• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    人工納米材料吸附放射性核素的機(jī)理研究

    2016-11-11 09:36:28杜毅王建王宏青夏良樹王祥科
    關(guān)鍵詞:納米材料機(jī)理放射性

    杜毅,王建,王宏青,夏良樹,王祥科*

    (1.南華大學(xué)化學(xué)化工學(xué)院,湖南衡陽(yáng)421001;2.華北電力大學(xué)環(huán)境與化學(xué)工程系,北京102206)

    人工納米材料吸附放射性核素的機(jī)理研究

    杜毅1,2,王建2,王宏青1,夏良樹1,王祥科1,2*

    (1.南華大學(xué)化學(xué)化工學(xué)院,湖南衡陽(yáng)421001;2.華北電力大學(xué)環(huán)境與化學(xué)工程系,北京102206)

    人工納米材料因其優(yōu)異的理化性能以及獨(dú)特的微觀結(jié)構(gòu),被廣泛應(yīng)用于航空航天、放射醫(yī)療、建筑、農(nóng)業(yè)等多個(gè)領(lǐng)域,尤其在放射性環(huán)境污染治理方面有著巨大的應(yīng)用價(jià)值和潛力。通過(guò)綜述人工納米材料對(duì)廢水中的放射性核素[U(Ⅵ)、Eu(Ⅲ)、Co(Ⅱ)等]富集、去除等方面的研究,系統(tǒng)討論吸附行為和作用機(jī)理,借助吸附動(dòng)力學(xué)、吸附熱力學(xué)、光譜分析技術(shù)、表面絡(luò)合模型和理論計(jì)算等方法,對(duì)納米材料吸附放射性核素機(jī)理進(jìn)行了深入分析,表明納米材料對(duì)放射性核素具有強(qiáng)吸附能力而在放射性廢水處理領(lǐng)域有著良好的應(yīng)用前景,認(rèn)為在科學(xué)研究和實(shí)際應(yīng)用過(guò)程中,還需開展更多的研究工作,重點(diǎn)應(yīng)放在低成本、高選擇性的功能性納米材料的綠色環(huán)保制備和應(yīng)用。通過(guò)對(duì)前期研究結(jié)果的總結(jié),期望能對(duì)放射性廢物處理以及人工納米材料應(yīng)用等研究提供一些幫助。

    人工納米材料;放射性核素;吸附機(jī)理

    1 前言

    在核電生產(chǎn)、核武器使用等核能利用過(guò)程中,伴隨著大量放射性污染物的排放。尤其是鈾礦開采、冶煉、加工等環(huán)節(jié)所產(chǎn)生的工業(yè)廢水、尾礦、廢渣中放射性核素濃度遠(yuǎn)高于國(guó)家標(biāo)準(zhǔn),從而對(duì)環(huán)境和人類生命健康構(gòu)成巨大的威脅[1-4],同時(shí)存在雙向危害,包含化學(xué)毒性與放射性。其中放射性對(duì)植物、動(dòng)物甚至人體造成潛在的輻照性危害。此外,放射性廢水具有很高的流動(dòng)性,一旦進(jìn)入土壤或者被植物吸收,最終會(huì)在人體內(nèi)富集,給人類健康造成巨大傷害[5-7]。因此,如何快速高效地去除廢水中的放射性核素有著重大的科學(xué)意義和應(yīng)用價(jià)值。

    納米材料是指至少在一個(gè)維度上小于100 nm的材料[8](圖1),按照其不同尺寸,可以分為零維(0D)、一維(1D)、二維(2D)和三維(3D)結(jié)構(gòu)。從零維到三維結(jié)構(gòu),各種納米材料得到廣泛研究并逐步引入到工業(yè)和日常生活中[9-10]。在這個(gè)量級(jí),納米材料會(huì)產(chǎn)生一些特異效應(yīng)[11],比如小尺寸效應(yīng)、表面與界面效應(yīng)、宏觀量子隧道效應(yīng)、量子尺寸效應(yīng)等,由此派生出一些常規(guī)材料所不具有的性能。人工納米材料(Manufactured nanomaterials,MNMs)是指具有這些特殊性能而被人工制造出來(lái)的納米材料[12]。近年來(lái),人工納米材料作為一種新型材料,由于其具有反應(yīng)活性高、比表面積大、吸附性能強(qiáng)等特點(diǎn)在環(huán)境污染治理中受到了極大的關(guān)注和研究[13],特別是在處理放射性核素以及重金屬離子的治理中也起到了重要作用。通常用于放射性核素廢水處理的納米材料有納米吸附材料(碳納米材料、鈦酸鹽納米材料、納米金屬氧化物)、納米還原材料(納米金屬、納米雙金屬)等[14],處理放射性廢水的傳統(tǒng)方法有電解法、萃取法、生物法、吸附法、膜分離法、化學(xué)沉淀法以及離子交換樹脂法等[15],它們各有其優(yōu)缺點(diǎn),具體參見(jiàn)表1。相比于其他方法,吸附法因其高效的去除率和經(jīng)濟(jì)性,以及在廢水處理方面可觀的應(yīng)用價(jià)值,被認(rèn)為是一種應(yīng)用前景非常廣闊的處理放射性廢水的方法[16]。鑒于此,本文簡(jiǎn)單總結(jié)并介紹了人工納米材料對(duì)廢水中放射性核素[U(Ⅵ)、Eu(Ⅲ)、Co(Ⅱ)等]的吸附研究,系統(tǒng)討論了吸附行為和反應(yīng)機(jī)理,并對(duì)納米材料處理廢水中的放射性核素研究趨勢(shì)和未來(lái)前景進(jìn)行了展望。

    2 放射性核素和納米材料的作用機(jī)理

    研究有關(guān)放射性核素和納米材料的相互作用和機(jī)理,對(duì)于評(píng)估放射性廢水處理效果具有重要的科學(xué)意義。放射性核素的去除主要依賴于放射性核素在納米材料與水界面發(fā)生吸附的過(guò)程,因而有必要研究吸附表面形成的物質(zhì)和闡明所涉及的反應(yīng)機(jī)理。然而,不同的納米材料吸附不同放射性核素的反應(yīng)機(jī)理也不同,一般的反應(yīng)機(jī)理包括外層表面絡(luò)合、內(nèi)層表面絡(luò)合、表面共沉淀、氧化還原反應(yīng)等[17]。放射性核素的吸附取決于多種因素,如溫度、pH值、氧化還原條件和與放射性核素形成絡(luò)合物的無(wú)機(jī)或有機(jī)配體的濃度等[18]。此外,放射性核素和納米材料之間的吸附過(guò)程將涉及到放射性核素在吸附表面的積累或通過(guò)氫鍵,分子間作用力或化學(xué)鍵力等進(jìn)入納米材料內(nèi)部時(shí)發(fā)生的各種物理和化學(xué)反應(yīng)[19]。本文采用多種分析技術(shù)如動(dòng)力學(xué)分析、熱力學(xué)分析、光譜技術(shù)、表面絡(luò)合模型和理論計(jì)算等,對(duì)放射性核素在納米材料上吸附形態(tài)和機(jī)理進(jìn)行了分析和討論。

    表1 不同放射性廢水處理方法的比較[14-16]Table 1 Comparison of different methods for the treatment of radioactive wastewater[14-16]

    圖1 納米粒子的尺度與其他材料的尺度對(duì)比[8]Figure 1 Size comparison of nanoparticles with other large-sized materials[8]

    2.1 動(dòng)力學(xué)分析

    為了研究吸附機(jī)理以及吸附時(shí)間和速率,可運(yùn)用動(dòng)力學(xué)模型對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行分析。一般情況下,吸附反應(yīng)在初始階段發(fā)生迅速,然后逐漸減慢,最后達(dá)到吸附平衡狀態(tài)。達(dá)到平衡所需的時(shí)間與吸附質(zhì)、吸附劑、初始濃度和溶液等條件有關(guān)[20]。在吸附動(dòng)力學(xué)的研究中有許多動(dòng)力學(xué)模型[21],其中包括準(zhǔn)一級(jí)、準(zhǔn)二級(jí)、Ritchie和Elovich等動(dòng)力學(xué)模型(表2)。在固液界面吸附效率和遷移過(guò)程是由固體顆粒的表面特性和擴(kuò)散阻力決定[22]的,利用適當(dāng)?shù)膭?dòng)力學(xué)模型對(duì)動(dòng)力學(xué)吸附數(shù)據(jù)擬合,可以分析吸附過(guò)程并對(duì)吸附機(jī)理提供一些有用的信息。

    表2 不同動(dòng)力學(xué)模型的數(shù)學(xué)公式[21-23]Table 2 Functional equations of different kinetics models[21-23]

    磁性納米粒子(Magnetic nanoparticles,MNPs)由于其易分離和低毒性等出色性能而受到了廣泛的關(guān)注和應(yīng)用[24-25],Yang等[26]通過(guò)化學(xué)共沉淀法合成了Fe3O4納米顆粒以及負(fù)載了腐植酸(Humic acid,HA)的Fe3O4磁性復(fù)合材料(Fe3O4@HA),并對(duì)放射性核素Eu(Ⅲ)進(jìn)行了吸附實(shí)驗(yàn)研究,結(jié)果表明準(zhǔn)二級(jí)動(dòng)力學(xué)模型較準(zhǔn)一級(jí)動(dòng)力學(xué)模型更加符合該材料對(duì)Eu(Ⅲ)的吸附過(guò)程。這種現(xiàn)象表明,此吸附過(guò)程是化學(xué)吸附而不是物理吸附。此外,在相同的實(shí)驗(yàn)條件下還發(fā)現(xiàn),F(xiàn)e3O4@HA對(duì)于Eu(Ⅲ)的吸附效果明顯高于Fe3O4納米顆粒,主要是因?yàn)镠A增加了Fe3O4納米顆粒與Eu(Ⅲ)表面的結(jié)合位點(diǎn),提高了吸附效率。

    吸附平衡時(shí)間是評(píng)估納米材料在污水處理方面應(yīng)用潛力的重要因素之一。Wang等[27]運(yùn)用碳熱還原的方法將Fe/Fe3C納米顆粒和多孔碳合成了一種新材料,發(fā)現(xiàn)這種材料對(duì)放射性核素U(Ⅵ)的吸附在20 min內(nèi)就能迅速達(dá)到吸附平衡。這主要是因U(Ⅵ)在材料表面發(fā)生了絡(luò)合作用而能快速達(dá)到吸附動(dòng)力學(xué)平衡,說(shuō)明該材料對(duì)U(Ⅵ)有著非常好的吸附效率,在廢水處理方面將有著良好的應(yīng)用前景。

    2.2 熱力學(xué)分析

    熱力學(xué)研究了包括吸熱、放熱等過(guò)程,而吸附等溫線[28]通常是指在一定溫度和pH下,吸附平衡時(shí)溶質(zhì)分子在固液兩相中濃度之間的關(guān)系曲線。結(jié)合等溫線的物理化學(xué)參數(shù)和基本熱力學(xué)假設(shè)可以更好地理解吸附機(jī)理以及吸附劑的親和性程度。多年來(lái),各種吸附等溫線模型(如Brunauer-Emmett-Teller,Langmuir,F(xiàn)reundlich等)已經(jīng)用來(lái)描述實(shí)驗(yàn)數(shù)據(jù)和其他更廣泛的應(yīng)用[29],不同動(dòng)力學(xué)模型的描述和詳細(xì)參數(shù)見(jiàn)表3。另外,熱力學(xué)參數(shù)如吉布斯自由能(ΔG)、熵變(ΔS)、焓變(ΔH)是理解放射性核素與納米材料相互作用的關(guān)鍵。一般而言,納米材料吸附放射性核素是一個(gè)自發(fā)吸熱過(guò)程。

    Xie等[30]運(yùn)用動(dòng)力學(xué)和熱力學(xué)模型對(duì)磁性羥基磷灰石(Magnetic hydroxyapatite,F(xiàn)e3O4/HAP)納米粒子吸附放射性核素Co(Ⅱ)進(jìn)行了研究,發(fā)現(xiàn)隨著溫度的升高,吸附率也在升高,表明該吸附是一個(gè)吸熱過(guò)程。這是因?yàn)殡S著溫度的升高使得材料孔徑增大,導(dǎo)致表面吸附量增大。另外,溫度的升高也提高了Co(Ⅱ)的溶解速率,降低了溶液黏度,所以高溫有利于Fe3O4/ HAP對(duì)Co(Ⅱ)的吸附。此外,在吸附熱力學(xué)的研究中,Cheng等[31]的研究表明,相對(duì)于Freundlich和D-R等溫線模型,β-環(huán)糊精-凹凸棒石(β-cyclodextrin-attapulgite,β-CD-APT)納米材料對(duì)于放射性核素U(Ⅵ)的吸附更符合Langmuir等溫線模型,說(shuō)明U(Ⅵ)在β-CD-APT納米棒上的吸附是一個(gè)單層吸附。相關(guān)熱力學(xué)參數(shù)(ΔG、ΔS、ΔH)表明,該反應(yīng)是一個(gè)自發(fā)吸熱過(guò)程。

    在納米材料表面改性領(lǐng)域,等離子體處理技術(shù)是一種非常有效而且新穎的方法。特別是近幾年,低溫

    等離子誘導(dǎo)接枝技術(shù)以其高時(shí)效性和無(wú)溶劑的特性可在大范圍內(nèi)引入不同官能團(tuán)的性質(zhì)受到了極大的關(guān)注[32-33]。Yang等[34]通過(guò)此技術(shù)并在氮?dú)獗Wo(hù)下將N,N-二甲基丙烯酰胺(poly-N,N-dimethylacrylamide,PNDA)與多壁碳納米管(Multiwalled carbon nanotube,MWCNT)合成了MWCNT/PNDA復(fù)合材料,研究了在20、40、60℃下MWCNT/PNDA對(duì)Co(Ⅱ)的吸附等溫線,結(jié)果顯示高溫有利于對(duì)Co(Ⅱ)的吸附,表明這是一個(gè)吸熱反應(yīng)。由于Co(Ⅱ)可與-NH2,-O-和C=C鍵發(fā)生配位作用而結(jié)合,使得Co(Ⅱ)在納米材料上發(fā)生了外層表面絡(luò)合。另外,MWCNT/PNDA對(duì)Co(Ⅱ)的最大吸附量達(dá)到22.78 mg·g-1,比MWCNT的吸附量(9.02 mg·g-1)高2.5倍。這是因?yàn)镸WCNT/ PNDA表面的氨基官能團(tuán)與Co(Ⅱ)發(fā)生了強(qiáng)有力的結(jié)合作用使得表面物理性質(zhì)(比表面積和孔體積分布)發(fā)生了顯著變化,說(shuō)明低溫等離子誘導(dǎo)接枝技術(shù)在不破壞材料結(jié)構(gòu)的情況下,在納米材料表面修飾功能化分子而明顯提高了MWCNT對(duì)Co(Ⅱ)的吸附能力。

    表3 不同吸附模型的等溫線方程[7,28-29]Table 3 Functional equations of different sorption models[7,28-29]

    2.3 光譜技術(shù)分析

    為了更加可靠和長(zhǎng)期地預(yù)測(cè)放射性核素的遷移行為、相互作用機(jī)理以及在固液界面發(fā)生的反應(yīng)過(guò)程,需要在分子水平上更好地分析放射性核素在界面的形態(tài)和結(jié)構(gòu),光譜技術(shù)可用來(lái)直接分析放射性核素和表面吸附位點(diǎn)之間形成的表面復(fù)合物的結(jié)構(gòu)和化學(xué)特性。隨著對(duì)放射性核素更多研究工作的開展和研究的深入,光譜技術(shù)也得到了迅速的發(fā)展[35-36]。擴(kuò)展X射線吸收精細(xì)結(jié)構(gòu)光譜(Extended X-ray absorption fine structure spectroscopy,EXAFS),X射線光電子能譜(X-ray photoelectric spectroscopy,XPS),熒光時(shí)間衰減光譜(Time resolved laser fluorescence spectroscopy,TRLFS),傅里葉變換紅外光譜法(Fourier transformed infrared spectroscopy,F(xiàn)TIR)等多種光譜技術(shù)[37]可以在分子水平上對(duì)放射性核素吸附機(jī)理進(jìn)行分析。

    EXAFS技術(shù)由于其高能量可以確定X射線吸收中心原子的局部原子結(jié)構(gòu)等關(guān)鍵信息,在分析放射性核素與納米材料的相互作用機(jī)理和在納米材料表面的化學(xué)形態(tài)和微觀結(jié)果等分子水平上的信息方面,具有重要的幫助作用,其測(cè)量和分析過(guò)程如圖2所示。Sun等[38]采用靜態(tài)法和EXAFS光譜法研究了氧化石墨烯(Graphene oxide,GO)納米片對(duì)放射性核素Eu(Ⅲ)的吸附機(jī)理,發(fā)現(xiàn)隨著pH從6.3增加到9.0,第一配位殼(Eu-O軌道)的配位數(shù)由6.69減少到6.02,Eu-C的鍵長(zhǎng)也發(fā)生了變化,表明Eu(Ⅲ)和GO納米片相互作用的機(jī)理主要是內(nèi)層表面絡(luò)合。此外,在EXAFS光譜分析對(duì)納米凹凸棒石吸附Eu(Ⅲ)的研究[39]中發(fā)現(xiàn),在HA存在的情況下,隨著HA的增加,Eu-O的鍵長(zhǎng)和配位數(shù)也隨之發(fā)生了改變;HA的添加順序不同時(shí),也會(huì)使凹凸棒石吸附Eu(Ⅲ)的結(jié)果發(fā)生變化。這說(shuō)明Eu(Ⅲ)存在著不同的結(jié)構(gòu)(圖3),使得HA在不同的添加順序下,凹凸棒石吸附Eu(Ⅲ)的機(jī)理和形態(tài)發(fā)生了改變。類似情況下,X射線吸收近邊結(jié)構(gòu)光譜(X-rayabsorptionnearedgespectroscopy,XANES)可以提供有關(guān)幾何形狀和氧化態(tài)的圖譜信息。Sun等[41]通過(guò)化學(xué)共沉淀法將納米零價(jià)鐵(Nanoscale zero-valent iron,nZVI)修飾到還原氧化石墨烯(Reduced graphene oxide,rGO)制備了nZVI/rGO復(fù)合物,XANES光譜分析結(jié)果表明,復(fù)合物的邊緣位置和形狀發(fā)生了細(xì)微的變化。這說(shuō)明隨著反應(yīng)時(shí)間增加,U(Ⅵ)還原為U(Ⅳ)的程度也顯著增加,使其與材料發(fā)生了內(nèi)層表面絡(luò)合作用,而rGO上的-OH官能團(tuán)以及表面富集的Fe2+,提高了其對(duì)于U(Ⅵ)的反應(yīng)

    速率和吸附能力。因此,光譜技術(shù)研究結(jié)果對(duì)于理解放射性核素在自然環(huán)境中的物理化學(xué)行為非常重要。

    2.4 表面絡(luò)合模型分析

    圖2 EXAFS光譜分析的應(yīng)用過(guò)程Figure 2 Application of EXAFS spectroscopy analysis

    圖3 Eu(Ⅲ)的微觀結(jié)構(gòu)[39-40]Figure 3 Different imaginary micro-structures of Eu(Ⅲ)[39-40]

    在過(guò)去的幾十年間,表面絡(luò)合模型(Surface complexation models,SCMs)已經(jīng)用于描述固液界面的吸附過(guò)程,并在多個(gè)科學(xué)領(lǐng)域中得到了廣泛的應(yīng)用[42]。SCMs包括三種模型:擴(kuò)散層模型(Diffuselayer model,DLM),恒定電容模型(Constant-capacitance model, CCM),三電層模型(Triplelayermodel,TLM)。不同的SCMs參數(shù)總結(jié)[17,43]如表4所示。其中,DLM是最簡(jiǎn)單也是對(duì)納米材料吸附放射性核素應(yīng)用最廣的模型,而TLM是最復(fù)雜的模型,包括五個(gè)可調(diào)參數(shù)。DLM和TLM都可用于分析表面官能團(tuán)和表面絡(luò)合反應(yīng)的質(zhì)子化和去質(zhì)子化過(guò)程。

    Ding等[44]采用雙層擴(kuò)散模型(Diffuse double layer model,DDLM)并在FITEQL軟件的幫助下對(duì)Eu(Ⅲ)

    和U(Ⅵ)在GO納米片上的吸附進(jìn)行了研究,發(fā)現(xiàn)pH在2到9的范圍內(nèi)時(shí),其主要的吸附反應(yīng)可用下列反應(yīng)式表示:

    由圖4可知,DDLM模型可以很好地描述GO對(duì)于Eu(Ⅲ)和U(Ⅵ)的吸附過(guò)程,其吸附機(jī)理主要是由于GO上的含氧官能團(tuán)的作用。另外發(fā)現(xiàn)U(Ⅵ)的lgK值是高于Eu(Ⅲ)的,證實(shí)了GO對(duì)于U(Ⅵ)的吸附量是大于Eu(Ⅲ)的,與其所做的靜態(tài)實(shí)驗(yàn)和吸附等溫線結(jié)果一致。

    SCMs在模擬電位酸堿滴定和吸附實(shí)驗(yàn)中也有應(yīng)用。Zhang等[45]用靜態(tài)法結(jié)合XPS光譜法和DLM對(duì)碳納米纖維(Carbon nanofibers,CNFs)吸附放射性核素U(Ⅵ)的吸附能力和機(jī)理進(jìn)行了研究,實(shí)驗(yàn)結(jié)果表明,吸附等溫線很好地?cái)M合了DLM模型。當(dāng)pH在3到5范圍內(nèi)變化時(shí),吸附量隨著pH值增加而增加,最大吸附率達(dá)95%,而隨著離子強(qiáng)度的增大,吸附量幾乎沒(méi)有發(fā)生改變,說(shuō)明CNFs對(duì)U(Ⅵ)的吸附受離子強(qiáng)度影響非常小,其吸附機(jī)理主要是內(nèi)層表面絡(luò)合。此外,解吸和再生實(shí)驗(yàn)表明,CNFs在常見(jiàn)的鈉鹽中具有良好的重復(fù)利用性和穩(wěn)定性。因此,CNFs作為一種新型環(huán)保納米材料,在環(huán)境污染治理中可得到廣泛應(yīng)用。

    表4 不同的表面絡(luò)合模型的參數(shù)總結(jié)[17,43]Table 4 Summary of parameters for different surface complexation models[17,43]

    圖4 雙層擴(kuò)散模型的吸附擬合分析[44]Figure 4 Simulation of adsorption of U(Ⅵ)and Eu(Ⅲ)with a diffuse double-layer model[44]

    2.5 理論計(jì)算

    隨著計(jì)算技術(shù)的發(fā)展和實(shí)驗(yàn)方法的完善,理論計(jì)算作為一種有效的工具在化學(xué)研究中經(jīng)常使用。作為重要的理論計(jì)算工具之一,密度泛函理論(Density functional theory,DFT)因其以非常有效的方式計(jì)算相關(guān)能量和形態(tài)的能力在計(jì)算化學(xué)領(lǐng)域得到很好的推廣[46]。DFT通常是用于描述在局部相互作用表面分子的吸收,結(jié)合光譜分析(TRLFS、EXAFS、XPS等)測(cè)量結(jié)果進(jìn)行研究分析,能在原子水平上更好地解釋納米材料對(duì)放射性核素的吸附過(guò)程。

    近年來(lái),碳納米管(Carbon nanotubes,CNTs)對(duì)Eu(Ⅲ)和243Am(Ⅲ)的吸附已有研究報(bào)道[47-48],Wang等[49]采用靜態(tài)法結(jié)合光譜分析以及理論計(jì)算研究了Eu(Ⅲ)和243Am(Ⅲ)在CNTs的吸附,發(fā)現(xiàn)CNTs對(duì)于Eu(Ⅲ)的吸附明顯強(qiáng)于對(duì)243Am(Ⅲ)的吸附,這表明CNTs對(duì)Eu(Ⅲ)和243Am(Ⅲ)可能存在著不同的反應(yīng)機(jī)理(圖5),基于DFT的計(jì)算結(jié)果顯示,Eu(Ⅲ)與CNTs的鍵能要比243Am(Ⅲ)與CNTs的鍵能高許多,說(shuō)明Eu(Ⅲ)能與CNTs形成更穩(wěn)定的官能團(tuán),解釋了Eu(Ⅲ)和243Am(Ⅲ)與CNTs上不同含氧官能團(tuán)的作用機(jī)理。研究結(jié)果對(duì)CNTs在環(huán)境污染凈化中富集、遷移、分離三價(jià)鑭系元素和錒系元素的應(yīng)用有著重要的指導(dǎo)意義。

    由于以GO為基體的材料在核廢料處理中的應(yīng)用前景廣闊[50],研究GO與放射性核素的反應(yīng)機(jī)理具有重要意義。Wu等[51]運(yùn)用DFT計(jì)算研究了四種不同改性GO與錒系元素Np(Ⅴ)和Pu(Ⅳ,Ⅵ)離子的反應(yīng)機(jī)理,結(jié)果表明:相對(duì)Np(Ⅴ)和Pu(Ⅵ)離子,Pu(Ⅳ)與改性GO形成了更多的共價(jià)配位鍵,因而更容易與改性GO相結(jié)合,進(jìn)而更有效地被吸附去除。由它們?cè)谌芤褐信cGO的結(jié)合能可知,GO對(duì)于錒系元素的吸附能力遵循的順序是:Pu(Ⅳ)>Pu(Ⅵ)>Np(Ⅴ)。這為開發(fā)更有效的GO類納米材料來(lái)處理放射性廢水可提供非常有用的信息。

    綜上所述,理論計(jì)算在理解和描述放射性核素的形態(tài)以及與納米材料相互作用機(jī)理(例如,涉及到的表面吸附、外延生長(zhǎng)和替代過(guò)程等)等方面發(fā)揮著重要作用,對(duì)于研究和評(píng)價(jià)放射性核素在環(huán)境中的化學(xué)行為也有一定的參考價(jià)值。

    3 結(jié)論與展望

    本文概述了納米材料對(duì)廢水中放射性核素[U(Ⅵ)、Eu(Ⅲ)、Co(Ⅱ)等]的吸附及其研究現(xiàn)狀,采用吸附動(dòng)力學(xué)、吸附熱力學(xué)、表面絡(luò)合模型、光譜技術(shù)和理論計(jì)算等方法簡(jiǎn)單分析和討論了主要的吸附機(jī)理。通過(guò)與其他材料的對(duì)比(表5和表6)可以發(fā)現(xiàn),人工納米材料的吸附性能明顯優(yōu)于一般吸附材料,人工納米材料在放射性廢水處理領(lǐng)域具有可觀的應(yīng)用前景,相信在不久的將來(lái),納米材料可能會(huì)成為廢水凈化和處理系統(tǒng)設(shè)施中不可缺少的組成部分。然而,隨著納米材料和納米技術(shù)的迅速發(fā)展和應(yīng)用,越來(lái)越多的負(fù)面問(wèn)題也顯現(xiàn)出來(lái),比如,大量的納米材料不可避免被排放到環(huán)境中,必將對(duì)環(huán)境產(chǎn)生一定的影響。此外,在保證安全和高效的前提下,放射性廢水處理中如此大量的納米材料投入使用,如何以一個(gè)經(jīng)濟(jì)可行的價(jià)格在工業(yè)中廣泛應(yīng)用也將會(huì)是一個(gè)現(xiàn)實(shí)的問(wèn)題和瓶頸。因此,未來(lái)研究的方向應(yīng)該是努力解決這些問(wèn)題以及重點(diǎn)放在低成本、高選擇性、更環(huán)保的功能性納米材料上。另一方面,任何一種單一的分析方法都有著其自身的優(yōu)點(diǎn)和缺點(diǎn)(表7),比如DFT能很好地描述吸附反應(yīng)和機(jī)理,但在計(jì)算不同結(jié)構(gòu)的能量時(shí),其準(zhǔn)確性又比較低。因此,需要將多種不同的分析方法和技術(shù)結(jié)合起來(lái)進(jìn)行相互補(bǔ)充,根據(jù)模擬、計(jì)算、實(shí)驗(yàn)、實(shí)踐的結(jié)果來(lái)得到更加完善和精確的信息,同時(shí)期望未來(lái)能出現(xiàn)更多新穎的分析方法,以便進(jìn)一步揭示納米材料與放射性核素的作用機(jī)理。總之,隨著納米科學(xué)與技術(shù)的發(fā)展,更多的研究精力與興趣將投入到納米材料的開發(fā)和應(yīng)用中,反過(guò)來(lái),這也將推動(dòng)納米科學(xué)與技術(shù)更好的發(fā)展。

    圖5 Eu(Ⅲ)和243Am(Ⅲ)與碳納米管的相互作用[49]Figure 5 The interaction of Eu(Ⅲ)and243Am(Ⅲ)with CNTs[49]

    表5 不同人工納米材料對(duì)放射性核素的最大吸附量對(duì)比Table 5 Comparison of the maximum adsorption capacities of radionuclides on different manufactured nanomaterials

    表6 不同吸附材料對(duì)放射性核素的最大吸附量對(duì)比Table 6 Comparison of the maximum adsorption capacities of radionuclides on different adsorbents

    表7 不同分析方法的優(yōu)、缺點(diǎn)[7,17,20,23]Table 7 Advantages and disadvantages for different analytical approaches[7,17,20,23]

    [1]Chakravarty R,Dash A.Nanomaterial-based adsorbents:The prospect of developing new generation radionuclide generators to meet future research and clinical demands[J].Journal of Radioanalytical and Nuclear Chemistry,2013,299(1):741-757.

    [2]Kitamura A,Kirishima A.Recent activities in the field of nuclear waste management[J].Journal of Nuclear Science and Technology,2014,52(3):448-450.

    [3]唐世榮,商照榮,宋正國(guó),等.放射性核素污染土壤修復(fù)標(biāo)準(zhǔn)的若干問(wèn)題[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2007,26(2):407-412.

    TANG Shi-rong,SHANG Zhao-rong,SONG Zheng-guo,et al.Some issues related to cleanup standards for remediation of radionuclide contaminated soils[J].Journal of Agro-Environment Science,2007,26(2):407-412.

    [4]Shi W Q,Yuan L Y,Li Z J,et al.Nanomaterials and nanotechnologies in nuclear energy chemistry[J].Radiochimica Acta,2012,100(8/9):727-736.

    [5]Khin M M,Nair A S,Babu V J,et al.A review on nanomaterials for environmental remediation[J].Energy&Environmental Science,2012,5(8):1-33.

    [6]Savage N,Diallo M S.Nanomaterials and water purification:Opportunities and challenges[J].Journal of Nanoparticle Research,2005,7(4/5):331-342.

    [7]王祥學(xué),李潔,于淑君,等.放射性核素在天然黏土和人工納米材料上的吸附機(jī)理研究[J].核化學(xué)與放射化學(xué),2015,37(5):329-340.

    WANG Xiang-xue,LI Jie,YU Shu-jun,et al.Sorption mechanism of radionuclides on clay minerals and manmade nanamaterials[J].Journal of Nuclear and Radiochemistry,2015,37(5):329-340.

    [8]Amin M T,Alazba A A,Manzoor U.A review of removal of pollutants from water/wastewater using different types of nanomaterials[J].Advances in Materials Science and Engineering,2014,2014:1-24.

    [9]Wu R,Zhou K,Yue C Y,et al.Recent progress in synthesis,properties and potential applications of SiC nanomaterials[J].Progress in Materials Science,2015,72:1-60.

    [10]鐘來(lái)元,沐楊昌,楊杰文.不同尺寸納米針鐵礦表面性質(zhì)及其對(duì)Cr(Ⅵ)吸附量的比較[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(11):2120-2125.

    ZHONG Lai-yuan,MU Yang-chang,YANG Jie-wen.Surface properties and Cr(Ⅵ)adsorption of nano-goethite of different sizes[J].Journal of Agro-Environment Science,2015,34(11):2120-2125.

    [11]朱世東,周根樹,蔡銳,等.納米材料國(guó)內(nèi)外研究進(jìn)展Ⅰ[J].熱處理技術(shù)與裝備,2010,31(3):1-5. ZHU Shi-dong,ZHOU Gen-shu,CAI Rui,et al.Research of the nanomaterialsathomeandabroadⅠ[J].HeatTreatmentTechnology&Equipment,2010,31(3):1-5.

    [12]Hischier R,Nowack B,Gottschalk F,et al.Life cycle assessment of fa?ade coating systems containing manufactured nanomaterials[J]. Journal of Nanoparticle Research,2015;17(2):1-13.

    [13]Xie K,Wang X X,Liu Z J,et al.Synthesis of flower-like α-Fe2O3and its application in wastewater treatment[J].Journal of Zhejiang University Science A,2014,15(18):671-680.

    [14]盛國(guó)棟,楊世通,郭志強(qiáng),等.納米材料和納米技術(shù)在核廢料處理中的應(yīng)用研究進(jìn)展[J].核化學(xué)與放射化學(xué),2012,34(6):321-330.

    SHENG Guo-dong,YANG Shi-tong,GUO Zhi-qiang,et al.Research progress of nanomaterials and nanotechnology in the application to nuclear waste management[J].Journal of Nuclear and Radiochemistry,2012,34(6):321-330.

    [15]Li J X,Hu J,Sheng G D,et al.Effect of pH,ionic strength,foreign ions and temperature on the adsorption of Cu(Ⅱ)from aqueous solution to GMZ bentonite[J].Colloids and Surfaces A,2009,349(1-3):195-201.

    [16]Yang X,Yang S B,Yang S T,et al.Effect of pH,ionic strength and temperature on sorption of Pb(Ⅱ)on NKF-6 zeolite studied by batch technique[J].Chemical Engineering Journal,2011,168(1):86-93.

    [17]Tan X L,Ren X M,Chen C L,et al.Analytical approaches to the speciation of lanthanides at solid-water interfaces[J].TrAC Trends in Analytical Chemistry,2014,61:107-132.

    [18]Sheng G D,Shen R P,Dong H P,et al.Colloidal diatomite,radionickel,and humic substance interaction:A combined batch,XPS,and EXAFS investigation[J].Environmental Science and Pollution Research International,2013,20(6):3708-3717.

    [19]Kentona R,Wooyong U,Markus F.Transport of strontium and cesium in simulated hanford tank waste leachate through quartz sand under saturated and unsaturated flow[J].Environmental Science&Technology,2010,44(21):8089-8094.

    [20]Yu S J,Wang X X,Tan X L,et al.Sorption of radionuclides from aqueous system onto graphene oxide-based materials:A review[J].Inorganic Chemistry Frontiers,2015,2(7):593-612.

    [21]Ho Y S.Review of second-order models for adsorption systems[J]. Journal of Hazardous Materials,2006,136(3):681-689.

    [22]Wu F C,Tseng R L,Huang S C,et al.Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption:A mini-review[J].Chemical Engineering Journal,2009,151(1-3):1-9.

    [23]Zhao G X,Wu X L,Tan X L,et al.Sorption of heavy metal ions from aqueous solutions:A review[J].The Open Colloid Science Journal,2011,4:19-31.

    [24]Chen L,Xu J,Hu J.Removal of U(Ⅵ)from aqueous solutions by using attapulgite/iron oxide magnetic nanocomposites[J].Journal of Radioanalytical and Nuclear Chemistry,2012,297(1):97-105.

    [25]Liu M C,Chen C L,Hu J,et al.Synthesis of magnetite/graphene oxide composite and application for cobalt(Ⅱ)removal[J].The Journal of Physical Chemistry C,2011,115(51):25234-25240.

    [26]Yang S T,Zong P F,Ren X M,et al.Rapid and highly efficient preconcentration of Eu(Ⅲ)by core-shell structured Fe3O4@humic acid magnetic nanoparticles[J].ACS Applied Materials&Interfaces,2012,4(12):6891-6900.

    [27]Wang X X,Zhang S W,Li J X,et al.Fabrication of Fe/Fe3C@porous carbon sheets from biomass and their application for simultaneous reduction and adsorption of uranium(Ⅵ)from solution[J].Inorganic Chemistry Frontiers,2014,1(8):641-648.

    [28]Hu R,Wang X K,Dai S Y,et al.Application of graphitic carbon nitride for the removal of Pb(Ⅱ)and aniline from aqueous solutions[J]. Chemical Engineering Journal,2015,260:469-477.

    [29]Foo K Y,Hameed B H.Insights into the modeling of adsorption isotherm systems[J].Chemical Engineering Journal,2010,156(1):2-10.

    [30]Xie H Q,Wu D L,Jiao Z,et al.Kinetic and thermodynamic sorption study of radiocobalt by magnetic hydroxyapatite nanoparticles[J].Journal of Radioanalytical and Nuclear Chemistry,2011,292(2):637-647.

    [31]Cheng W C,Ding C C,Sun Y B,et al.The sequestration of U(Ⅵ)on functional β-cyclodextrin-attapulgitenanorods[J].Journal of Radioanalytical and Nuclear Chemistry,2014,302(1):385-391.

    [32]Ren X M,Yang S T,Shao D D,et al.Retention of Pb(Ⅱ)by a lowcost magnetic composite prepared by environmentally-friendly plasma technique[J].Separation Science and Technology,2013,48(8):1211-1219.

    [33]Song W C,Wang X X,Wang Q,et al.Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J].Physical Chemistry Chemical Physics,2015,17(1):398-406.

    [34]Yang S B,Shao D D,Wang X K,et al.Localized in situ polymerization on carbon nanotube surfaces for stabilized carbon nanotube dispersions and application for cobalt(Ⅱ)removal[J].RSC Advances,2014,4(10):48-56.

    [35]Sun Y B,Chen C L,Tan X L,et al.Enhanced adsorption of Eu(Ⅲ)on mesoporousAl2O3/expandedgraphitecompositesinvestigatedby macroscopic and microscopic techniques[J].Dalton Transactions,2012,41(43):13388-13394.

    [36]Ren X M,Yang S B,Hu F C,et al.Microscopic level investigation of Ni(Ⅱ)sorption on Na-rectorite by EXAFS technique combined with statistical F-tests[J].Journal of Hazardous Materials,2013,252-253:2-10.

    [37]Yang S T,Zong P F,Sheng G D,et al.New insight into Eu(Ⅲ)sorption mechanism at alumina/water interface by batch technique and EXAFS analysis[J].Radiochimica Acta,2014,102(1/2):143-153.

    [38]Sun Y B,Wang Q,Chen C L,et al.Interaction between Eu(Ⅲ)and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques[J]. Environmental Science&Technology,2012,46(11):6020-6027.

    [39]Fan Q H,Tan X L,Li J X,et al.Sorption of Eu(Ⅲ)on attapulgite studied by batch,XPS,and EXAFS techniques[J].Environmental Science&Technology,2009,43(15):5776-5782.

    [40]Sheng G D,Yang S T,Li Y M,et al.Retention mechanisms and microstructure of Eu(Ⅲ)on manganese dioxide studied by batch and high resolution EXAFS technique[J].Radiochimica Acta,2014,102(1/2):155-167.

    [41]Sun Y B,Ding C C,Cheng W C,et al.Simultaneous adsorption and reduction of U(Ⅵ)on reduced graphene oxide-supported nanoscale zerovalent iron[J].Journal of Hazardous Materials,2014,280:399-408.

    [42]Sun Y B,Li J,Wang X K.The retention of uranium and europium onto sepiolite investigated by macroscopic,spectroscopic and modeling techniques[J].Geochimicaet Cosmochimica Acta,2014,140:621-643.

    [43]范橋輝.放射性核素在固-液界面吸附行為研究[D].蘭州大學(xué). 2011.

    FAN Qiao-hui.The investigation of radionuclides sorption on solidwater interface[D].Lanzhou University.2011.

    [44]Ding C C,Cheng W C,Sun Y B,et al.Determination of chemical affinity of graphene oxide nanosheets with radionuclides investigated by macroscopic,spectroscopic and modeling techniques[J].Dalton Transactions,2014,43(10):3888-3896.

    [45]Zhang R,Chen C L,Li J X,et al.Investigation of interaction between U(Ⅵ)and carbonaceous nanofibers by batch experiments and modeling study[J].Journal of Colloid and Interface Science,2015,460:237-246.

    [46]Wu Q Y,Wang C Z,Lan J H,et al.Theoretical investigation on multiple bonds in terminal actinide nitride complexes[J].Inorganic Chemistry,2014,53(18):9607-9614.

    [47]Wang X K,Chen C L,Hu W P,et al.Sorption of243Am(Ⅲ)to multiwall carbon nanotubes[J].Environmental Science&Technology,2005,39(8):2856-2860.

    [48]Chen C L,Wang X K,Nagatsu M.Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylicacid[J].EnvironmentalScience&Technology,2009,43(7):2362-2367.

    [49]Wang X X,Yang S T,Shi W Q,et al.Different interaction mechanisms of Eu(Ⅲ)and243Am(Ⅲ)with carbon nanotubes studied by batch,spectroscopy technique and theoretical calculation[J].Environmental Science&Technology,2015,49(19):11721-11728.

    [50]Zhao G X,Wen T,Chen C L,et al.Synthesis of graphene-based nanomaterials and their application in energy-related and environmentalrelated areas[J].RSC Advances,2012,2(25):9286-9303.

    [51]Wu Q Y,Lan J H,Wang C Z,et al.Understanding the interactions of neptunium and plutonium ions with graphene oxide:Scalar-relativistic DFT investigations[J].The Journal of Physical Chemistry A,2014,118(44):10273-10280.

    [52]Zhao Y G,Li J X,Zhang S W,et al.Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U(Ⅵ)[J].RSC Advances,2014,4(62):32710-32717.

    [53]Shao D D,Hou G S,Li J X,et al.PANI/GO as a super adsorbent for the selective adsorption of uranium(Ⅵ)[J].Chemical Engineering Journal,

    2014,255:604-612.

    [54]Chen H,Shao D D,Li J X,et al.The uptake of radionuclides from aqueous solution by poly(amidoxime)modified reduced graphene oxide[J].Chemical Engineering Journal,2014,254:623-634.

    [55]Xing M,Xu L,Wang J L.Mechanism of Co(Ⅱ)adsorption by zero valent iron/graphene nanocomposite[J].Journal of Hazardous Materials,2016,301:286-296.

    [56]Song W C,Hu J,Zhao Y,et al.Efficient removal of cobalt from aqueous solution using β-cyclodextrin modified graphene oxide[J].RSC Advances,2013,3(24):9514-9521.

    [57]Li J,Chen C L,Zhang R,et al.Reductive immobilization of Re(Ⅶ)by graphene modified nanoscale zero-valent iron particles using a plasma technique[J].Science China Chemistry,2015,59(1):150-158.

    [58]Gao Y,Chen C L,Chen H,et al.Synthesis of a novel organic-inorganic hybrid of polyaniline/titanium phosphate for Re(Ⅶ)removal[J].Dalton Transactions,2015,44(19):8917-8925.

    [59]Wen T,Wu X L,Liu M C,et al.Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites[J].Dalton Transactions,2014,43(20):7464-7472.

    [60]Ding C C,Cheng W C,Sun Y B,et al.Novel fungus-Fe3O4bionanocomposites as high performance adsorbents for the removal of radionuclides[J].Journal of Hazardous Materials,2015,295:127-137.

    [61]Missana T,García G M,F(xiàn)ernńdez V.Uranium(Ⅵ)sorption on colloidal magnetite under anoxic environment:Experimental study and surface complexation modeling[J].Geochimicaet Cosmochimica Acta,2003,67(14):2543-2550.

    [62]Mellah A,Chegrouche S,Barkat M.The removal of uranium(Ⅵ)from aqueous solutions onto activated carbon:Kinetic and thermodynamic investigations[J].Journal of Colloid and Interface Science,2006,296(2):434-441.

    [63]Tomohiko O,Yusuke E,Makoto O.Adsorption of Eu3+to smectites and fluoro-tetrasilicic mica[J].Clays and Clay Minerals,2007,55(4):348-353.

    [64]Tan X L,F(xiàn)ang M,Li J X,et al.Adsorption of Eu(Ⅲ)onto TiO2:Effect of pH,concentration,ionic strength and soil fulvic acid[J].Journal of Hazardous Materials,2009,168(1):458-465.

    [65]Huang Y,Chen L,Wang H L.Removal of Co(Ⅱ)from aqueous solution by using hydroxyapatite[J].Journal of Radioanalytical and Nuclear Chemistry,2011,291(3):777-785.

    [66]Bhatnagar A,Minocha A K,Sillanp?? M.Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent[J].Biochemical Engineering Journal,2010,48(2):181-186.

    [67]Ma B,Oh S,Shin W S,et al.Removal of Co2+,Sr2+and Cs+from aqueous solution by phosphate-modified montmorillonite(PMM)[J].Desalination,2011,276(1-3):336-346.

    [68]Zhao Y,Shao Z Y,Chen C L,et al.Effect of environmental conditions on the adsorption behavior of Sr(Ⅱ)by Na-rectorite[J].Applied Clay Science,2014,87:1-6.

    [69]Shan W J,F(xiàn)ang D W,Zhao Z Y,et al.Application of orange peel for adsorption separation of molybdenum(Ⅵ)from Re-containing industrial effluent[J].Biomass and Bioenergy,2012,37:289-297.

    [70]Zhang H X,Wang X Y,Liang H H,et al.Adsorption behavior of Th(Ⅳ)onto illite:Effect of contact time,pH value,ionic strength,humic acid and temperature[J].Applied Clay Science,2016,127-128:35-43.

    Research on sorPtion mechanism of radionuclides by manufactured nanomaterials

    DU Yi1,2,WANG Jian2,WANG Hong-qing1,XIA Liang-shu1,WANG Xiang-ke1,2*
    (1.College of Chemistry and Chemical Engineering,University of South China,Hengyang 421001,China;2.School of Environment and Chemical Engineering,North China Electric Power University,Beijing 102206,China)

    Manufactured nanomaterials have attracted multidisciplinary interest because of their special unique microstructures and exceptional physicochemical properties.The nanomaterials have been applied in many areas such as aerospace,medical radiology,construction,agriculture and environmental pollution remediation,especially in radioactive waste management.This review summarizes the manufactured nanomaterials and their applications in the efficient removal of radionuclides[such as U(Ⅵ),Eu(Ⅲ),Co(Ⅱ)]from wastewater,and the main interaction mechanism are discussed from the results of kinetics analysis,thermodynamic analysis,spectroscopic techniques,surface complexation models and theoretical calculations.The high sorption of radionuclides on nanomaterials is mainly attributed to the high surface area and large amount of oxygen-containing functional groups,which can form strong surface complexes with radionuclides on solid particles.The sorption is mainly attributed to outer-sphere surface complexation at low pH,and dominated by inner-sphere surface complexation or(co)precipitation at high pH,which is also evidenced from the DFT calculations.The nanomaterials are suitable materials for the elimination of radionuclides from wastewater.However,it is necessary to carry out more research works focusing on the development of low cost,high selective and more environmental friendly functional nanomaterials in scientific interests and practical applications in future. Keywords:manufactured nanomaterials;radionuclides;sorption mechanism

    X591

    A

    1672-2043(2016)10-1837-11

    10.11654/jaes.2016-0493

    杜毅,王建,王宏青,等.人工納米材料吸附放射性核素的機(jī)理研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(10):1837-1847.

    DU Yi,WANG Jian,WANG Hong-qing,et al.Research on sorption mechanism of radionuclides by manufactured nanomaterials[J].Journal of Agro-Environment Science,2016,35(10):1837-1847.

    2016-04-12

    國(guó)家自然科學(xué)基金項(xiàng)目(21225730,91326202,21577032);中央高校業(yè)務(wù)費(fèi)(JB2015001);湖南省芙蓉學(xué)者項(xiàng)目

    杜毅(1990—),男,湖北黃岡人,碩士研究生,放射化學(xué)專業(yè)。E-mail:duyi9083@163.com

    *通信作者:王祥科E-mail:xkwang@ncepu.edu.cn,xkwang@ipp.ac.cn

    猜你喜歡
    納米材料機(jī)理放射性
    武器中的納米材料
    學(xué)與玩(2022年8期)2022-10-31 02:41:56
    居里夫人發(fā)現(xiàn)放射性
    隔熱纖維材料的隔熱機(jī)理及其應(yīng)用
    二維納米材料在腐蝕防護(hù)中的應(yīng)用研究進(jìn)展
    煤層氣吸附-解吸機(jī)理再認(rèn)識(shí)
    霧霾機(jī)理之問(wèn)
    放射性家族個(gè)性有不同 十面埋“輻”你知多少
    MoS2納米材料的制備及其催化性能
    來(lái)自放射性的電力
    太空探索(2015年10期)2015-07-18 10:59:20
    DNTF-CMDB推進(jìn)劑的燃燒機(jī)理
    眉山市| 连平县| 辽阳县| 闵行区| 茌平县| 吴忠市| 海原县| 龙山县| 台中县| 七台河市| 兴山县| 唐海县| 横峰县| 镇康县| 广平县| 大田县| 蒙山县| 中西区| 淅川县| 陆川县| 黔西县| 惠水县| 镇安县| 富蕴县| 顺义区| 马边| 双江| 玛沁县| 澎湖县| 永登县| 庆阳市| 湄潭县| 梧州市| 开原市| 阿拉尔市| 濮阳县| 集安市| 拉萨市| 安乡县| 乡宁县| 巴南区|