bisbenzylisoquinoline

    Laurotetanine

    Norstephasubine

    Antiplasmodial

    Antioxidant

    Oxidative stress

    Objective: To study antiplasmodial and antioxidant activities of the isolation of alkaloids from the active dichloromethane extract of Alseodaphne corneri. Methods: Phytochemical studies of the crude extract led to the isolation of six alkaloids using recycle high performance liquid chromatography and preparative thin layer chromatography. The antiplasmodial activity of the isolated compounds was evaluated usingthe histidine-rich protein II assay. The isolated alkaloids were also tested for their antioxidant activity using three diff erent assays; DPPH,ferric reducing ability of plasma and metal chelating assays. Results: Malaria infection caused the formation of free radicals which subsequently led to oxidative stress and apoptosis. The antioxidant properties of the alkaloids under investigation revealed that in addition to the antiplasmodial activity, the alkaloids could also prevent oxidative stress. (+)-laurotetanine and (+)-norstephasubine exhibited strong antiplamodial activities with IC50values of 0.189 and 0.116 μM, respectively. Conclusions: Interestingly, the two most potent compounds that exhibit antiplasmodial activity also exhibit good antioxidant activities. The crude dichloromethane extract and the isolated compounds exert substantial antiplasmodial and antioxidative activities which in turn suppress oxidative stress and cause less damage to the host.

    1. Introduction

    In modern world, vector-borne diseases still pose a great threat to human health. Those from mosquitoes have killed millions of human beings every year. Malaria is one of the serious vectorborne diseases that people can catch after bitten by Anopheles mosquitoes that are infected with parasites called Plasmodium. Four different types of Plasmodium [Plasmodium Falciparum (P. falciparum), Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae] affect humans. According to the World Health Organization[1], malaria is presently considered endemic and has caused approximately 198 million infections each year especially in developing countries, with more than 584 000 deaths in 2013. In Malaysia, 3 850 malaria cases have been reported with 14 deaths in the same year[2]. Plasmodium knowlesi followed by P. falciparum are recognized as the main cause of malaria in Malaysia[3,4]. Although the malaria rate has decreased worldwide, however, the resistance to drug therapy has increased. Chloroquine resistant was first reported in Peninsular Malaysia as early as 1963[2]. Present drugs,artemisinin and chloroquine, have become ineff ective because of the occurrence detected in 4 countries, Cambodia, Myanmar, Thailand and Vietnam that are resistant to P. falciparum[1].

    Plasmodium must acquire nutrients from the environment (host)and convert it into other molecules or energy. This energy will eventually be used for survival and the reproduction of the parasites. The Plasmodium spp. requires amino acids for the synthesis of their proteins from the host or through the digestion of host hemoglobin. Growing substantial evidences have shown that malaria arises as a result of free radical generation from reactive oxygen species (ROS). Generation of ROS which induces oxidative stress has played an important role in the development of systematic complication in hosts caused by malaria infection[5,6]. Wide varieties of compounds with synthetic antioxidative properties have been used to reduce ROS formation and protect DNA, lipid and protein damage against oxidative stress. The preference of natural products is becoming signifi cant due to the awareness of the public on the negative side effects caused by synthetic drugs[7]. Therefore, natural products could provide a template molecule which in turn leads to producing eff ective antimalarial drugs. The combination of drugs that possess diff erent activities, artemisinin (antimalarial) and metalloporphyrins(oxidizing reagents) acting synergistically on strains of P. falciparum,has been reported[8]. It is known that this synergism improves the survival rates, reduces the development of resistance and might decrease the transmission of drug resistant parasites[9]. Thus, a single drug that can possess both antiplasmodial and antioxidant activities simultaneously suppressing malaria, might be a better choice compared to treatment with multiple drugs.

    The genus Alseodaphne belongs to the Lauraceae family which is widely distributed from Yunan to West Malaysia, Sri Lanka and Burma. About 62 species have been identified till present,which include trees or shrubs whereby 20 species are known to occur in Malaysia. Alseodaphne is locally known as ‘Medang’. The plants of this genus have been used as furniture, and to build boats and houses. Alseodaphne corneri (A. corneri) is a small tree,with about 6 m in height. Terminal bud is covered with many glabrous scales. The twigs are stout and grey in colour with prominent leaf scars[10]. This genus is a rich source of isoquinoline alkaloids particularly bisbenzylisoquinoline (BBIQ) alkaloids that exhibit a wide range of pharmacological activities such as antiinfl ammatory, antibacterial and vasorelaxant[11,12]. Most of BBIQ have been isolated from families Menispermaceae, Berberidaceae,Monimaceae and Ranunculaceae plants[13]. Our continuing activities on antiplasmodial screening of Malaysian plants have revealed that dichloromethane (CH2Cl2) bark extracts of A. corneri exhibited promising antiplasmodial activity (IC50= 2.78 μg/mL)[14,15]. Hence,in this study, antiplasmodial and antioxidant activities of the isolation of alkaloids from the active extract was explored.

    2. Materials and methods

    2.1. Instruments

    Spectra were recorded using the following instruments; UV,Shimadzu UV-250, UV-Visible spectrometer; IR, Perkin Elmer 1600; NMR, AVN BRUKER with CDCl3as the solvent to obtain the 400 MHz proton and 100 MHz carbon spectra. Mass spectra were obtained using on Agilent technologies 6530 Accurate-Mass Q-TOF liquid chromatography/mass spectrometry, with ZORBAX Eclipse XDB-C18 Rapid Resolution HT 4.6 mm i.d. × 50 mm × 1.8 μm column. All solvents, except those used for bulk extraction were AR grade. Column chromatography separations were conducted by using Merck silica gel 60 (230-400 mesh) and silica gel 60 F254for thin layer chromatography (TLC) monitoring. Recycle high performance liquid chromatography was performed on LC-908WC60. Chromatographic analysis and separations were performed on a JAIGEL GS320 (21.5 mm internal diameter, 500 mm L, 13 mm)size exclusion column using methanol (MeOH) as the solvent. Glass and aluminium supported silica gel 60 F254plates were used for TLC. TLC spots were visualized under UV light (254 nm and 365 nm) followed by spraying with Dragendroff ’s reagent for alkaloid detection.

    2.2. Plant material

    The bark of A. corneri Kosterm was collected from Hutan Simpan Kenderong, Gerik, Perak. The plant specimen was identified by Eng and Nor and a voucher specimen (KL5641) of this plant was deposited at the Herbarium of the Department of Chemistry,University of Malaya, Kuala Lumpur, Malaysia.

    2.3. Extraction and separation

    Plant extraction was carried out by cold percolation. Dried grounded bark of A. corneri (2.0 kg) was fi rst defatted with hexane(17 L) for three days at room temperature. Then, the hexane extract was fi lters and dried on the rotary evaporator. The residues were dried and then moistened with 25% ammonia solution and left for 2 h. The 40.0 g crude CH2Cl2extract of alkaloids was subjected to column chromatography using silica gel (0.040-0.063 mm) as the stationary phase using mixtures of (CH2Cl2: MeOH) as the eluting solvent (100:0, 99:1, 97:3, 96:4, and 90:1) to obtain eight fractions(F1-F8). Alkaloid was purified from fraction F5 by a recycle high performance liquid chromatography over JAIGEL size exclusion column (21.5 mm internal diameter, 500 mm L, 13 mm) using MeOH as solvent at a fl ow rate of 4.0 mL/min. Three recycles in a duration of 40 min aff orded (-)-gyrolidine with retention times of 35 min. Further purifi cation of fraction F6 by a preparative TLC using CH2Cl2: MeOH with 94:6; v/v, saturated with NH4OH; Dragendroff reagent gave alkaloids (+)-O-methyllimacusine, (+)-2-norobaberine,(+)-laurotetanine, (+)-norstephasubine and (+)-stephasubine.

    2.4. Antiplasmodial assay

    The crude CH2Cl2extract and the isolated compounds were evaluated for their in vitro antiplasmodial activity against P. falciparum strain K1 which was resistant to chloroquine. Chloroquine diphosphate was used as positive controls. The screening was basedon the ability to culture P. falciparum in human erthrocytes in vitro. It was maintained in continuous culture as described by Trager et al[16] with some modifi cation[17]. The synchronization of the malaria culture to one stage was by Lambros et al[18]. Antiplasmodial activity was evaluated using histidine-rich protein II assay by enzyme linked immunosorbent assay[19]. Micro titration techniques were used to measure the activity of samples over a wide range of concentrations. All tests were performed in duplicate. Crude extract was dissolved in DMSO to produce a stock solution of 20 mg/mL. The stock solutions were subsequently diluted with deionized water at 20 concentrations of two-fold dilutions into two 96-well microtiter plates. A total of 10 μL of each concentration was transferred into another 96-well microtiter plates. A total of 200 μL of parasitized red blood cell suspension (1% parasitemia) were added to it. The mixtures were incubated for 24 h at 37 ℃ and were subsequently cooled at -20 ℃ to lyse the red blood cells. The plates were allowed at room temperature, and 20 μL of the blood suspension was dispensed into a new microtiter plate containing 100 μL MALSTAT reagent, 20 μL nitroblue tetrazolium and phenazine ethanosulphate mixture. Absorbance was measured with an ELISA plate reader at 780 nm. The percentage inhibition at each concentration was determined and the mean of IC50values of parasite sustainability was calculated using analysis. The antiplasmodial activity of each compound was expressed as an IC50value defi ned as the concentration of the compounds causing 50% inhibition of parasite growth relative to untreated control[20,21].

    2.5. Antioxidant assay

    2.5.1. DPPH assay

    The DPPH scavenging activity of pure compounds were tested based on the method previously published[22]. Briefly, 40 μL of purifi ed compounds at diff erent concentrations were mixed with 200 μL of 50 μM DPPH solution in MeOH. The mixture was immediately shaken and incubated for 15 min in the dark at room temperature. The decrease in absorbance was measured at 517 nm with a microplate reader (Tecan Sunrise, Austria). Ascorbic acid was used as a standard and the control was MeOH. The percentage of inhibition activity of the compounds was calculated (n= 3) and results were presented in Table 1.

    2.5.2. Metal chelating activity assay

    The ferum ion chelating activity of the purifi ed compounds was determined according to the previously published[22] by measuring the formation of the Fe2+- ferrozine complex in the reaction mixture. Briefly, 100 μL of purified compounds or standards (6.25-100 μg/mL) were mixed with 120 μL distilled water and 10 μL FeCl2(2 mM) in a 96-well microplate and the absorbance was read as blank. Then, 20 μL of ferrozine (5 mM) was added to the mixture to initiate the reaction. The reaction mixture was incubated at room temperature for 20 min and the absorbance at 562 nm was measured. The results were presented in Table 1 and butylated hydroxyanisole was used as the standard reference.

    2.5.3. FRAP

    The reducing power was determined using the method of Oyaizu[23]. The tested compounds (0.5 mL) dissolved in ethanol at different doses (0, 50, 100, 150, 200 μg/mL) were mixed with phosphate buff er (0.5 mL, 0.2 M, pH 6.6) and potassium ferricyanide[K3Fe(CN)6] (0.5 mL, 1%). The mixture was then incubated at 50 ℃ for 20 min. A total of 0.5 mL trichloroacetic acid (10%) was added to the mixture, which was then centrifuged for 10 min at 3 000 rpm (1 000 g). The upper layer of the solution (0.5 mL) was mixed with distilled water (0.5 mL) and FeCl3(0.1 mL, 0.1%) for 10 min, and then the absorbance was measured at 700 nm using a spectrophotometer. Ethylenediaminetetraacetic acid was used as the standard reference (Table 1).

    3. Results

    This report communicated the isolation and characterization of fi ve BBIQ alkaloids (Figure 1), (-)-gyrolidine, (+)-O-methyllimacusine,(+)-2-norobaberine, (+)-norstephasubine, (+)-stephasubine, and oneaporphine alkaloid (+)-laurotetanine from the CH2Cl2bark extract of A. corneri.

    Structural elucidation was performed with the aid of spectroscopic methods notably; UV, IR, liquid chromatography/Mass spectrometry,1D and 2D NMR (COSY, HMBC, HMQC, NOESY). The ESIMS showed a pseudomolecular ion peak m/z at 623.30, 623.30,609.29, 328.16, 576.23, and 591.13 corresponding to alkaloids(-)-gyrolidine, (+)-O-methyllimacusine, (+)-2-norobaberine,(+)-laurotetanine, (+)-norstephasubine and (+)-stephasubine respectively. All the BBIQ alkaloids belonged to type VI that had two diphenyl ether linkages between (C7-O-C8’) and (C11-OC12’). Generally, this could be deduced from presence of seven aromatic proton signals in the form of ABX and AA’BB’ systems,representing H-10, H-13, H-14 (ring C) and H-10’, H-11’, H-13’,H-14’ (ring C’) respectively. As for the aporphine alkaloid,(+)-laurotetanine, only three aromatic proton signals appeared at δH6.58, δH6.78, δδH8.06 corresponding to H-3, H-8 and H-11. The13C NMR spectrum of BBIQ showed between 34-36 carbon signals depending on the number of substituents; whereas, aporphine only gave 20 carbon signals. In addition, this was the fi rst occurrence of both antiplasmodial and antioxidant activities of (-)-gyrolidine,(+)-O-methyllimacusine, (+)-norstephasubine and (+)-stephasubine. Among the six compounds evaluated for their antiplasmodial activity, (+)-norstephasubine clearly showed the most potent in vitro antiplasmodial activity with an IC50value of 0.116 μM that was slightly better than the standard, chloroquine (IC50= 0.090 μM). In addition, (+)-laurotetanine also displayed a strong inhibition capacity with an IC50value of 0.189 μM, followed by; (-)-gyrolidine,(+)-2-norobaberine , (+)-O-methyllimacusine , and (+)-stephasubine(Table 1).

    Table 1Antiplasmodial and antioxidant activities of isolated compounds from A. corneri.

    Furthermore, in order to evaluate the relationship between suppression of oxidative stress and the cause of malaria, various antioxidant assays (DPPH, FRAP, ferum metal chelating) were performed. Interestingly, the two most potent compounds that revealed antiplasmodial activity also exhibited good antioxidant activities. Both (+)-laurotetanine and (+)-norstephasubine showed high DPPH free radical scavenging activity and ferum metal chelating activities which indicated that they were good reductants and they also possessed the ability to chelate ferum and prevent prooxidant activity (Table 1).

    Figure 1. Structures of isolated compounds from A. corneri.1: (-)-gyrolidine; 2: (+)-O-methyllimacusine; 3: (+)-2-norobaberine; 4:(+)-laurotetanine; 5: (+)-norstephasubine; 6: (+)-stephasubine.

    4. Discussion

    The importance of antioxidant activity was to reverse or minimize the oxidative damage to the hosts caused by Plasmodium parasite from malaria infection. The iron bound in hemoglobin is in Fe2+form, and upon destruction of the hemoglobin, oxidation of Fe2+to Fe3+occurs, followed by the release of a free electron that eventually generate ROS. The generation of ROS such as hydrogen peroxide,hydroxyl radical and superoxide anion radical will induce oxidative damage[24,25]. Malaria infection induces the generation of the hydroxyl radical in the liver, which will most probably lead to the induction of oxidative stress and apoptosis[8].

    It is worthy to note that, Plasmodium parasites from malaria infection invade the host hemoglobin to make their own protein. Upon destruction, free heme (ferum atom) will be released and converted to hemazoin which is important for the survival of Plasmodium parasites. Therefore by having strong ferum chelation,as shown by (+)-laurotetanine and (+)-norstephasubine, the killing of Plasmodium by binding to toxic free heme could prevent the formation of hemazoin[8,26].

    The high antioxidant activities of those alkaloids may be due to the hydroxyl group that could donate electron to the free radicals which showed high radical scavenging activities that could suppress the oxidative stress on the host. The hydroxyl group that could donate electron to the notorious free radical could be the reason why it possesses potent radical scavenging activities (DPPH)[27,28].

    Malaria infection causes the formation of free radicals which subsequently leads to oxidative stress and apoptosis. The crude CH2Cl2extract and the isolated compounds from the bark of A. corneri exert substantial antiplasmodial and antioxidative effects through the DPPH free radical scavenging FRAP and metal chelating activities which could suppress oxidative stress that cause less damage to the host. The two most potent antiplasmodial alkaloids,(+)-laurotetanine and (+)-norstephasubine, also exhibited potent FRAP and metal chelating antioxidant activities. Therefore, these alkaloids may be good candidates for drug development of potential antimalarial properties possessing antioxidant capability.

    Conflicts of Interest Statement

    The authors declare no confl ict of interest.

    Acknowledgments

    This work was supported by University of Malaya Research Grant(RP001/2012A), (RP001/2012B) and Postgraduate Research Fundsof University of Malaya (PV050/2012A). The authors would like to thank Mr. Teo Leong Eng, Mr Din Mat Nor and Mr Rafly Syamsir from Herbarium Group of Chemistry Department, University of Malaya, Kuala Lumpur, Malaysia. Special thanks to the Institute of Medical Research, Kuala Lumpur, Malaysia for conducting of antiplasmodial activities.

    [1] WHO. World malaria report 2014. Geneva: World Health Organization;2014. p. 242.

    [2] Malaysia MoH. Guidelines of malaria in Malaysia. Division DC ed. Malaysia: Ministry of Health Malaysia; 2014.

    [3] Rajahram G, Barber B, William T, Menon J, Anstey N, Yeo T. Deaths due to Plasmodium knowlesi malaria in Sabah, Malaysia: association with reporting as Plasmodium malariae and delayed parenteral artesunate. Malar J 2012; 11: 284.

    [4] William T, Rahman H, Jelip J, Ibrahim M, Menon J, Grigg M, et al. Increasing incidence of Plasmodium knowlesi malaria following control of P. falciparum and P. vivax Malaria in Sabah, Malaysia. PLoS Negl Trop Dis 2013; 7(1): e2026.

    [5] Nethengwe MF, Opoku AR, Dludla PV, Madida KT, Shonhai A, Smith P, et al. Larvicidal, antipyretic and antiplasmodial activity of some Zulu medicinal plants. J Med Plants Res 2012; 6(7): 1255-1262.

    [6] Tchinda AT, Fuendjiep V, Sajjad A, Matchawe C, Wafo P, Khan S,et al. Bioactive compounds from the fruits of Zanthoxylum leprieurii. Pharmacologyonline 2009; 1: 406-415.

    [7] Umemura T, Kodama Y, Hioki K, Nomura T, Nishikawa A, Hirose M, et al. The mouse rasH2/BHT model as an in vivo rapid assay for lung carcinogens. Cancer Sci 2002; 93(8): 861-866.

    [8] Percario S, Moreira DR, Gomes BAQ, Ferreira MES, Goncalves ACM,Laurindo PSOC, et al. Oxidative stress in malaria. Int J Mol Sci 2012; 13(12): 16346-16372.

    [9] Nosten F, White NJ. Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg 2007; 77(Suppl 6): 181-192.

    [10]Whitmore TC, Ng FSP. Tree flora of malaya: a manual for foresters. Forest Research Institute Malaysia: Longman; 1989.

    [11]K Thakur B, Anthwal A, Singh Rawat D, Rawat B, Rashmi, Rawat MSM. A review on genus alseodaphne: phytochemistry and pharmacology. Mini-Rev Org Chem 2012; 9(4): 433-445.

    [12]Mukhtar MR, Zahari A, Nafiah MA, Hadi AHA, Thomas NF, Arai H, et al. 3',4'-dihydronorstephasubine, a new bisbenzylisoquinoline from the bark of Alseodaphne corneri. Heterocycles 2009; 78(10): 2571-2578.

    [13]Phillipson JD, Roberts MF, Zenk M. The chemistry and biology of isoquinoline alkaloids. 1st ed. Berlin Heidelberg: Springer-Verlag; 1985.

    [14]Zahari A, Cheah F, Mohamad J, Sulaiman S, Litaudon M, Leong K, et al. Antiplasmodial and antioxidant isoquinoline alkaloids from Dehaasia longipedicellata. Planta Medica 2014; 80(7): 599-603.

    [15]Nasrullah AA, Zahari A, Mohamad J, Awang K. Antiplasmodial alkaloids from the bark of Cryptocarya nigra (Lauraceae). Molecules 2013; 18: 8009-8017.

    [16]Trager W, Jensen JB. Human malaria parasites in continuous culture. Science 1976; 193(4254): 673-675.

    [17]Makler MT, Hinrichs DJ. Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. Am J Trop Med Hyg 1993; 48(2): 205-210.

    [18]Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 1979; 65(3): 418-420.

    [19]Noedl H, Bronnert J, Yingyuen K, Attlmayr B, Kollaritsch H, Fukuda M. Simple histidine-rich protein 2 double-site sandwich enzyme-linked immunosorbent assay for use in malaria drug sensitivity testing. Antimicrob Agents Chemother 2005; 49(8): 3575-3577.

    [20]Chan KL, Choo CY, Abdullah NR, Ismail Z. Antiplasmodial studies of Eurycoma longifolia Jack using the lactate dehydrogenase assay of Plasmodium falciparum. J Ethnopharmacol 2004; 92(2-3): 223-227.

    [21]Adjalley SH, Lee MCS, Fidock DA. A method for rapid genetic integration into Plasmodium falciparum utilizing mycobacteriophage Bxb1 integrase. Methods Mol Biol 2010; 634: 87-100.

    [22]Ablat A, Mohamad J, Awang K, Shilpi JA, Arya A. Evaluation of antidiabetic and antioxidant properties of Brucea javanica seed. Sci World J 2014; 2014: 8.

    [23]Oyaizu M. Studies on product of browning reaction prepared from glucose amine. Jpn J Nutr 1986; 44: 307-315.

    [24]Greve B, Lehman LG, Lell B, Luckner D, Schmidt-Ott R, Kremsner PG. High oxygen radical production is associated with fast parasite clearance in children with Plasmodium falciparum malaria. J Infect Dis 1999; 179: 1584-1586.

    [25]Yang MH, Yoon KD, Chin YW, Park JH, Kim J. Phenolic compounds with radical scavenging and cyclooxygenase-2 (COX-2) inhibitory activities from Dioscorea opposita. Bioorg Med Chem 2009; 17(7): 2689-2694.

    [26]Warhurst D, Craig J, Adagu I, Meyer D, Lee S. The relationship of physico-chemical properties and structure to the diff erential antiplasmodial activity of the cinchona alkaloids. Malaria J 2003; 2: 26.

    [27]Jang M, Kim H, Kang K, Yokozawa T, Park J. Hydroxyl radical scavenging activities of isoquinoline alkaloids isolated from Coptis chinensis. Arch Pharm Res 2009; 32(3): 341-345.

    [28]Pradines B, Rolain JM, Ramiandrasoa F, Fusai T, Mosnier J, Rogier C,et al. Iron chelators as antimalarial agents: in vitro activity of dicatecholate against Plasmodium falciparum. J Antimicrob Chemoth 2002; 50: 177-187.

    ent heading

    10.1016/j.apjtm.2016.03.008

    15 January 2016

    Khalijah Awang, Ph.D, Professor, Department of Chemistry,F(xiàn)aculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.

    E-mail: khalijah@um.edu.my

    Tel: +6 037967 4064

    Fax: +6 037967 419

    Foundation project: This work was supported by University of Malaya Research Grant (RP001/2012A), (RP001/2012B) and Postgraduate Research Funds of University of Malaya (PV050/2012A).

    in revised form 20 February 2016

    ARTICLE INFO

    Article history:

    人人妻人人爽人人添夜夜欢视频| 国产免费一区二区三区四区乱码| 国产精品一二三区在线看| 亚洲国产毛片av蜜桃av| 国产av精品麻豆| 亚洲色图 男人天堂 中文字幕 | 国产欧美日韩综合在线一区二区| 国产日韩一区二区三区精品不卡 | 亚洲成人av在线免费| 2022亚洲国产成人精品| 中国三级夫妇交换| 大片免费播放器 马上看| 一级黄片播放器| 精品视频人人做人人爽| 成人无遮挡网站| 免费看av在线观看网站| 日本黄色日本黄色录像| 大香蕉久久成人网| 美女xxoo啪啪120秒动态图| 久久久久网色| 大又大粗又爽又黄少妇毛片口| 精品国产一区二区三区久久久樱花| 少妇被粗大猛烈的视频| 久久韩国三级中文字幕| 亚洲精品中文字幕在线视频| 伊人久久精品亚洲午夜| 精品久久久久久久久亚洲| 久久午夜综合久久蜜桃| 久久精品国产亚洲网站| 日韩,欧美,国产一区二区三区| 国产精品国产三级专区第一集| 97超视频在线观看视频| 午夜老司机福利剧场| 18禁观看日本| 国产免费现黄频在线看| 精品久久久久久电影网| 久久国内精品自在自线图片| 精品亚洲成a人片在线观看| 国产免费现黄频在线看| 日日撸夜夜添| 亚洲精品日本国产第一区| 一个人免费看片子| 国产永久视频网站| 久久影院123| 国产成人aa在线观看| 精品一区二区三卡| 男女边摸边吃奶| 九色成人免费人妻av| 日本欧美国产在线视频| 80岁老熟妇乱子伦牲交| 这个男人来自地球电影免费观看 | 在线播放无遮挡| 久久久亚洲精品成人影院| 亚洲欧洲日产国产| 国产亚洲一区二区精品| 在线精品无人区一区二区三| 最新中文字幕久久久久| 最后的刺客免费高清国语| 久久久久久久久久久丰满| 五月开心婷婷网| 国产 一区精品| 搡老乐熟女国产| 秋霞在线观看毛片| 欧美+日韩+精品| 汤姆久久久久久久影院中文字幕| 视频中文字幕在线观看| 特大巨黑吊av在线直播| 夫妻性生交免费视频一级片| 亚州av有码| 一本大道久久a久久精品| 国产一区有黄有色的免费视频| 你懂的网址亚洲精品在线观看| 色吧在线观看| 久久国内精品自在自线图片| 在线观看一区二区三区激情| 亚洲精品乱码久久久久久按摩| √禁漫天堂资源中文www| 亚洲欧美中文字幕日韩二区| h视频一区二区三区| av网站免费在线观看视频| 男女边吃奶边做爰视频| 国产 精品1| 日韩一区二区视频免费看| 伊人亚洲综合成人网| 欧美国产精品一级二级三级| 熟女人妻精品中文字幕| 国产不卡av网站在线观看| 亚洲av国产av综合av卡| 久久97久久精品| 纯流量卡能插随身wifi吗| 看十八女毛片水多多多| 日韩制服骚丝袜av| av不卡在线播放| 精品久久久噜噜| 制服丝袜香蕉在线| 精品酒店卫生间| 成人国产麻豆网| 丰满少妇做爰视频| 亚洲丝袜综合中文字幕| 久久99精品国语久久久| 热re99久久国产66热| av线在线观看网站| 国产免费一级a男人的天堂| 我的女老师完整版在线观看| av在线播放精品| 天堂俺去俺来也www色官网| 亚洲精品一区蜜桃| 国产免费现黄频在线看| 亚州av有码| 国产精品嫩草影院av在线观看| 男女无遮挡免费网站观看| av网站免费在线观看视频| 男女国产视频网站| 亚洲美女搞黄在线观看| 中文字幕人妻丝袜制服| 免费av中文字幕在线| 99热全是精品| 欧美激情 高清一区二区三区| 91国产中文字幕| 国产综合精华液| 国产一级毛片在线| 99国产综合亚洲精品| 18禁裸乳无遮挡动漫免费视频| 我要看黄色一级片免费的| 久久狼人影院| 中文欧美无线码| av国产精品久久久久影院| 91精品国产九色| 亚洲成色77777| 一级毛片 在线播放| 一区二区三区乱码不卡18| 亚洲第一av免费看| 中文欧美无线码| 国产成人免费无遮挡视频| 97在线人人人人妻| 天天躁夜夜躁狠狠久久av| 欧美性感艳星| 十八禁高潮呻吟视频| 亚洲第一区二区三区不卡| 九色成人免费人妻av| 久久99热6这里只有精品| 日本黄色日本黄色录像| 日韩大片免费观看网站| 在线观看www视频免费| www.av在线官网国产| 九九久久精品国产亚洲av麻豆| 美女cb高潮喷水在线观看| 日韩一区二区视频免费看| 国产午夜精品久久久久久一区二区三区| 99热这里只有是精品在线观看| 欧美激情极品国产一区二区三区 | 精品少妇内射三级| av专区在线播放| a级毛片在线看网站| 久久影院123| 午夜精品国产一区二区电影| 两个人的视频大全免费| 黄色毛片三级朝国网站| 一区二区日韩欧美中文字幕 | 草草在线视频免费看| 久久国内精品自在自线图片| 久久精品国产亚洲av涩爱| 一区二区av电影网| 少妇 在线观看| 日本黄色日本黄色录像| 免费久久久久久久精品成人欧美视频 | 日韩伦理黄色片| 国产成人av激情在线播放 | 自线自在国产av| 欧美精品亚洲一区二区| 女的被弄到高潮叫床怎么办| 国产不卡av网站在线观看| 亚洲美女黄色视频免费看| 在线观看国产h片| 免费黄色在线免费观看| 欧美变态另类bdsm刘玥| 我的老师免费观看完整版| 一本—道久久a久久精品蜜桃钙片| 国模一区二区三区四区视频| 久久久a久久爽久久v久久| 久久人妻熟女aⅴ| 日本猛色少妇xxxxx猛交久久| 少妇 在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲av中文av极速乱| 国产精品免费大片| 日韩欧美精品免费久久| 黑人巨大精品欧美一区二区蜜桃 | 晚上一个人看的免费电影| 欧美激情 高清一区二区三区| 国产精品秋霞免费鲁丝片| a 毛片基地| 国产一区二区三区综合在线观看 | 色婷婷久久久亚洲欧美| 黄色一级大片看看| 男女国产视频网站| 亚洲av成人精品一区久久| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久av不卡| 亚洲精品一二三| 成人国产麻豆网| 国产精品一区www在线观看| 免费看光身美女| 国产精品人妻久久久影院| 国产精品久久久久久精品古装| 美女脱内裤让男人舔精品视频| 伦理电影免费视频| 精品久久久噜噜| 免费观看a级毛片全部| 久久国内精品自在自线图片| av有码第一页| 国产片内射在线| 欧美成人午夜免费资源| 街头女战士在线观看网站| 免费观看的影片在线观看| 午夜福利,免费看| 国产成人免费观看mmmm| 成人二区视频| 亚洲欧美一区二区三区黑人 | 亚洲内射少妇av| 三上悠亚av全集在线观看| 纵有疾风起免费观看全集完整版| 欧美日韩国产mv在线观看视频| 少妇的逼水好多| 日本vs欧美在线观看视频| 欧美日韩av久久| 大香蕉久久网| 免费大片18禁| 精品久久久噜噜| 国产一区二区在线观看日韩| 国产视频内射| 久久热精品热| 国模一区二区三区四区视频| 免费大片黄手机在线观看| 国产男女内射视频| 老女人水多毛片| 亚洲天堂av无毛| 日韩亚洲欧美综合| 插逼视频在线观看| 免费观看无遮挡的男女| 麻豆成人av视频| 大码成人一级视频| 十八禁高潮呻吟视频| 久久99蜜桃精品久久| 在现免费观看毛片| 精品国产露脸久久av麻豆| 国产日韩一区二区三区精品不卡 | 亚洲美女视频黄频| 晚上一个人看的免费电影| 天天躁夜夜躁狠狠久久av| 午夜免费鲁丝| 老熟女久久久| 国产精品无大码| 午夜91福利影院| 国产乱人偷精品视频| 亚洲精品亚洲一区二区| 五月天丁香电影| 亚洲中文av在线| 激情五月婷婷亚洲| 大又大粗又爽又黄少妇毛片口| 一区二区av电影网| 国产欧美日韩一区二区三区在线 | 精品99又大又爽又粗少妇毛片| 亚洲激情五月婷婷啪啪| 精品久久久精品久久久| 女人久久www免费人成看片| 狂野欧美激情性xxxx在线观看| tube8黄色片| 国产熟女午夜一区二区三区 | 日韩中字成人| 亚洲精品中文字幕在线视频| 母亲3免费完整高清在线观看 | 亚洲一级一片aⅴ在线观看| 免费看av在线观看网站| 一级,二级,三级黄色视频| 国产亚洲精品久久久com| 女人久久www免费人成看片| 国产日韩一区二区三区精品不卡 | 久久久久久久久大av| 蜜桃国产av成人99| 最新的欧美精品一区二区| 老司机亚洲免费影院| av有码第一页| 中文字幕av电影在线播放| 国产又色又爽无遮挡免| 欧美国产精品一级二级三级| 秋霞伦理黄片| 亚洲精品乱久久久久久| 久久久久久久大尺度免费视频| 日韩一本色道免费dvd| 春色校园在线视频观看| 精品国产一区二区三区久久久樱花| 免费观看性生交大片5| 妹子高潮喷水视频| 精品熟女少妇av免费看| 能在线免费看毛片的网站| 看免费成人av毛片| 91在线精品国自产拍蜜月| 亚洲人成网站在线观看播放| 一级毛片电影观看| 欧美变态另类bdsm刘玥| 日日撸夜夜添| av在线app专区| av福利片在线| 欧美亚洲日本最大视频资源| 亚洲精品视频女| 久久国内精品自在自线图片| 中文字幕人妻丝袜制服| 婷婷色综合www| 色94色欧美一区二区| 久久99热这里只频精品6学生| 80岁老熟妇乱子伦牲交| 欧美另类一区| 极品少妇高潮喷水抽搐| 少妇人妻 视频| 国产精品国产三级国产专区5o| 两个人的视频大全免费| 国产精品久久久久久精品电影小说| av有码第一页| 亚洲成人手机| 亚洲人成77777在线视频| 观看美女的网站| 国产精品国产av在线观看| 一边亲一边摸免费视频| 中文字幕久久专区| 国产男人的电影天堂91| 国产成人精品一,二区| 亚洲怡红院男人天堂| 亚洲国产欧美日韩在线播放| 日韩中字成人| 蜜桃国产av成人99| 91国产中文字幕| 99热全是精品| 国产精品偷伦视频观看了| 亚洲精品成人av观看孕妇| 中文天堂在线官网| 国产黄色视频一区二区在线观看| 永久免费av网站大全| 黄片无遮挡物在线观看| 久久99热6这里只有精品| 亚洲精品视频女| 精品人妻熟女av久视频| 亚洲精品亚洲一区二区| 国产乱来视频区| 日韩av不卡免费在线播放| 中文乱码字字幕精品一区二区三区| 九九在线视频观看精品| 久久国内精品自在自线图片| 国产免费一级a男人的天堂| 亚洲av免费高清在线观看| 99视频精品全部免费 在线| 一区二区三区免费毛片| 99精国产麻豆久久婷婷| 高清欧美精品videossex| 插逼视频在线观看| 国产精品熟女久久久久浪| 欧美三级亚洲精品| 成人无遮挡网站| 国产精品99久久久久久久久| 2018国产大陆天天弄谢| 国产精品国产三级国产av玫瑰| 男男h啪啪无遮挡| 日韩成人伦理影院| 99热网站在线观看| 简卡轻食公司| 十八禁网站网址无遮挡| 日韩中文字幕视频在线看片| 晚上一个人看的免费电影| 成人毛片60女人毛片免费| 9色porny在线观看| 久久影院123| 一级黄片播放器| 亚洲av日韩在线播放| 亚洲婷婷狠狠爱综合网| 亚洲精品美女久久av网站| 欧美精品国产亚洲| 另类精品久久| 蜜桃在线观看..| 成人国语在线视频| 国产日韩欧美视频二区| 老司机影院毛片| 亚洲国产精品一区三区| 欧美一级a爱片免费观看看| 国产精品一国产av| 丝袜脚勾引网站| 亚洲经典国产精华液单| 国产视频首页在线观看| 老女人水多毛片| 69精品国产乱码久久久| 下体分泌物呈黄色| videosex国产| 久久人人爽av亚洲精品天堂| 国产免费又黄又爽又色| 日韩中字成人| 欧美xxxx性猛交bbbb| 99视频精品全部免费 在线| 日本av手机在线免费观看| 午夜免费观看性视频| 少妇人妻 视频| 国产精品久久久久久久久免| 男女啪啪激烈高潮av片| av不卡在线播放| 国产白丝娇喘喷水9色精品| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产精品国产精品| 免费高清在线观看视频在线观看| 午夜免费鲁丝| 精品一区二区三卡| 视频区图区小说| 亚洲五月色婷婷综合| 精品国产露脸久久av麻豆| 校园人妻丝袜中文字幕| 精品视频人人做人人爽| 一区二区av电影网| 国产69精品久久久久777片| 我的老师免费观看完整版| 18禁在线无遮挡免费观看视频| 国产又色又爽无遮挡免| 日韩三级伦理在线观看| 飞空精品影院首页| 男的添女的下面高潮视频| 丝袜美足系列| 欧美人与善性xxx| 夫妻午夜视频| 久久久国产欧美日韩av| 久久精品国产自在天天线| 三级国产精品片| 国产 一区精品| 熟妇人妻不卡中文字幕| 亚洲精品色激情综合| 成人综合一区亚洲| 成人18禁高潮啪啪吃奶动态图 | 国产精品三级大全| 久久亚洲国产成人精品v| 青青草视频在线视频观看| 久久鲁丝午夜福利片| 午夜福利视频精品| 欧美xxⅹ黑人| 人妻系列 视频| 欧美日韩视频精品一区| 97在线人人人人妻| 一级a做视频免费观看| 另类亚洲欧美激情| xxxhd国产人妻xxx| 九九在线视频观看精品| 久久久久网色| 国产午夜精品久久久久久一区二区三区| 午夜精品国产一区二区电影| 亚州av有码| 80岁老熟妇乱子伦牲交| av国产精品久久久久影院| 黑丝袜美女国产一区| 久久国内精品自在自线图片| 欧美日韩一区二区视频在线观看视频在线| 久久国产亚洲av麻豆专区| 国产精品人妻久久久久久| 在线观看三级黄色| 少妇精品久久久久久久| 亚洲精品日韩av片在线观看| 日本黄色片子视频| 亚洲av中文av极速乱| 少妇 在线观看| 日韩人妻高清精品专区| 欧美xxxx性猛交bbbb| 亚洲一区二区三区欧美精品| 午夜91福利影院| 一个人看视频在线观看www免费| 夫妻午夜视频| 精品亚洲成a人片在线观看| 国产一区二区在线观看日韩| 99热6这里只有精品| 交换朋友夫妻互换小说| 99热这里只有精品一区| 2022亚洲国产成人精品| 亚洲国产成人一精品久久久| 亚州av有码| 18+在线观看网站| 国产av国产精品国产| 精品国产露脸久久av麻豆| 黄色视频在线播放观看不卡| 日本av免费视频播放| 乱人伦中国视频| 国产国拍精品亚洲av在线观看| 国产伦理片在线播放av一区| 卡戴珊不雅视频在线播放| 欧美日韩一区二区视频在线观看视频在线| 少妇 在线观看| 久久精品国产自在天天线| 国产一区有黄有色的免费视频| 伦理电影免费视频| 色94色欧美一区二区| 男人爽女人下面视频在线观看| 亚洲精品久久久久久婷婷小说| 亚洲av不卡在线观看| 日韩大片免费观看网站| 熟女av电影| 卡戴珊不雅视频在线播放| 男女免费视频国产| 婷婷成人精品国产| 亚洲精品色激情综合| 尾随美女入室| 王馨瑶露胸无遮挡在线观看| 91午夜精品亚洲一区二区三区| 美女视频免费永久观看网站| 黑人高潮一二区| 国产伦理片在线播放av一区| 人妻人人澡人人爽人人| 男女边摸边吃奶| 中文字幕免费在线视频6| 久久久久视频综合| 中国美白少妇内射xxxbb| 99九九在线精品视频| av网站免费在线观看视频| 欧美日韩亚洲高清精品| 又粗又硬又长又爽又黄的视频| 亚洲久久久国产精品| 国语对白做爰xxxⅹ性视频网站| 精品人妻偷拍中文字幕| 欧美日韩亚洲高清精品| 一边亲一边摸免费视频| 黄色一级大片看看| 下体分泌物呈黄色| 最新中文字幕久久久久| 亚洲精品久久成人aⅴ小说 | 国产高清三级在线| 男女边吃奶边做爰视频| 看十八女毛片水多多多| 亚洲人与动物交配视频| 亚洲国产av影院在线观看| 久热这里只有精品99| 国产av国产精品国产| 国产成人精品无人区| 国产一级毛片在线| 午夜激情久久久久久久| 免费大片黄手机在线观看| 亚洲精品日本国产第一区| 哪个播放器可以免费观看大片| 精品亚洲成国产av| 搡老乐熟女国产| 最近中文字幕2019免费版| 国产日韩欧美视频二区| 十分钟在线观看高清视频www| 中国美白少妇内射xxxbb| 一区二区三区乱码不卡18| 蜜臀久久99精品久久宅男| 亚洲精品一区蜜桃| 在线观看国产h片| 精品国产露脸久久av麻豆| 韩国高清视频一区二区三区| 我的女老师完整版在线观看| 亚洲性久久影院| 2021少妇久久久久久久久久久| 国产 一区精品| 欧美97在线视频| 久久99热这里只频精品6学生| 男女免费视频国产| 三上悠亚av全集在线观看| 777米奇影视久久| 久久av网站| 亚洲四区av| 哪个播放器可以免费观看大片| 欧美97在线视频| 日日摸夜夜添夜夜爱| 天天躁夜夜躁狠狠久久av| 亚洲av在线观看美女高潮| av一本久久久久| 国产av码专区亚洲av| 99热这里只有是精品在线观看| 97超视频在线观看视频| 亚洲久久久国产精品| 男人爽女人下面视频在线观看| 久久久久精品久久久久真实原创| 在线观看免费视频网站a站| 精品少妇内射三级| 亚洲精品亚洲一区二区| 国产亚洲av片在线观看秒播厂| 亚洲av电影在线观看一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 成人二区视频| 啦啦啦在线观看免费高清www| 亚洲中文av在线| 久久人人爽人人片av| av免费在线看不卡| 国产在线视频一区二区| 国产精品99久久99久久久不卡 | 日韩一区二区视频免费看| 毛片一级片免费看久久久久| 天天躁夜夜躁狠狠久久av| 精品人妻一区二区三区麻豆| 人人澡人人妻人| 久久99一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 欧美3d第一页| 国产国拍精品亚洲av在线观看| 国产成人精品在线电影| 麻豆乱淫一区二区| xxx大片免费视频| 女性生殖器流出的白浆| 国产精品国产三级国产专区5o| av又黄又爽大尺度在线免费看| 岛国毛片在线播放| 麻豆乱淫一区二区| 亚洲av福利一区| 久久久久久久久久久免费av| 在线免费观看不下载黄p国产| 一级毛片 在线播放| 国产在线视频一区二区| 最近2019中文字幕mv第一页| 我的女老师完整版在线观看| 亚洲国产日韩一区二区| 99热6这里只有精品| 五月玫瑰六月丁香| 亚洲经典国产精华液单| 99热6这里只有精品| 国产极品粉嫩免费观看在线 |