• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of microfluidic devices for islet transplantation and islet physiologys

    2016-11-12 01:43:34YuanXingKatherineXieManwanChanHevinPoonMaggieWangShusenWangMerigengQiYongWangDepartmentofSurgeryTransplantUniversityofIllinoisatChicagoChicagoIllinoisUSATheHonorsCollegeUniversityofIllinoisatChicagoChicagoIllinoisUSA
    實(shí)用器官移植電子雜志 2016年6期

    Yuan Xing,Katherine Xie,Manwan Chan,Hevin Poon,Maggie Wang,Shusen Wang,Merigeng Qi,Yong Wang(. Department of Surgery/Transplant,University of Illinois at Chicago,Chicago,Illinois,USA ;. The Honors College,University of Illinois at Chicago,Chicago,Illinois,USA ;. Department of organ transplantation,Key Laboratory for Critical Care Medicine of the Ministry of Health,Tianjin First Center Hospital,Tianjin 009,China ;.Department of Translational Research and Cellular Therapeutics,Diabetes and Metabolism Research Institute,Beckman Research Institute of City of Hope. Duarte,CA. USA.)

    【Abstract】 This review discusses several microfluidic devices developed at the University of Illinois at Chicago(UIC)used for studying the physiology and pathophysiology of human islets and their applications in the human islet transplantation process. The review first introduces key issues found in the field of pancreatic islet transplantation as a clinical therapy for Type I diabetes. It then reviews microfluidic technologies that can be used to address those key issues, the unique features associated with each microfluidic device, and the application of each.Additionally, the review also briefly discusses the design and fabrication principles of UIC microfluidic devices.

    【Key words】 Microfluidics;Pancreatic islet of langerhans;Islet perifusion ;Islet physiology;Human islet transplantation

    Introduction

    The pancreatic islets of Langerhans are made up of at least five different cell types. Approximately 65%-80% of the cells in the islet are beta-cells that secret insulin for maintaining glucose hemostasis.Insulin release displays biphasic and pulsatile profiles in response to glucose. Glucose first enters beta-cells via GLUT2. Glycolysis then generates pyruvate,which enters the TCA cycle and produces ATP,subsequently closing the ATP-sensitive K+(KATP)channels. This initiates plasma membrane depolarization and causes an increase in intracellular calcium concentration([Ca2+]i)via voltage-dependent calcium channels(VDCCs). Finally,the glucose-induced [Ca2+]i triggers the fusion of insulin granules to plasma membrane,resulting in the exocytosis of insulin1-4.The first phase of the biphasic profile corresponds to a prompt,marked insulin secretion(4-8 min). With continuous glucose stimulation,a secondary phase consisting of a gradual insulin increase is observed5-6.Alternate pathways of glucose-stimulated insulin secretion,independent of either KATP channels or[Ca2+]i,have been described7-8,but play a smaller role in insulin secretion.

    Since the introduction of the Edmonton Protocol,human islet transplantation has emerged as a promising therapy for Type I diabetes mellitus(T1DM)and is currently the only cell-based therapy that can achieve tight glycemic control without insulin9-12.The advantage in islet transplantation is the ability of transplanted islets to maintain and/or regulate insulin secretion under a normal blood glucose range. Islet transplantation also has many advantages over whole pancreas transplantation,since it involves only a minor surgical procedure with much lower morbidity and mortality rates.

    Islet transplantation has shown varying degrees of success in instances of both short-term and long-term insulin independence10-13,and much of this variability is associated with natural differences in∶the organ donor,pancreas procurement/preservation process,islet isolation process,the microenvironment of the islet transplant site(lower oxygen tension and delayed revascularization),beta-cell immunotoxicity,and long-term islet graft exhaustion. The U.S. Food and Drug Administration(FDA)define the islet product as a biological drug ;therefore,islets have to be prepared under FDA-approved guidelines for clinical therapy. Despite standardization of cGMP,lot-to-lot variability still cannot be avoided. To reduce the risk of transplanting low quality islets,appropriate product release tests are needed. While tests for identity,sterility,and purity are well established,to date there exists no reliable method to assess islet potency. This continues to be a key hurdle associated with variable clinical outcomes.

    Standard assays to assess islet function and viability include static glucose-stimulated insulin secretion(GSIS)for potency and inclusive and exclusive dyes for viability. Both assays have low correlation with transplant outcomes14-18. The GSIS only measures“bulk” insulin release and consequently,fails to quantify the dynamic nature of beta-cell insulin secretory kinetics;in addition,it fails to provide useful information regarding key insulin stimulator-secretion coupling factors. Clinicians depend more on islet cell mass(IEq)to determine the suitability of an islet cell preparation for transplantation. Since the isolated islets depend on passive diffusion to sense ambient glucose changes16,19,smaller islets often exhibit better GSIS results20-21. Paradoxically,larger islets often contribute to a higher IEq. On the other hand,an in vivo potency assay conducted by transplanting human islets into immunodeficient nude mice has high correlation with clinical transplant outcomes. However,it takes several weeks to complete and therefore,only provides a retrospective indication of islet function,rendering this assay impractical as a pre-transplant assessment22-25.

    To address this problem,a variety of in vitro assays have been investigated including the measurement of the oxygen consumption rate(OCR)16-17,26-28,ROS18,and ADP/ATP ratios29-30. The advantages and disadvantages of those assays have been well documented and their predictions of in vivo islet function remain controversial.

    Microfluidic and applicationin the field of diabetes

    Microfluidic technology is a special class of Biomicroelectromechanical systems(Bio-MEMS). This technology has emerged as a valuable tool for a wide range of biological applications. The small-scaled nature of microfluidic devices allows for leveraging of microscale phenomena such as laminar flow and rapid diffusion31-32,while consuming minimal amounts of reagents and analysts. More importantly,microfluidics permits easier implementation of new experimental modalities currently not possible with tools on the macroscale. In addition,multiple tasks can be integrated onto a single device to improve experimental throughput33-34. Almost 10 000 microfluidics papers have been published over the last 20 years,and the number of new publications continues to increase annually. The general advantages of microfluidic tools in biological research have been reviewed elsewhere.To date,the application of microfluidics in islet and/or beta-cell studies are very limited,as only a handful of laboratories have pursued research of this nature.Their contributions have been reviewed elsewhere35.In the scope of this review,we will focus specifically on the current state of microfluidics developed in our laboratory and their applications.

    The principle of microfluidic device design and fabrication

    The detailed review on microfluidic design and fabrication for islet study have been described elsewhere36-37. In general,microfluidic devices are designed using computer-aided software,such as AutoCAD,and printed on a high-resolution(16 000 dpi)transparency film that is then used as a photomask to selectively crosslink photoresist(SU-8)pre-spun to a desired thickness on a silicon wafer. Once coated,the wafers undergo pre-exposure baking at 65°C for 5 min,90°C for 2 hrs,and 65°C for 1 min. Finally,the high-resolution photomask is placed in contact with the resist-covered wafer and irradiated with 365 nm filtered UV light to initiate crosslinking. The irradiated water is further cross-linked on a hotplate at 95°C for 1 hr before the wafer is placed in a developer solution in which any unpolymerized SU-8 is dissolved.The completed master is then cleaned with isopropyl alcohol and water,dried with compressed N2gas,and dehydration baked. After completing the master,PDMS(polydimethylsiloxane)is prepared for the molding,or the soft-lithography process. PDMS precursor(usually Sylgard 184)and cross-linking agent is added to a weighing boat in a 10∶1 ratio by mass and thoroughly mixed. A vacuum chamber is then used to extract bubbles,after which the PDMS mixture is poured over the SU8 master. After overnight curing at room temperature or 2 hours on an 85℃ hotplate,the PDMS is completely cured and retains the channel structures from the master. The bulk PDMS is then cut into separate devices,inlet and outlet ports are punched,and then the PDMS layers are bonded through plasma treatment to finalize the working device.

    Microfluidic application for studying islet physiology and pathophysiology

    Microfluidic islet perifusion biochip

    The device is composed of three layers of PDMS36-37.The top layer(500 μm in height)has an inlet and an outlet channel(2 mm wide),the middle layer is a perifusion chamber(7 μm in diameter and 3 μm in depth),And the bottom layer(150 μm in height)contains microwells for islet immobilization,which are 100 μm apart and each 500 μm in diameter(Figure 1A).The unique features associated the device are∶① capability of multiple islets immobilization. The pocket design allows islets to passively sit without islet fixation or dissociation. ② creation of uniformed flow mixing and dynamics. As shown in Figure 1B,a CFD-GEOM computer simulation demonstrates uniform flow distribution in the perifusion chamber with most of the flow reaching bottom where islets are trapped in microwells without significant fluid shunting.③ capability of generating and maintaining various chemical gradients with a high level of complexity and consistency(Figure 2). ④ in addition to serving as islet perifusion,fluorescence-based analytical approaches were integrated that significantly increase its analytical power with good spatiotemporal resolution of the measured parameters(Figure 3).

    Figure 1 Microfluidic islet perifusion biochip and flow dynamics.(A)Islet perifusion biochip.(B)FITC computer simulation of flow dynamics

    Figure 2 The creation of various glucose temporal gradients in the microfluidic network vs. expected values.(A)Symmetric-bell shape at range of 2-14 mmol/L.(B)Square-shape of 5-14 mmol/L glucose.(C)Linear 5-25 mmol/L glucose.

    Figure 3 Human islet response to glucose and high potassium stimulation( A)A representative of traces of calcium influx and mitochondrial potential changes of human islets in response to 25 mmol/L glucose and 30 mmol/L potassium chloride.( B)A representative of trace of insulin secretion profile of 50 human islets in response to 25 mmol/L glucose and 30 mmol/L potassium chloride.

    In UIC,we have used the aforementioned microfluidic biochip to thoroughly evaluate 150 human islet preparations. We have shown that the microfluidic parameters(calcium influx,mitochondrial potentials,and insulin secretion kinetics)can provide better predictive values for in vivo islet graft function and viability in the nude mouse transplant model(data now shown). Further clinical evaluation for predicting human islet in vivo graft function is under investigation.

    Microfluidic Islet Array

    Two major challenges presented by previous devices are the limitations in the number of islets that can be assessed(around 50 islets)and the inability to assess the heterogeneous property of individual islets.Examination of heterogeneous islet properties often provides more detailed physiological information than when solely utilizing averaging-based methodologies.For example,it enables a better understanding of human islet functionality,which in turn provides a better predictive value for the islet transplantation outcome. With this goal in mind,we developed a new microfluidic islet array based on a hydrodynamic trapping mechanism.

    Figure 4 Islet loading, stimulation,and retrieval.(A)Schematics of islet loading and a photo image of the islet array.(B)Schematic of islet trapping and trapped fluorescence beads(200-240 μm).(C)Schematic of islet stimulation and trapped fluorescence beads(200-240 μm).(D)Schematic of islet retrieval and human islets

    The microfluidic platform we developed is a onelayer PDMS device as shown in Figure 4. The array device utilizes the hydrodynamic trapping principle38to immobilize islets. The device contains an array consisting of two rows and ten columns. In each column,there exist a total of 300 traps. The site of the trap is a U-shaped pocket(250 μm in diameter and 275 μm in depth),superimposed onto a loop channel that is used for the delivery of fluids and islets. There is also a cross-flow channel(45 μm in width)at the apex of the U- pocket. Based on differences in flow rate between the U-shaped pocket and the loop channel,the flow encounters less resistance in the unoccupied U-shaped pocket. When an islet in solution flows proximal to the gap between the U-shaped pocket and the main channel,it becomes trapped in the U-shaped pocket due to the difference in flow resistance between the U-shaped pocket and the loop channel. The newly trapped islet causes increased resistance in the U-shaped pocket,directing the flow back into the loop channel. The COMSOL fluid-flow simulation results depict this phenomenon in Figure 5-specifically,they show that the Q1 velocity is significantly larger than the Q2 velocity once the leading islet is trapped in the U-cup pocket.

    Figure 5 Computer simulation of flow stream and velocity profiles with and without particles trapping

    We further analyzed the impact of varying geometries on trapping efficacy. Our results show that when Q1/Q2 =5.5,the resistance ratio is high and multiple islets are trapped per site(Figure 6A,Table 1). When Q1/Q2=0.7,the solution going into the gap exhibits a resistance too low for optimal loading(Figure 6C,Table 1). By modifying the resistance of the straight channel(Q1/Q2=2.8),we achieved individual islet occupancy in each U-shaped pocket trap(Figure 6B,Table 1). We found that at the ratio of 2.8,(99.0±2.5)% of the sites in our microfluidic device are filled;with(95±2)% of the filled sites containing only one individual islet.

    Figure 6 Determination of optimal loading parameter.(A)Loading efficacy at Q1/Q2=5.5.(B)Loading efficacy at Q1/Q2 =2.8.(C)Loading efficacy at Q1/Q2=0.7

    Table 1 Optimal loading parameter

    Used in combination with real-time fluorescence imaging,the array can be used for islet flow cytometry to track the dynamic physiological and pathophysiological behavior of individual islets. The heterogeneous responses of intracellular calcium and mitochondrial potential changes from isolated human islets are shown in Figures 7A and 7B. Human islets displayed heterogeneous calcium profiles in response to glucose and KCI 〔25 mmol/L glucose ∶(144.20±1.74)%,Max∶149.9%,Min∶139.9% ∶30 mmol/L KCI∶( 176.20±1.54)%,Ma∶179.1%,Min∶173.5%〕 and heterogeneous mitochondrial potential changes in response to glucose〔 25 mmol/L glucose∶(71.30±2.02)%,Max∶76.8%,Min∶62.3%〕.

    Figure 7 Heterogeneous responses of human islet in response to insulin secretion secretagogues.( A)Intracellular calcium signaling of islets to 25 mmol/L glucose and 30 mmol/L KCI(n=100 islets).( B)Mitochondrial potential changes of human islets in response to 25 mmol/L glucose( n=100 islets)

    Microfluidic Encapsulated Islet Array

    Islet transplantation provides tight glycemic control for those with Type I diabetes;however,the transplant recipient is required to take immunosuppressant,which inevitably has unwanted side effects on both the patient and the islet graft. To avoid the need for immunosuppression,the immunoisolation of islets in biocompatible microcapsules has been investigated. If successful,this strategy would play a significant role in islet transplantation outcomes. Despite initial promising results obtained in both small animal and nonhuman primate transplant models,only short-term and partial graft function has been achieved in clinical trials39-40.Several factors have been proposed to explain possible factors causing graft loss∶insufficient biocompatibility of the encapsulation material,limited immunoprotective properties,hypoxic environment,and suboptimal insulin release40-41. While research has focused heavily on biocompatibility of materials and immunoprotection of islets,a comprehensive understanding of the physiological changes found in microencapsulated islets is often constrained due to the availability of research tools.To combat this challenge,we developed a three-layer microfluidic array to assess microencapsulated islets based on the same hydrodynamic trapping principle(Figure 8)41. In addition to the aforementioned design,we integrated an oxygenation channel to study the pathophysiological changes under hypoxia,one factor that was proposed to contribute to the graft failure of microencapsulated islets. Oxygenation efficacy in the microfluidic channel was evaluated through both gaseous(diffused)and aqueous(dissolved)states(Figure 9). Through diffusion into the channel,as shown in Figure 9A and 9C,the device was capable of creating and maintaining the targeted oxygen concentrations with high consistency. When using the cyclic oxygenation protocol( 21%5%21%),the time needed to switch from a 21% oxygen concentration to a 5% oxygen concentration was less than 40 seconds,as was the reversion back to 21% from 5%. Equally as important,both concentrations were well maintained over time 〔(21.21±0.05)% and(6.22±0.03)%〕.Similarly,the time needed to change from one oxygen concentration to another in a step-down protocol was also less than 40 seconds and again,was well-maintained over time〔(21.33±0.04)%,(11.53±0.05)%,(6.33±0.02)%,and(1.77±0.02)%,respectively〕.When utilizing oxygen in its dissolved state as shown in Figure 9C and 9D,the time needed to switch from 21% 〔(22.07±0.13)%〕 oxygen concentration to 5% 〔(6.83±0.08)%〕 oxygen concentration was approximately 120 seconds,approximately three times as long as that we observed when oxygen was diffused through the channel. The time needed to change from one particular oxygen concentration to another in the step-down protocol was less than 120 seconds and was well maintained over time〔(20.87±0.06)%,( 11.63±0.03)%,( 6.45±0.03)%,and( 1.68±0.03)%,respectively〕.

    As explained before,hypoxia is widely considered to be another one of the primary factors associated with the loss of function in encapsulated islets and has also been linked to the failure of immunoisolation in microencapsulation. Isolated islets are exposed to hypoxic environments at many levels∶① isolated islets exhibit a disrupted vascular network and depend on diffusion for their oxygen supply,② the microencapsulation process further aggravates islet hypoxia through both preventing normal islet revascularization and increasing oxygen diffusion distances when microcapsule sizes are larger than 500 μm,and ③ the intraperitoneal space,a common transplant site for microencapsulated islets,has low oxygen tension,in which the O2concentration is approximately 3.5%-5% O2-levels significantly lower than those of the in situ pancreas. In addition to function loss,hypoxia may also attract macrophages and subsequently,cause fibrotic cell overgrowth on the surface of the microcapsule.

    Figure 8 Schematics and photoimage of the three-layer microfluidic array.(A)Schematics of the microfluidic array and structure dimension.(B)Photoimage of the microfluidic array.(C)Photoimage of trapped encapsulated human islets

    Figure 9 Characterization of device oxygenation in the microfluidic islet trapping array.(A and B)Wall-shape profiles of diffused oxygen and dissolved oxygen.(C and D)Step-down profiles of diffused oxygen and dissolved oxygen.

    Figure 10 Hypoxia impaired [Ca2+]i signaling of microencapsulated human islets.(A)Representative trace of [Ca2+]i of microencapsulated human islets in response to 25 mmol/L glucose under varying hypoxic concentrations.(B)Statistics of[Ca2+]i changes under hypoxic concentration(n=65 from three experiments.aP<0.05)

    Figure 11 Hypoxia impaired m changes of microencapsulated human islets.(A)Representative traces of Ψm changes of microencapsulated human islets in response to 25 mmol/L glucose under varying hypoxic concentrations.(B)Statistics of Ψm changes under varying hypoxic concentration(n=65 from three experiments. aP< 0.05)

    As shown in Figures 10A and 10B,the changes in calcium influx of the microencapsulated human islets in response to the 25 mmol/L glucose stimulation were dependent on oxygen concentration and consequently,were inhibited by hypoxia. Under normoxia,the average intracellular calcium concentration increased by(10.00±4.16)% in response to the 25 mmol/L glucose stimulation,while hypoxic concentrations decreased intracellular calcium responses to the same stimulation∶(8.19±2.50)% in 10% O2,(3.57±1.18)% in 5% O2,and(1.70±0.64)% in 1% O2.(P < 0.01 when 21%vs. 5% and 1%,as well as P<0.01 when 10% vs.5% and 1%). Similarly,changes in mitochondrial potential,often used as an indicator of cellular energetic status,were also inhibited in an oxygen concentration-dependent manne(r 21%10%5%1%)∶(17.23±3.13)%,(8.83 ±3.53)%,(6.40±2.56)%,and(4.09±1.37)%(P<0.01 when comparing 21%vs. 10%,5% and 1%;P<0.01 when comparing 10%vs. 5% and 1%)as shown in Figure 11A and 11B.This device achieved a high trapping efficacy for microencapsulated islets 〔(99±2)%〕with minimal physical stress on islets. The integration of gas modulation allowed for rapid membrane-diffused oxygenation of islets at the microscale-level. This provided a practical tool useful for studying hypoxia in microencapsulated islets. This is the first report on real-time multiparametric imaging of metabolic changes of microencapsulated islets under hypoxia,a feat previously unachievable using either large hypoxic chambers or existing microfluidic devices. In the future,this device may be used to improve the longterm function and viability of microencapsulated islets prior to transplantation. Specifically,we can consider having encapsulated islets undergo intermittent hypoxia preconditioning(IH)or chemical preconditioning In a previous study,we applied IH preconditioning(1 min/1 min 5-21% cycling for 1 hour)and successfully diminished hypoxic injury in naked islets and improved naked islet insulin secretion42.Additionally,this array-based study laid out the groundwork for developing future assessments in the area of islet microencapsulation and may potentially act as a screening tool for therapeutic agents.In conclusion,this mini review summarized three different microfluidic devices developed in our laboratory used for studying human islet physiology.Microfluidic technology has a potential application in the field of diabetes research and treatment.Future research should focus on the development of microfluidic devices that can be more easily utilized in research laboratories. Specifically,efforts should be directed towards developing pumpless devices and further integrating analytical tools such as electrical components,online hormone assays,and smartphone technologies.

    国产视频一区二区在线看| 成人影院久久| 免费在线观看亚洲国产| 欧美日韩一级在线毛片| 极品人妻少妇av视频| 精品无人区乱码1区二区| 国产熟女午夜一区二区三区| 一边摸一边抽搐一进一小说| 中国美女看黄片| 午夜福利在线观看吧| 欧美人与性动交α欧美精品济南到| 国产97色在线日韩免费| 99国产综合亚洲精品| 国产又色又爽无遮挡免费看| 他把我摸到了高潮在线观看| 国产成人系列免费观看| 欧美午夜高清在线| 亚洲av日韩精品久久久久久密| 国产高清激情床上av| 国产成人系列免费观看| 岛国在线观看网站| 村上凉子中文字幕在线| 叶爱在线成人免费视频播放| 国产97色在线日韩免费| 岛国在线观看网站| 国产欧美日韩一区二区三| 国产成人精品无人区| 国产国语露脸激情在线看| 久久香蕉激情| 久久久久亚洲av毛片大全| 久热爱精品视频在线9| 色老头精品视频在线观看| 丝袜美足系列| 精品久久久精品久久久| 欧美国产精品va在线观看不卡| 一二三四在线观看免费中文在| 老司机靠b影院| 国产亚洲精品第一综合不卡| 神马国产精品三级电影在线观看 | 午夜视频精品福利| 精品久久久久久,| 宅男免费午夜| 91成年电影在线观看| 久久99一区二区三区| 欧美日韩一级在线毛片| 国产日韩一区二区三区精品不卡| 成人18禁高潮啪啪吃奶动态图| 99国产精品免费福利视频| 天堂动漫精品| 亚洲狠狠婷婷综合久久图片| 满18在线观看网站| 日韩大码丰满熟妇| av福利片在线| www.精华液| 亚洲av片天天在线观看| 国产精品乱码一区二三区的特点 | 亚洲 欧美一区二区三区| 日韩免费高清中文字幕av| 国产精品亚洲一级av第二区| 亚洲国产欧美日韩在线播放| 久久国产乱子伦精品免费另类| 免费av毛片视频| 欧美激情极品国产一区二区三区| 欧美成人性av电影在线观看| 午夜免费激情av| 日本vs欧美在线观看视频| 级片在线观看| 日韩免费高清中文字幕av| 久久婷婷成人综合色麻豆| a级片在线免费高清观看视频| 在线观看午夜福利视频| 看免费av毛片| 欧美丝袜亚洲另类 | 欧美日韩av久久| 欧美精品啪啪一区二区三区| 婷婷丁香在线五月| 人人澡人人妻人| 亚洲欧美一区二区三区久久| 国产免费男女视频| 一级毛片精品| videosex国产| av欧美777| 国产一区在线观看成人免费| 国产亚洲精品第一综合不卡| 国产欧美日韩一区二区三| 午夜福利免费观看在线| 一个人观看的视频www高清免费观看 | 国产精品九九99| 精品免费久久久久久久清纯| 青草久久国产| 窝窝影院91人妻| 大型黄色视频在线免费观看| 亚洲中文av在线| 热99re8久久精品国产| 亚洲欧美一区二区三区久久| 久久精品国产亚洲av香蕉五月| 在线观看午夜福利视频| 黄色毛片三级朝国网站| 日韩免费av在线播放| 黄色女人牲交| 午夜免费观看网址| 日日摸夜夜添夜夜添小说| 99久久99久久久精品蜜桃| av国产精品久久久久影院| 国产成人影院久久av| 国产色视频综合| 免费在线观看黄色视频的| 久久久久久亚洲精品国产蜜桃av| 黑人欧美特级aaaaaa片| 成人永久免费在线观看视频| 欧美成人午夜精品| 亚洲少妇的诱惑av| 久久精品国产亚洲av香蕉五月| 亚洲av电影在线进入| 麻豆av在线久日| 国产亚洲欧美98| 人人澡人人妻人| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美国产一区二区入口| 夜夜爽天天搞| 日日爽夜夜爽网站| 亚洲国产精品sss在线观看 | 性欧美人与动物交配| 免费日韩欧美在线观看| 欧美黑人欧美精品刺激| 99热国产这里只有精品6| 午夜91福利影院| 日本欧美视频一区| 如日韩欧美国产精品一区二区三区| 国产成人免费无遮挡视频| 男女午夜视频在线观看| 一边摸一边抽搐一进一小说| 9191精品国产免费久久| 精品国产美女av久久久久小说| 国产精品偷伦视频观看了| 国产精品电影一区二区三区| 啦啦啦免费观看视频1| 亚洲精华国产精华精| 两个人看的免费小视频| 国产精品久久久av美女十八| 在线观看免费日韩欧美大片| 欧美乱码精品一区二区三区| 久久精品国产清高在天天线| 美女 人体艺术 gogo| 老司机深夜福利视频在线观看| 精品一品国产午夜福利视频| 三级毛片av免费| 国产免费男女视频| 长腿黑丝高跟| 人妻久久中文字幕网| 久久香蕉精品热| 色综合站精品国产| 多毛熟女@视频| 亚洲精品中文字幕在线视频| 中文字幕另类日韩欧美亚洲嫩草| 久久人妻av系列| www.自偷自拍.com| 久久精品成人免费网站| 精品久久久精品久久久| 1024香蕉在线观看| 国产精品亚洲av一区麻豆| 成年版毛片免费区| 女性生殖器流出的白浆| 自拍欧美九色日韩亚洲蝌蚪91| 黑人巨大精品欧美一区二区mp4| 在线天堂中文资源库| 97超级碰碰碰精品色视频在线观看| 水蜜桃什么品种好| 国产一区二区三区在线臀色熟女 | 免费在线观看完整版高清| 日韩有码中文字幕| 岛国在线观看网站| videosex国产| 日本三级黄在线观看| 久久久久久免费高清国产稀缺| 露出奶头的视频| 高清av免费在线| 欧美亚洲日本最大视频资源| 男女下面插进去视频免费观看| 国产日韩一区二区三区精品不卡| 一级a爱片免费观看的视频| 丝袜人妻中文字幕| 精品卡一卡二卡四卡免费| 午夜福利欧美成人| 视频区图区小说| 欧美激情久久久久久爽电影 | tocl精华| 成年版毛片免费区| 黄色视频,在线免费观看| 色尼玛亚洲综合影院| 天天躁夜夜躁狠狠躁躁| 嫁个100分男人电影在线观看| 美女福利国产在线| 欧美黄色片欧美黄色片| 熟女少妇亚洲综合色aaa.| 午夜福利,免费看| 久久午夜亚洲精品久久| 成年版毛片免费区| 黄色视频不卡| 制服人妻中文乱码| 亚洲精品在线观看二区| 波多野结衣一区麻豆| 免费日韩欧美在线观看| 国产精品爽爽va在线观看网站 | 亚洲一区二区三区欧美精品| 成人永久免费在线观看视频| 人人妻人人爽人人添夜夜欢视频| 两人在一起打扑克的视频| 变态另类成人亚洲欧美熟女 | 久99久视频精品免费| 亚洲午夜精品一区,二区,三区| 久久精品影院6| 99久久综合精品五月天人人| 久久香蕉精品热| 天堂动漫精品| 国产精品一区二区精品视频观看| 热re99久久精品国产66热6| 男女下面进入的视频免费午夜 | 一级片'在线观看视频| 窝窝影院91人妻| 99久久人妻综合| 国产精品九九99| 国产欧美日韩一区二区精品| 成人永久免费在线观看视频| 女生性感内裤真人,穿戴方法视频| 亚洲精品国产一区二区精华液| 久久久久久人人人人人| 久久精品成人免费网站| 欧美激情久久久久久爽电影 | 人人妻人人澡人人看| 亚洲专区国产一区二区| 日本免费a在线| 欧洲精品卡2卡3卡4卡5卡区| 麻豆成人av在线观看| 99国产极品粉嫩在线观看| 香蕉久久夜色| 精品电影一区二区在线| 亚洲av成人av| 国产精华一区二区三区| 黄色怎么调成土黄色| 999精品在线视频| 亚洲av成人av| 在线观看免费午夜福利视频| 真人做人爱边吃奶动态| 婷婷精品国产亚洲av在线| 亚洲九九香蕉| 老司机午夜福利在线观看视频| 激情在线观看视频在线高清| 男女做爰动态图高潮gif福利片 | 少妇被粗大的猛进出69影院| 91国产中文字幕| 高清欧美精品videossex| 欧美日本中文国产一区发布| 国产精品一区二区免费欧美| 丰满的人妻完整版| 亚洲avbb在线观看| 在线视频色国产色| 日本撒尿小便嘘嘘汇集6| 不卡一级毛片| 中国美女看黄片| 欧美乱色亚洲激情| 嫩草影院精品99| 人人妻人人添人人爽欧美一区卜| 一区二区日韩欧美中文字幕| 亚洲第一欧美日韩一区二区三区| 老熟妇仑乱视频hdxx| 亚洲一区二区三区欧美精品| 午夜激情av网站| 黑丝袜美女国产一区| 黄色a级毛片大全视频| av在线播放免费不卡| 亚洲欧美激情综合另类| 久久婷婷成人综合色麻豆| 日韩人妻精品一区2区三区| 亚洲一区二区三区不卡视频| 亚洲狠狠婷婷综合久久图片| 精品高清国产在线一区| 国产三级黄色录像| 免费在线观看日本一区| 岛国视频午夜一区免费看| 久久久国产一区二区| av天堂在线播放| 一区在线观看完整版| 国产精品1区2区在线观看.| 国产亚洲精品久久久久5区| 亚洲色图综合在线观看| 天堂动漫精品| 制服人妻中文乱码| 久久精品国产清高在天天线| 伦理电影免费视频| 少妇被粗大的猛进出69影院| 多毛熟女@视频| 国产成人系列免费观看| 久久这里只有精品19| 一边摸一边做爽爽视频免费| 亚洲黑人精品在线| 美国免费a级毛片| 国产一区二区激情短视频| 国产日韩一区二区三区精品不卡| 80岁老熟妇乱子伦牲交| 精品午夜福利视频在线观看一区| 精品人妻1区二区| 在线观看免费午夜福利视频| 久久久久久人人人人人| av福利片在线| 日本免费一区二区三区高清不卡 | 午夜免费鲁丝| 欧美黑人欧美精品刺激| 国产成人av激情在线播放| 久久精品国产亚洲av香蕉五月| 精品欧美一区二区三区在线| 久久国产精品男人的天堂亚洲| 很黄的视频免费| 久久久久久人人人人人| 99热国产这里只有精品6| 超碰97精品在线观看| 这个男人来自地球电影免费观看| 侵犯人妻中文字幕一二三四区| 在线看a的网站| 无限看片的www在线观看| videosex国产| 国产亚洲精品综合一区在线观看 | 岛国在线观看网站| 男女下面插进去视频免费观看| 国产成+人综合+亚洲专区| 视频区欧美日本亚洲| 人人妻人人添人人爽欧美一区卜| 老汉色av国产亚洲站长工具| 精品久久久久久久久久免费视频 | 亚洲欧美精品综合久久99| 精品人妻1区二区| 精品国产一区二区久久| 人人妻,人人澡人人爽秒播| 99精品久久久久人妻精品| 妹子高潮喷水视频| 国产欧美日韩一区二区精品| 女人被躁到高潮嗷嗷叫费观| 欧美日韩一级在线毛片| 欧美+亚洲+日韩+国产| av福利片在线| 日韩精品青青久久久久久| 日本一区二区免费在线视频| 欧美+亚洲+日韩+国产| 在线观看免费午夜福利视频| 嫩草影视91久久| 免费在线观看黄色视频的| 少妇粗大呻吟视频| 国产成人一区二区三区免费视频网站| av天堂在线播放| 视频区欧美日本亚洲| av国产精品久久久久影院| 亚洲av成人av| 在线观看免费高清a一片| 19禁男女啪啪无遮挡网站| 怎么达到女性高潮| 久久中文看片网| 中文字幕最新亚洲高清| 男女床上黄色一级片免费看| 亚洲色图综合在线观看| 成人亚洲精品一区在线观看| 女人爽到高潮嗷嗷叫在线视频| 嫩草影院精品99| 精品国产国语对白av| 亚洲人成77777在线视频| 在线观看免费高清a一片| 琪琪午夜伦伦电影理论片6080| 欧美最黄视频在线播放免费 | 天堂影院成人在线观看| 在线免费观看的www视频| 国产高清国产精品国产三级| 免费av毛片视频| 国产高清国产精品国产三级| 亚洲久久久国产精品| 91老司机精品| 国产黄a三级三级三级人| 日日夜夜操网爽| 欧美激情极品国产一区二区三区| 亚洲中文日韩欧美视频| 俄罗斯特黄特色一大片| 在线十欧美十亚洲十日本专区| 日日干狠狠操夜夜爽| 亚洲国产精品合色在线| 一级,二级,三级黄色视频| 欧美精品亚洲一区二区| 午夜免费激情av| 热re99久久精品国产66热6| 真人一进一出gif抽搐免费| 悠悠久久av| 别揉我奶头~嗯~啊~动态视频| 不卡一级毛片| 麻豆av在线久日| 国产成人啪精品午夜网站| 欧美一级毛片孕妇| 亚洲一区中文字幕在线| 国产欧美日韩精品亚洲av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品sss在线观看 | 97超级碰碰碰精品色视频在线观看| 国产精品1区2区在线观看.| 露出奶头的视频| 大码成人一级视频| 悠悠久久av| 人成视频在线观看免费观看| 男男h啪啪无遮挡| 亚洲视频免费观看视频| 十分钟在线观看高清视频www| 身体一侧抽搐| 久久亚洲真实| 国产亚洲精品一区二区www| 久久香蕉国产精品| 成人18禁高潮啪啪吃奶动态图| 巨乳人妻的诱惑在线观看| 国产国语露脸激情在线看| 天堂俺去俺来也www色官网| cao死你这个sao货| 午夜日韩欧美国产| 亚洲久久久国产精品| www.熟女人妻精品国产| 亚洲国产精品sss在线观看 | 国产成人精品久久二区二区免费| 亚洲精品一二三| 男人操女人黄网站| 十八禁人妻一区二区| 高潮久久久久久久久久久不卡| 亚洲欧美日韩无卡精品| 亚洲人成电影免费在线| 国产精品亚洲一级av第二区| 日本a在线网址| 亚洲国产欧美网| 天堂√8在线中文| 国内久久婷婷六月综合欲色啪| 天天躁狠狠躁夜夜躁狠狠躁| 18禁黄网站禁片午夜丰满| 999久久久精品免费观看国产| 交换朋友夫妻互换小说| 国产亚洲精品一区二区www| 欧美日韩中文字幕国产精品一区二区三区 | 国产真人三级小视频在线观看| 日本wwww免费看| 免费在线观看影片大全网站| 国产黄色免费在线视频| 欧美日韩瑟瑟在线播放| 国产午夜精品久久久久久| 精品高清国产在线一区| 久久99一区二区三区| 黑人巨大精品欧美一区二区mp4| 如日韩欧美国产精品一区二区三区| 9191精品国产免费久久| 丝袜美腿诱惑在线| 9热在线视频观看99| 高清毛片免费观看视频网站 | 日韩高清综合在线| 少妇粗大呻吟视频| 国产单亲对白刺激| 18禁国产床啪视频网站| 看片在线看免费视频| 中文字幕人妻丝袜制服| 女同久久另类99精品国产91| 精品熟女少妇八av免费久了| 精品久久久久久,| svipshipincom国产片| 男女床上黄色一级片免费看| 韩国av一区二区三区四区| cao死你这个sao货| 亚洲精品中文字幕在线视频| 国产区一区二久久| 在线永久观看黄色视频| 日日爽夜夜爽网站| 久久精品国产亚洲av高清一级| 国产精品亚洲一级av第二区| 三级毛片av免费| 免费少妇av软件| 制服人妻中文乱码| 亚洲av电影在线进入| 国产精品国产高清国产av| 国产精品偷伦视频观看了| 嫩草影视91久久| av网站在线播放免费| 国产精品免费一区二区三区在线| 色播在线永久视频| a级毛片在线看网站| 亚洲精品国产区一区二| 女人被狂操c到高潮| 一进一出好大好爽视频| 亚洲中文日韩欧美视频| 老鸭窝网址在线观看| 久久婷婷成人综合色麻豆| 国产亚洲欧美98| 婷婷六月久久综合丁香| 国产精品野战在线观看 | 天堂俺去俺来也www色官网| 美女 人体艺术 gogo| 国产又色又爽无遮挡免费看| 一级毛片女人18水好多| 男女之事视频高清在线观看| 妹子高潮喷水视频| 欧美中文日本在线观看视频| 91麻豆精品激情在线观看国产 | 电影成人av| 99久久久亚洲精品蜜臀av| 性欧美人与动物交配| 欧美老熟妇乱子伦牲交| 欧美乱码精品一区二区三区| 国产黄色免费在线视频| 国产精品影院久久| 伦理电影免费视频| 久久久精品欧美日韩精品| 亚洲欧美精品综合一区二区三区| 黄色片一级片一级黄色片| 男人舔女人下体高潮全视频| 国产激情欧美一区二区| 欧美在线一区亚洲| 12—13女人毛片做爰片一| 欧美黄色淫秽网站| 日韩欧美三级三区| 久久精品国产综合久久久| 亚洲五月天丁香| 男人舔女人的私密视频| svipshipincom国产片| 国产亚洲欧美在线一区二区| 午夜激情av网站| 日本一区二区免费在线视频| 精品人妻在线不人妻| 可以在线观看毛片的网站| 狠狠狠狠99中文字幕| 久久婷婷成人综合色麻豆| 真人一进一出gif抽搐免费| 无遮挡黄片免费观看| 成人18禁高潮啪啪吃奶动态图| 亚洲性夜色夜夜综合| 久久国产精品影院| 国产麻豆69| 国产蜜桃级精品一区二区三区| 精品高清国产在线一区| 中亚洲国语对白在线视频| 国产亚洲精品久久久久久毛片| 老司机午夜十八禁免费视频| 宅男免费午夜| 国产免费男女视频| 久9热在线精品视频| 搡老岳熟女国产| 亚洲在线自拍视频| 黄频高清免费视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲avbb在线观看| 久久久国产精品麻豆| 久久国产精品影院| 97超级碰碰碰精品色视频在线观看| 国产一卡二卡三卡精品| 国产伦一二天堂av在线观看| 两性夫妻黄色片| 亚洲国产精品999在线| 黄色a级毛片大全视频| 狠狠狠狠99中文字幕| 久久久久久人人人人人| √禁漫天堂资源中文www| 亚洲av日韩精品久久久久久密| 在线观看66精品国产| 操美女的视频在线观看| 精品乱码久久久久久99久播| 99国产精品一区二区三区| 久久香蕉激情| 久久精品国产亚洲av香蕉五月| 99久久99久久久精品蜜桃| 高清毛片免费观看视频网站 | 日本一区二区免费在线视频| 国产蜜桃级精品一区二区三区| 欧美日韩国产mv在线观看视频| 国产精品偷伦视频观看了| 一级a爱片免费观看的视频| 窝窝影院91人妻| 一级,二级,三级黄色视频| 新久久久久国产一级毛片| 亚洲在线自拍视频| 欧美在线一区亚洲| 亚洲伊人色综图| 久久久久久久久免费视频了| 亚洲一码二码三码区别大吗| 18禁观看日本| 黑人猛操日本美女一级片| 黄色视频,在线免费观看| 亚洲精品在线美女| 熟女少妇亚洲综合色aaa.| 国产成人精品在线电影| 亚洲熟女毛片儿| 婷婷丁香在线五月| 国产免费现黄频在线看| 成人特级黄色片久久久久久久| 精品欧美一区二区三区在线| 视频区欧美日本亚洲| 亚洲成人免费电影在线观看| 少妇的丰满在线观看| 国产三级黄色录像| 国产亚洲精品久久久久久毛片| 久久草成人影院| 女生性感内裤真人,穿戴方法视频| 精品少妇一区二区三区视频日本电影| 国产成人欧美在线观看| 美女高潮到喷水免费观看| 亚洲欧美激情在线| 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产精品麻豆| 精品国产亚洲在线| aaaaa片日本免费| 国产高清激情床上av| 美女 人体艺术 gogo| 中文字幕高清在线视频| 嫩草影院精品99| 9热在线视频观看99| 69精品国产乱码久久久| 亚洲第一av免费看| 亚洲精品国产色婷婷电影| 日韩欧美三级三区| 黄色a级毛片大全视频| 香蕉丝袜av|