• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient characterization for M{2,3},M{2,4}and M{2,3,4}

    2016-11-11 06:35:22ZHENGDaosheng
    關(guān)鍵詞:子集刻畫廣義

    ZHENG Dao-sheng

    (Department of Mathematics,East China Normal University,Shanghai200241,China)

    Efficient characterization for M{2,3},M{2,4}and M{2,3,4}

    ZHENG Dao-sheng

    (Department of Mathematics,East China Normal University,Shanghai200241,China)

    Article ID:1000-5641(2016)02-0009-11

    集合A到集合B上的一個一一映射f稱為B的一個有效刻畫.本文提出的選逆象指標(biāo)法(SIIIM)給出集到象集的一個有效刻畫公式,并證明了B1是I{2,3}s的稠密子集,且I{2,3}s的每個元素都與B1的某個元素置換相似.利用上述結(jié)果,分別建立了I{2,3}和長方陣廣義逆矩陣類M{2,3}的有效刻畫公式.再利用等式I{2,3}s=I{2,4}s=I{2,3,4}s,進(jìn)一步獲得了M{2,4},M{2,3,4}的有效刻畫公式.算法3.1可用于無重復(fù)地計算I{2,3}s的任一個元素.

    廣義逆的有效刻畫;矩陣的奇異值分解;正交投影矩陣;映射公式的逆象指數(shù)集;稠密子集

    0 Introduction

    Reference to the glossary of notation in[1],some notations are described here∶

    (a)The four Penrose equations can be written as∶For each M∈Cm×n,we have M{1}={X∶MXM=M};M{2}={X∶XMX=X};M{3}={X∶MX=(MX)?};M{4}={X∶XM=(XM)?}.

    (b)M{2,3,4}s={X∶rank(X)=s,X∈M{2}∩M{3}∩M{4}}.

    (c)The t×t identity matrix is denoted as Itor I.The set of all n×s isometric matrices is denoted as ISMn,s={Z∶Z∈Cn×s,Z?Z=Is}.The set of all n×n orthogonal projection matrices is denoted as OPMn={Y∶Y=Y?=Y2∈Cn×n}.

    (d)Let M=(mp,q)∈Cm×n,1≤i1<···<ik≤m,1≤j1<···<jh≤n,then M(i1, ···,ik;j1,···,jh)?(mit,jl)is called a k×h submatrix of M.Especially,M(i1,···,ik;1,2,···, n)is denoted as M(i1,···,ik).The square matrix M(i1,···,ik;i1,···,ik)is called a k×k principle submatrix of M.

    The problem of efficient characterization for a class of generalized inverse matrices is described in[1,§2.8].Reference to Ben-Israel's term,a definition is given here.

    Definition 0.1Let a characterization formula(CF)from a set X with nxvariables ontoAccording to[1],this CF has ns arbitrary parameters).If for each β∈B,the inverse image set f-1(β)={α∶f(α)=β,α∈X}has just one element, then f(X)is called an efficient characterization formula(ECF).If there exists β∈B such that f-1(β)is an infinite set,then f(X)is a nonefficient formula(NECF).

    For a NECF,as α ranges over the entire set X,then there exists β∈B such that this β will be obtained repeatedly an infinite number of times!And the NECF must have redundant arbitrary parameter.

    In[1],four ECFs for M{1},M{1,3},M{1,4}and M{1,2}are given.has the SVD∶is given.Two characterization formulas for M{1}are

    We know formula(i)is just(2.4)in[1],and it has nm arbitrary parameters.Formula(ii)has nm-r2arbitrary parameters and is an ECF for M{1}.So(i)has r2redundant arbitrary parameters and is a NECF.The last fact shows that compared with a relevant NECF for B,the first merit of an ECF is that it has no redundant arbitrary parameters.We further find that the ECF can be used to more penetratingly and distinctly reveal the structure of set B.Notice that the number of the arbitrary parameters in an ECF B=fe(Xe)is less than that in the relevant NECF B=f(Xne).When an element of B is computed,the number of arithmetical operation of fe(Xe)is denoted as newhile the relevant number of the NECF is denoted as nne. Generally we have ne<nne.In other words,the computational complexity neof fe(Xe)is less than nne.

    If the redundant arbitrary parameters in a NECF are eliminated, an ECF will be estab lished.The problem is how can we eliminate the redundant arbitrary parameters.A natural idea is if in each inverse image set f-1(β)of a given β,an index element αβ∈X is selected,and all these index elements form a inverse image index set XB?X,then we obtain an ECF B=f(XB).The above idea is temporarily called as selecting inverse image index method(SIIIM).

    Notice that M{1}is the solution set of a linear matrix equation MXM=M while M{2}is the solution set of a nonlinear matrix equation.So establishing an ECF for M{2}might be more difficult than that for M{1}.

    After an ECF for M{2}is given in[6],in this paper three ECFs for M{2,3},M{2,4}and M{2,3,4}are established respectively.

    We first consider the case of M{2,3}.Theorem 2.1 shows that each CF for I{2,3}scan be used as a base of a CF for M{2,3}.Lemma 1.1 means if I=In,then Y∈I{2,3}??Y=Y2=Y?∈OPMnand

    Theorem 2.6 and 2.7 in[1]show that if 0then

    We find that in(0.2),if M=I,then we obtain(0.1).We can show that(0.2)and(0.3)are two NECFs.

    If the current result Lemma 1.1(4)is used to generate the isometric matrix Z1∈ISMn,s,then Theorem 1.1 is a SIIIM,and is an ECF from A1onto B1(see Definition 1.1(4)).Theorem 1.2 shows that B1is a proper subset of I{2,3}sand I{2,3}sis the union set of its some subsets,and each of these subsets is isometry with B1.And each element of I{2,3}sis permutation similar to an element of B1.Then the ECFs for I{2,3}s,I{2,3}are established respectively.

    Theorem 1.3 shows that B1is a dense subset of I{2,3}s.

    The ECFs for M{2,3},M{2,4}and M{2,3,4}are obtained in§2 respectively.

    A feasible algorithm,Algorithm 3.1,is designed in§3.It can be used to realize(1.3(ii)).

    1 Efficient characterization for I{2,3}

    Lemma 1.1Assume I=In.Then

    (1)I{2,3}=I{2,4}=I{2,3,4}={Y∶Y2=Y=Y?∈Cn×n}=OPMn.

    (2)I{2,3}0=I{2,4}0=I{2,3,4}0={0},I{2,3}n=I{2,4}n=I{2,3,4}n={In}.

    (5)Y2=Y=Y?such that Y=ZZ?and Z?Z=Is.

    Proof(1)By the Penrose equations,it is easy to prove(1).

    The proofs of(2)and(4)are omitted.

    (5)“?”When Y=ZZ?,and Z?Z=Is,we have Y2=Y=Y?.

    “?”Since Y?=Y,we can assume that the SVD of Y iswhere U=(U1,U2)satisfiesThen Y=Y2means Σs=I and

    Definition 1.1Assume 0<s≤n.

    (3)Ii,jis obtained by exchanging the i,j-th rows of I.Define

    (4)For any n,s with 0<s<n,define

    Theorem 1.1Let β=Y Y?,Y=Y(1,···,n)∈Then

    (1)β2=β=β???Y?Y=Is.

    Proof(1)Lemma 1.1(5)means(1)holds.

    (2)Lemma 1.1 means Y?Y=Is.It is obvious that W(1,···,s)?? Y(1,···,s)If Y(1,2,···,s),set η=Y(s+1,···,n)Y-1(1,2,···,s),α?=(Is,η?)∈A1,we obtain β=Y Y?=f(α)∈B1.Conversely,if β=Y Y?∈B1with Y(1,···,s)∈t<s,then(Is+η?η)-1=Y(1,···,s)?Y(1,···,s).This contradiction means(1.1)holds.

    Remark 1.1(1)(1.2)is an ECF from A1onto B1and it has(n-s)s arbitrary parameters while(0.1)has ns arbitrary parameters.Later,this result is enlarged to the I{2,3}scase,and we will show I{2,3}s≠B1?I{2,3}s.

    (2)Denote W1={W∶W(1,···,s)∈Y1={Y∶Y∈Cn×s,Y(1,···,s)∈,Y?Y =Is}.Then βw=W(W?W)-1W?=WW?,βy=Y Y?=Y Y?and βα=α(α?α)-1α?=αα?are three FCs for the orthogonal projection matrix set B1?OPMn,where α=(Is,ηT)T∈Cn×s∈A1.Then in Theorem 1.1,A1is the inverse image index set of B1with respect to the original image set Y1or W1,and the ECF βαis a SIIIS.

    (1)Assume L(i1,···,is)=Is,i.e.,lij=j=1,···,s,whereis the j-th row of Is. Denote Gt=L(1,2,···,it-1)∈(i1=1 means G1=?),(e.g.,assume n=8,s=3,i1=2,i2=4,i3=7,then G1=(l1),G(1)=L(1,4,7),G2=L(1,2,3),G(2)=L(1,2,3,7),G3=L(1,2,3,4,5,6),G(3)=G3).Then Lfns=L(i1,···,is)?? the t-th column of G(t)(denoted as g(t))is 0,t=1,2,···,s?? the t-th column of Gt(denoted as gt)is 0 or ?,t=1,2,···,s.

    Proof(1)It is easy to show that g(t)=0 if and only if gt=0 or ?,t=1,···,s.Thus,for any t,the row intersection set of L(i1,···,is)(=Is)and G(t)has s-1 rows,they form a matrixThe t-th column ofis zero.Assume that g(t)has a component lh,t≠0,then lhis not a row ofObviously,h<it.

    (i)If h<i1,then(h,i1,···,it-1,it+1,···,is)?(i1,···,is),and we have L(h,i1,···,it-1, it+1,···,is)∈This is a contradiction.

    (ii)If ik<h<ik+1≤it-1,then(i1,···,ik,h,ik+1,···,it-1,it+1,···,is)?(i1,···,is),and L(i1,···,ik,h,ik+1,···,it-1,it+1,···,is)∈,also a contradiction.

    (iii)If it-1≤h<it,then(i1,···,it-1,h,it+1,···,is)?(i1,···,is),and L(i1,···,it-1,h, it+1,···,is)is nonsingular.Again,we obtain a contradiction!So we obtain g(t)=0,t=1, ···,s.

    “?”We want to prove that if(j1,···,js)?(i1,···,is)then L(j1,j2,···,js)is singular. For example,assume js=is,js-1<is-1,i.e.,(j1,···,js)?(i1,···,is),then L(j1,···,js)is a s×s submatrix of G(s-1).Hence L(j1,···,js)is singular.And so forth.Thus Lfns= L(i1,···,is).

    (2)An example is used to explain our conclusion.

    Assume n=4 and s=2.Then we obtain Pφ(2,4)=I1,2I2,4,(Pφ(2,4)L)(2,4)=(2,4)=L(1,2),and

    Theorem 1.2Let L=L(1,···,n)∈,β=LL?,L?L=Is.Then

    (2)Bl?I{2,3}s,1≤l≤g,and B1is a proper subset of I{2,3}swhen s<n.

    (3)We have

    Proof(1)Lemma 1.2 and Theorem 1.1 mean L(i1,···,is)=(1,···,s)∈??∈B1?? β∈Bφ(i1,···,is).

    (3)For each β=LL?∈I{2,3}swith L?L=Is,L∈one can always find a submatrix L(i1,···,is)∈So by(1),β∈=Bl.Thus(1.3(i))and(1.3(ii))hold.

    Remark1.2(1)Theorem 1.2 means I{2,3}sis completely dependent on s(n-s)arbitrary parameters while the formula in Lemma 1.1(3)has ns arbitrary parameters and has s2redundant arbitrary parameters.

    (2)Given a permutation matrix P and a matrix X,we have‖PXPT‖2=‖X‖2[1,4].So(1.3(i))means I{2,3}sis the union set of its g isometry subsets.In fact if β∈I{2,3}s,then there exists γ∈B1such that β=PγPT,where P∈Pn,s.

    Although(1.3(i))has no redundant arbitrary parameter,but it is a multivalue mapping from A1onto I{2,3}sand Definition 0.1 is not suitable for it.When n>s>0,l≠t,we can showand some repeated computation may appear when some elements of I{2,3}sare computed by(1.3(i)),e.g.,set n=3,s=1,By(1.3(i)),β may be computed three times.

    (1.3(ii))is a single valued mapping from A onto I{2,3}sand it is an ECF.In§3,an algorithm,Algorithm 3.1,is designed to realize(1.3(ii))concretely.

    (3)From Lemma 1.1(3),Theorem 2.1 and Theorem 2.2,two kinds of computation formulas for β∈I{2,3}sare established.They are βy=Y(Y?Y)-1Y?and βα=α(α?α)-1α?,where α?=(Is,η?),Y∈It is already shown that βyis a NECF,while βαis an ECF and it is a special case of βy.In order to obtain a βy∈B1,we must test the rank of Y while we always have rank(α)=s.

    From the numerical computation point of view[1,3],the representation βαis sometimes numerical unstable,because sometimes,the numerical result of α?α might be a singular or illconditioned matrix.In order to overcome this difficulty,two plans proposed here∶(i)Assumethat the SVD of α isthen α(α?α)-1α?is replaced by(ii) Compute an orthogonal decomposition of α=QR=Q1R1,R1∈by Householder or Civens transformations.Then we have α(α?α)-1α?=Generally,the SVD method has higher precision while the orthogonal decomposition method has lower computation complexity. Details of this problem are omitted here.

    Theorem1.3Given n,s,0<s<n.Then in the metric spaces,B1is a dense subset of I{2,3}s.

    This theorem tells us that sometimes,only the elements of B1need be computed.In this case Algorithm 3.1 can be simplified greatly!

    2 Efficientcharacterization ofM{2,3},M{2,4} and M{2,3,4}

    Theorem 2.1Let the SVD of M∈be>···>σt>0,whereV?V=In.Then

    (2.1)is an ECF and has(r-s)s+(n-r)s=(n-s)s arbitrary parameters.But(0.2)has ns arbitrary parameters.

    (2.2)is an ECF and has(r-s)s+(m-r)s=(m-s)s arbitrary parameters.But(0.3)has ms arbitrary parameters,and it is a relevant NECF of(2.2).

    (4)We have

    Theorem 1.1 and Theorem 1.2 mean that if we take α=(Is,η?η)T∈(Z1)l=thenl=1,···,gr,s,is an ECF from A?onto I{2,3}s.Hence(2.1)holds.

    (3)We know(2.3)holds?? (2.1)and(2.2)hold.Thus X∈I{2,3,4})?? X12=0,We then obtainDenote

    From the fact σi≠σjwhen i≠j,1≤i,j≤t,we obtain=(σi/σj)Qi,j=(σj/σi)Qi,j,Qi,j=0 when i≠j,1≤i,j≤t.So=diag(Q11,···,Qtt).The fact(ΣX11)2= ΣX11means σiQii=(Qiiσi)?=(σiQii)2.

    From Theorem 1.1 and Theorem 1.2,we obtain(2.3).If t=r,then r1=···=rt=1,and we obtain σiQii=(1)or(0),i=1,···,r(=t).So M{2,3,4}has just 2relements.

    (4)We know(2.3)and MXM=M mean(2.4)holds.

    Remark 2.1(1)Through a complex deducing process,a characterization for M{2,3,4}is given in Ben-Israel's book(cf.[1,Ex.2.72-2.77]).

    But the efficiency of(2.7)is not considered there.

    (2)By the way,the result‘M{2,3,4}has 2relements?? t=r'is just the conclusion of[1,Ex.2.76].

    3 An algorithm

    Now we prepare to design an algorithm to realize(1.3(ii))concretely.

    In Definition 1.1(1),for each α=(i1,···,is)∈O(n,s),the function value l=φ(α)can be obtained recursively by following relations∶

    (r-i)s=1 means φ(i1)=i1,1≤i1≤n.

    (r-ii)Given s>1.If for some p,we have 1≤p≤s≤n,ik-1+1=ikwhen k≤p,and ip+1<ip+1,then φ(i1,···,is)+1=φ(1,···,p-1,ip+1,ip+1,···,is).Especially we have φ(1,···,s)=1,φ(is-s+1,is-s+2,···,is)=gis,s,and φ(n-s+1,···,n)=gn,s.

    (r-iii)If s>p≥1 and(i1,···,ip,ip+1,···,is)∈O(n,s)with ip+1<ip+1,ik+1=ik+1when s≥k≥p+1,then φ(i1,···,is)=φ(is-s+1,···,is)-(φ(is-s+1,···,is-s+p)-φ(i1,···,ip))=gis,s-gis-s+p,s-p+φ(i1,···,ip).For example,φ(2,3,5,6)=φ(3,4,5,6)-(φ(3,4)-φ(2,3))=15-(6-3)=12.φ(2,4,6)=φ(4,5,6)-(φ(4,5)-φ(2,4)),φ(2,4)= φ(3,4)-(φ(3)-φ(2))=6-(3-2)=5,φ(4,5)=10,φ(4,5,6)=20.So φ(2,4,6)=15.Indeed,in Table 1,we have φ(2,3,5,6)=12 and φ(2,4,6)=15.

    Definition 1.1(1)also means for given s≤ n,andthe functionsatisfiesis the inverse function of φ.if n<m,thenl= 1,···,gn,s.So for given s<+∞,we can assume that an increasing function φsis defined onThus,a table,Table 1,can be designed as follows∶when l≥1, the(l+1,1)entry is the inverse function value l=where αl=(i1,···,is)is the l-th‘smallest'element of Os.The(l+1,s+1)entry is(i1,···,is).

    Lemma3.1Let α=Y=(Is,ηT)T∈A1,β1(α)=f(α)=f(Y)=Y(Y?Y)-1Y?∈B1.βl(α)Then

    Proof The proof of the lemma is omitted.

    Algorithm 3.1 Given n,s satisfy 0<s<n.As α ranges over the entire class A,we can‘efficient'obtain I{2,3}s.

    Step 1 For l=1,2,···,gn,s,compute Pl.As the first point,take an element α=Y=(Is,ηT)T∈A1.

    Tab.1 Function φsand

    Tab.1 Function φsand

    ls 1 2 3 4 ··· 1 (1)?。?,2)?。?,2,3) (1,2,3,4) ··· 2?。?)?。?,3)?。?,2,4) (1,2,3,5) ··· 3?。?)?。?,3)?。?,3,4) (1,2,4,5) ··· 4?。?) (1,4)?。?,3,4)?。?,3,4,5) ··· 5?。?)?。?,4) (1,2,5)?。?,3,4,5) ··· 6?。?)?。?,4)?。?,3,5) (1,2,3,6) ··· 7?。?)?。?,5)?。?,3,5)?。?,2,4,6) ··· 8?。?)?。?,5)?。?,4,5) (1,3,4,6) ··· 9?。?)?。?,5)?。?,4,5)?。?,3,4,6) ··· 10?。?0)?。?,5)?。?,4,5)?。?,2,5,6) ··· 11?。?1)?。?,6)?。?,2,6)?。?,3,5,6) ··· 12?。?2) (2,6)?。?,3,6)?。?,3,5,6) ··· 13?。?3)?。?,6) (2,3,6)?。?,4,5,6) ··· 14 (14)?。?,6)?。?,4,6)?。?,4,5,6) ··· 15?。?5)?。?,6)?。?,4,6)?。?,4,5,6) ··· ... ... ... ... ... ...

    Step 2 Compute β1(α)=(Is,ηT)T(Is+η?η)-1(Is,η?),and β1is stored.

    Step 3 For l=2,···,gn,scompute Yl==PlY.Assume Pl=For Yl.if in G(t),g(t)equals 0,t=1,···,s,then compute

    Step 4 If the stop condition is not satisfied,take next element of A1.Go to Step 2.

    Step 5 End.

    Theorem 3.1When α ranges over the entire class A1Algorithm 3.1 can be used to efficiently realize(1.3(ii)).

    ProofIn Step 2,α=(P1Y)=Y1∈A1is used to compute β1(α)=f(α)∈B1=C1.So as α ranges over the entire class A1,each element of C1will be obtained just at a time.In Step 3,when h=2,P2α=Y2is considered.According to Lemma 1.2(1),for Y2,only when g(t)=0, t=1,···,s,is computed.It means each element of B2may be observed at a time,only when this observed element is an element of C2,then it is computed and stored.

    When 2<h≤s,using Lemma 1.2(1)we can also show that each element of Chis computed at just a time.

    In a word,Algorithm 3.1 is an‘efficient'characterization from

    Remark 3.1We can show that in Step 3 of Algorithm 3.1,the work to test‘whether or not g(t)=0,t=1,···,s'can be deleted in most cases(see Example 3.1 and Lemma 3.2).

    Lemma 3.2Let Y=Y(1,···,n)=(yi,j)∈A1(i.e.,Y(1,2,···,s)=Is).For each(i1, ···,is),assume Pl=Pφ(i1,···,is),l>1,and Yl=PlY=((yl)i,j)∈Al.Denote(gl)t=((yl)1,t, ···,(yl)it-1,t),t=1,···,s.Then ys+1,s≠0 means(gl)s≠0,l=2,···,g.

    ProofNotice that(gl)shas is-1 components.It is easy to show if l>1,then is≥s+1. And is≥s+1 means ys+1,sis a component of(gl)s.

    Example 3.1To observe Algorithm 3.1 by some numerical examples.Assume n=4,s=2.Then gn,s=6,φ(1,2)=1,φ(1,3)=2,φ(2,3)=3,φ(1,4)=4,φ(2,4)=5,and φ(3,4)= 6.P1=Pφ(1,2)=I4,P2=Pφ(1,3)=I2,3=(e1,e3,e2,e4),P3=Pφ(2,3)=I1,2I2,3=(e2,e3,e1,e4),P4=Pφ(1,4)=I2,4=(e1,e4,e3,e2),P5=Pφ(2,4)=I1,2I2,4=(e2,e4,e3,e1)and P6=Pφ(3,4)= I1,3I2,4=(e3,e4,e1,e2).

    In α(1)case,(α(1)?α(1))-1=I2.For βl(α(1))=f(αl(1)),l=2,···,6,we find=0,l= 2,···,6,t=1,2.For example,when l=3,α3(1)=P3α(1)=Then i1=2,β3(α(1))=(0,e2,e3,0).So βl(α(1))=f(αl(1))are all computed for any l≥1.

    In α(3)case,it is easy to show that each of the 2×2 submatrix of α(3)is nonsingular. So only β1(α(3))is computed.Of course,by Lemma3.2,from the fact that the(3,2)element of α(3)is nonzero,we can also say that only β1(α(3))needs to be computed.

    [References]

    [1]BEN-ISRAEL A,GREVILLE T N E.Generalized Inverse:Theory and Applications(2nd Edition)[M].New York:Springer-Verlag,2003.

    [2]BUSINGER P A,GOLUB G H.Algorithm 358,singular value decomposition of a complex matrix[F1,4,5][J]. Comm Assoc Comp Mach,1969,12(10):564-565.

    [3]GOLUB G H,VAN LOAN C F.Matrix Computations(3rd Edition)[M].Baltimore:Johns Hopkins University Press,1996.

    [4]GOLUB G H,KAHAN W.Calculating the singular value and pseudo-inverse of a matrix[J].SIAM J Num Anal Ser,1965,2(2):205-224.

    [5]HORN R A,JOHNSON C R.Matrix Analysis[M].Cambridge:Cambridge University Press,1990.

    [6]ZHENG D S.Efficient characterization for I{2}and M{2}[J].J East China Normal University,2015,179(1):42-50.

    (責(zé)任編輯:林磊)

    In this paper,by selecting inverse image index method,an efficient characterization formula from setonto setis given.Besides,it is shown that each element of I{2,3}sis permutation similar to an element of B1.Then efficient characterization formulas for I{2,3}and M{2,3}are obtained respectively.An interesting thing is B1is a dense subset of I{2,3}s. The fact that I{2,3}s=I{2,4}s=I{2,3,4}senables us to obtain the efficient characterization formulas for M{2,4}and M{2,3,4}fluently.Algorithm 3.1 may be used to compute elements of I{2,3}sand to avoid the repeated computation work.

    efficient characterization of classes of generalized inverses;singular value decomposition(SVD);orthogonal projection matrix;inverse image index set of a mapping formula;dense subset

    O151.21;O177.7Document code:A

    M{2,3},M{2,4}和M{2,3,4}的有效刻畫

    征道生

    (華東師范大學(xué) 數(shù)學(xué)系,上海200241)

    10.3969/j.issn.1000-5641.2016.02.002

    2014-08

    征道生,男,教授,研究方向?yàn)閿?shù)值代數(shù)與矩陣論.E-mail:dszheng@math.ecnu.edu.cn.

    猜你喜歡
    子集刻畫廣義
    由一道有關(guān)集合的子集個數(shù)題引發(fā)的思考
    Rn中的廣義逆Bonnesen型不等式
    拓?fù)淇臻g中緊致子集的性質(zhì)研究
    關(guān)于奇數(shù)階二元子集的分離序列
    從廣義心腎不交論治慢性心力衰竭
    刻畫細(xì)節(jié),展現(xiàn)關(guān)愛
    有限群的廣義交換度
    每一次愛情都只是愛情的子集
    都市麗人(2015年4期)2015-03-20 13:33:22
    ?(?)上在某點(diǎn)處左可導(dǎo)映射的刻畫
    Potent環(huán)的刻畫
    97在线视频观看| 亚洲不卡免费看| 国产免费又黄又爽又色| 日本-黄色视频高清免费观看| 国产精品秋霞免费鲁丝片| 搡老乐熟女国产| 一本大道久久a久久精品| a级毛片黄视频| 妹子高潮喷水视频| 人人妻人人爽人人添夜夜欢视频| 日韩人妻高清精品专区| 18禁裸乳无遮挡动漫免费视频| 18禁在线播放成人免费| 少妇人妻精品综合一区二区| 欧美精品高潮呻吟av久久| 久久久久久久久久久免费av| 国产极品粉嫩免费观看在线 | 精品99又大又爽又粗少妇毛片| 亚洲性久久影院| a级毛片在线看网站| 午夜激情久久久久久久| 亚洲情色 制服丝袜| 王馨瑶露胸无遮挡在线观看| 老熟女久久久| 精品国产露脸久久av麻豆| 成人国产麻豆网| 丰满迷人的少妇在线观看| 国产黄色视频一区二区在线观看| 久热这里只有精品99| 国产成人精品无人区| 爱豆传媒免费全集在线观看| 我要看黄色一级片免费的| 精品亚洲乱码少妇综合久久| 色网站视频免费| 国产精品秋霞免费鲁丝片| 久久国产亚洲av麻豆专区| 欧美日韩亚洲高清精品| 成人免费观看视频高清| 亚洲伊人久久精品综合| 国模一区二区三区四区视频| 国产亚洲av片在线观看秒播厂| 99精国产麻豆久久婷婷| 桃花免费在线播放| av不卡在线播放| 久久久a久久爽久久v久久| 黑丝袜美女国产一区| 菩萨蛮人人尽说江南好唐韦庄| 一二三四中文在线观看免费高清| 亚洲不卡免费看| 人人妻人人澡人人爽人人夜夜| 最黄视频免费看| 久久人人爽av亚洲精品天堂| 如何舔出高潮| 少妇高潮的动态图| 国产极品粉嫩免费观看在线 | 亚洲精品一二三| 这个男人来自地球电影免费观看 | 欧美激情极品国产一区二区三区 | 91久久精品国产一区二区成人| 在线亚洲精品国产二区图片欧美 | 日本欧美国产在线视频| 免费看av在线观看网站| 国产毛片在线视频| 国产午夜精品久久久久久一区二区三区| 国产精品免费大片| 亚洲成人手机| 精品人妻一区二区三区麻豆| 国产精品一区二区在线观看99| 成人国产麻豆网| 精品少妇内射三级| av在线老鸭窝| 边亲边吃奶的免费视频| 搡老乐熟女国产| 久久精品久久久久久久性| av专区在线播放| 国产免费现黄频在线看| 日日撸夜夜添| 国产精品嫩草影院av在线观看| 国产色婷婷99| 高清黄色对白视频在线免费看| 亚洲av福利一区| 久久久久网色| 欧美变态另类bdsm刘玥| 最新的欧美精品一区二区| 国产高清国产精品国产三级| 亚洲成人一二三区av| 欧美人与善性xxx| 美女主播在线视频| 能在线免费看毛片的网站| 日本91视频免费播放| 制服丝袜香蕉在线| 午夜久久久在线观看| 51国产日韩欧美| 国产不卡av网站在线观看| av在线观看视频网站免费| 久久人人爽av亚洲精品天堂| 蜜桃久久精品国产亚洲av| 国产淫语在线视频| 大陆偷拍与自拍| 97超视频在线观看视频| 中文乱码字字幕精品一区二区三区| 秋霞伦理黄片| 国产精品成人在线| 免费观看无遮挡的男女| 精品亚洲成国产av| 久久热精品热| 日本av手机在线免费观看| 纯流量卡能插随身wifi吗| 日韩熟女老妇一区二区性免费视频| 九九久久精品国产亚洲av麻豆| 一区二区三区免费毛片| 精品视频人人做人人爽| 只有这里有精品99| 久久97久久精品| 亚洲人与动物交配视频| 日本欧美视频一区| 国产精品国产三级专区第一集| 9色porny在线观看| 在线亚洲精品国产二区图片欧美 | 久久午夜福利片| 亚洲av综合色区一区| 亚洲国产日韩一区二区| 色婷婷av一区二区三区视频| 欧美日韩av久久| 尾随美女入室| 免费人妻精品一区二区三区视频| 精品久久蜜臀av无| 下体分泌物呈黄色| 不卡视频在线观看欧美| 女人精品久久久久毛片| 午夜激情福利司机影院| 看十八女毛片水多多多| 欧美精品国产亚洲| 国产无遮挡羞羞视频在线观看| 大香蕉久久网| 777米奇影视久久| 狂野欧美激情性bbbbbb| 成年人免费黄色播放视频| 一区二区av电影网| 热99国产精品久久久久久7| 久热这里只有精品99| 日本av免费视频播放| 嫩草影院入口| 日韩欧美一区视频在线观看| 久久精品久久久久久噜噜老黄| 好男人视频免费观看在线| 黄色欧美视频在线观看| 成人黄色视频免费在线看| 亚洲高清免费不卡视频| 午夜影院在线不卡| 国产精品无大码| 亚洲成人手机| 少妇被粗大的猛进出69影院 | 美女国产视频在线观看| 99热6这里只有精品| 免费看光身美女| 亚洲伊人久久精品综合| 99热全是精品| 国产白丝娇喘喷水9色精品| 一本—道久久a久久精品蜜桃钙片| 国精品久久久久久国模美| 国产乱来视频区| 五月开心婷婷网| 国产欧美另类精品又又久久亚洲欧美| 99热全是精品| 国产熟女欧美一区二区| 精品久久久久久久久亚洲| 午夜免费鲁丝| 亚洲av成人精品一区久久| 蜜臀久久99精品久久宅男| av国产精品久久久久影院| 丝袜喷水一区| 亚洲精品日韩av片在线观看| 欧美 亚洲 国产 日韩一| 免费看不卡的av| 国产欧美日韩综合在线一区二区| 五月天丁香电影| 久久av网站| 国产精品国产三级专区第一集| 18禁在线播放成人免费| tube8黄色片| 国产黄色免费在线视频| 能在线免费看毛片的网站| av视频免费观看在线观看| 亚洲天堂av无毛| 亚洲欧美清纯卡通| 久久av网站| 草草在线视频免费看| 久久韩国三级中文字幕| 国产精品久久久久久av不卡| 街头女战士在线观看网站| 日韩av免费高清视频| 亚洲欧美一区二区三区国产| 一级爰片在线观看| 肉色欧美久久久久久久蜜桃| 亚洲国产欧美在线一区| 国产成人av激情在线播放 | 亚洲av成人精品一区久久| 22中文网久久字幕| 少妇的逼好多水| 一本大道久久a久久精品| 久久精品久久精品一区二区三区| 欧美 亚洲 国产 日韩一| 国产亚洲精品第一综合不卡 | 熟女电影av网| 精品久久久久久电影网| 久久人人爽av亚洲精品天堂| 性色av一级| 亚洲精华国产精华液的使用体验| 精品人妻偷拍中文字幕| 亚洲欧洲日产国产| 国产精品久久久久久精品电影小说| 精品久久久噜噜| 亚洲av日韩在线播放| 国产男人的电影天堂91| 国产精品嫩草影院av在线观看| 免费少妇av软件| 国产免费福利视频在线观看| 日韩av免费高清视频| 九色亚洲精品在线播放| 亚洲丝袜综合中文字幕| 91久久精品电影网| 精品一区在线观看国产| 在线免费观看不下载黄p国产| 欧美变态另类bdsm刘玥| 男人操女人黄网站| 国产免费一区二区三区四区乱码| 亚洲精品久久成人aⅴ小说 | 丝袜在线中文字幕| 日韩人妻高清精品专区| 人妻人人澡人人爽人人| 亚洲精品美女久久av网站| 久久久国产一区二区| 久久99热6这里只有精品| 十八禁网站网址无遮挡| 人人妻人人澡人人看| 热re99久久国产66热| 久久久欧美国产精品| 99热网站在线观看| 三上悠亚av全集在线观看| 国产精品 国内视频| 一区二区三区免费毛片| 不卡视频在线观看欧美| 制服人妻中文乱码| 午夜福利视频在线观看免费| av福利片在线| 丰满饥渴人妻一区二区三| 亚洲欧美精品自产自拍| 一区二区三区四区激情视频| 国产成人午夜福利电影在线观看| 99久久中文字幕三级久久日本| 婷婷成人精品国产| 日产精品乱码卡一卡2卡三| 一级毛片我不卡| 尾随美女入室| 精品一区在线观看国产| 日韩电影二区| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品国产精品| 欧美日韩精品成人综合77777| 最近2019中文字幕mv第一页| 久久99一区二区三区| 日日摸夜夜添夜夜爱| 欧美变态另类bdsm刘玥| 大片电影免费在线观看免费| 九色亚洲精品在线播放| 亚洲国产精品999| 精品久久久久久电影网| 亚洲av综合色区一区| 伊人亚洲综合成人网| 性色avwww在线观看| 97超碰精品成人国产| 观看av在线不卡| 春色校园在线视频观看| 国产在线免费精品| 黄色怎么调成土黄色| 日韩一区二区视频免费看| 菩萨蛮人人尽说江南好唐韦庄| 欧美丝袜亚洲另类| av在线观看视频网站免费| av女优亚洲男人天堂| 99精国产麻豆久久婷婷| 18禁在线播放成人免费| 中文字幕制服av| 全区人妻精品视频| 丰满少妇做爰视频| 亚洲经典国产精华液单| av在线播放精品| 97超碰精品成人国产| 又粗又硬又长又爽又黄的视频| 自线自在国产av| 街头女战士在线观看网站| 狂野欧美激情性bbbbbb| 中文天堂在线官网| 亚洲精品日本国产第一区| 国产av精品麻豆| 18禁在线播放成人免费| 日日摸夜夜添夜夜添av毛片| 亚洲欧洲精品一区二区精品久久久 | 久久毛片免费看一区二区三区| 91在线精品国自产拍蜜月| 99久久人妻综合| 成人黄色视频免费在线看| 亚洲精品成人av观看孕妇| 我的老师免费观看完整版| 精品久久久精品久久久| 精品国产露脸久久av麻豆| 午夜福利视频精品| 高清视频免费观看一区二区| 丰满迷人的少妇在线观看| 人妻 亚洲 视频| 最近最新中文字幕免费大全7| 九色亚洲精品在线播放| 五月开心婷婷网| 综合色丁香网| 高清视频免费观看一区二区| 观看美女的网站| 免费看不卡的av| √禁漫天堂资源中文www| 亚洲第一av免费看| 国产精品一国产av| 免费观看的影片在线观看| 99国产精品免费福利视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲第一区二区三区不卡| 大片免费播放器 马上看| 精品人妻熟女毛片av久久网站| 国产精品一区二区在线不卡| 日韩成人伦理影院| 亚洲欧洲精品一区二区精品久久久 | 91久久精品电影网| 水蜜桃什么品种好| 国产永久视频网站| 欧美xxxx性猛交bbbb| 人妻夜夜爽99麻豆av| 欧美 亚洲 国产 日韩一| 99视频精品全部免费 在线| 丝袜美足系列| 人体艺术视频欧美日本| 久久国内精品自在自线图片| 亚洲欧美精品自产自拍| 精品一区二区三区视频在线| 久久鲁丝午夜福利片| 国产精品免费大片| 久久久精品免费免费高清| 又粗又硬又长又爽又黄的视频| 国产一区有黄有色的免费视频| www.色视频.com| 欧美成人午夜免费资源| 最新中文字幕久久久久| 亚洲国产精品国产精品| 日本wwww免费看| 精品99又大又爽又粗少妇毛片| 日本午夜av视频| 三级国产精品片| 国产白丝娇喘喷水9色精品| 日日爽夜夜爽网站| 国产精品一区二区在线观看99| 美女福利国产在线| 波野结衣二区三区在线| 国模一区二区三区四区视频| av.在线天堂| 免费观看的影片在线观看| 一级毛片黄色毛片免费观看视频| 免费日韩欧美在线观看| 边亲边吃奶的免费视频| 18禁在线无遮挡免费观看视频| 欧美变态另类bdsm刘玥| 国产精品国产三级国产av玫瑰| videos熟女内射| 美女国产视频在线观看| 国产成人精品一,二区| 亚洲国产av影院在线观看| 国产老妇伦熟女老妇高清| 性高湖久久久久久久久免费观看| 精品少妇内射三级| 夜夜看夜夜爽夜夜摸| 免费观看的影片在线观看| 午夜福利在线观看免费完整高清在| 午夜老司机福利剧场| 国产有黄有色有爽视频| 成年人午夜在线观看视频| 久久99一区二区三区| 成年人午夜在线观看视频| 91久久精品电影网| 三级国产精品片| 久久99蜜桃精品久久| 婷婷色av中文字幕| 亚洲欧洲国产日韩| 精品亚洲成国产av| 亚洲内射少妇av| 久热这里只有精品99| av一本久久久久| 国产又色又爽无遮挡免| 校园人妻丝袜中文字幕| 免费大片黄手机在线观看| 美女福利国产在线| 肉色欧美久久久久久久蜜桃| 午夜激情av网站| 久久热精品热| 欧美3d第一页| 亚洲av成人精品一二三区| 国产深夜福利视频在线观看| 97超视频在线观看视频| 人妻 亚洲 视频| 在线观看国产h片| 精品少妇黑人巨大在线播放| 美女内射精品一级片tv| 大话2 男鬼变身卡| 欧美xxxx性猛交bbbb| 超色免费av| 欧美丝袜亚洲另类| 亚洲欧洲国产日韩| 国产成人精品一,二区| 有码 亚洲区| 蜜桃在线观看..| 欧美性感艳星| 色94色欧美一区二区| av电影中文网址| 亚洲av日韩在线播放| 九色亚洲精品在线播放| 国产 一区精品| 国产爽快片一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 免费黄频网站在线观看国产| 高清av免费在线| 亚洲欧美成人精品一区二区| 久久97久久精品| 亚洲成人av在线免费| 在现免费观看毛片| 蜜臀久久99精品久久宅男| 嘟嘟电影网在线观看| 成人国产麻豆网| 国产高清三级在线| 免费av中文字幕在线| 尾随美女入室| 精品少妇内射三级| 成人毛片60女人毛片免费| 久久人人爽人人片av| 日本与韩国留学比较| 18禁观看日本| 777米奇影视久久| 国产午夜精品一二区理论片| 日本av手机在线免费观看| 亚洲av二区三区四区| 一本久久精品| 亚洲一区二区三区欧美精品| 欧美 日韩 精品 国产| 久久久久久久久大av| 欧美97在线视频| 日韩强制内射视频| 国产精品.久久久| 欧美 亚洲 国产 日韩一| a级毛片在线看网站| 超碰97精品在线观看| 最新中文字幕久久久久| 日本欧美视频一区| 9色porny在线观看| 久久久久久久久久人人人人人人| 人妻少妇偷人精品九色| 国产一区二区三区av在线| 成年av动漫网址| 精品久久蜜臀av无| 午夜福利,免费看| 黄色毛片三级朝国网站| 欧美三级亚洲精品| a级毛色黄片| 视频区图区小说| 国产日韩欧美在线精品| 亚洲av电影在线观看一区二区三区| 看免费成人av毛片| 欧美 亚洲 国产 日韩一| 亚洲av中文av极速乱| 欧美 日韩 精品 国产| 十分钟在线观看高清视频www| 免费大片18禁| 九草在线视频观看| 国产精品嫩草影院av在线观看| 日产精品乱码卡一卡2卡三| 免费黄网站久久成人精品| 在线观看三级黄色| 尾随美女入室| 一区二区三区乱码不卡18| 天天躁夜夜躁狠狠久久av| 如何舔出高潮| xxx大片免费视频| av视频免费观看在线观看| 亚洲,一卡二卡三卡| 熟女电影av网| 国产精品国产三级国产专区5o| 亚洲欧洲国产日韩| 秋霞伦理黄片| 久久 成人 亚洲| 精品熟女少妇av免费看| 日本黄色片子视频| 七月丁香在线播放| 亚洲精品一二三| 美女内射精品一级片tv| 91午夜精品亚洲一区二区三区| 特大巨黑吊av在线直播| 国产成人精品婷婷| 国产探花极品一区二区| 99久久精品国产国产毛片| 欧美日韩成人在线一区二区| 久久精品国产亚洲av天美| 九色成人免费人妻av| 国产一区二区三区综合在线观看 | 国产色爽女视频免费观看| av天堂久久9| 免费高清在线观看日韩| 国产成人aa在线观看| 日韩伦理黄色片| 日本欧美视频一区| 日本爱情动作片www.在线观看| 肉色欧美久久久久久久蜜桃| 天堂俺去俺来也www色官网| 国产一区二区在线观看av| 80岁老熟妇乱子伦牲交| 丝袜美足系列| 视频在线观看一区二区三区| 亚洲av在线观看美女高潮| 丰满乱子伦码专区| 看十八女毛片水多多多| 51国产日韩欧美| 一区二区av电影网| 午夜免费男女啪啪视频观看| 午夜91福利影院| 亚洲av中文av极速乱| 国产在线一区二区三区精| 夫妻午夜视频| 久久精品人人爽人人爽视色| 精品人妻熟女av久视频| 久久精品国产自在天天线| 日韩精品免费视频一区二区三区 | 在线观看免费高清a一片| 免费高清在线观看日韩| 热99国产精品久久久久久7| 国产精品一国产av| 亚洲av在线观看美女高潮| 日韩大片免费观看网站| 黄色欧美视频在线观看| 国产高清有码在线观看视频| 你懂的网址亚洲精品在线观看| 性色av一级| 国产欧美另类精品又又久久亚洲欧美| 91精品三级在线观看| 一本一本综合久久| 婷婷色综合大香蕉| 日韩精品免费视频一区二区三区 | a级毛片黄视频| 26uuu在线亚洲综合色| 午夜免费观看性视频| 91精品国产国语对白视频| 精品人妻偷拍中文字幕| 亚洲国产精品国产精品| 欧美性感艳星| 男女免费视频国产| 美女视频免费永久观看网站| 少妇的逼好多水| 色94色欧美一区二区| 一边摸一边做爽爽视频免费| 最近最新中文字幕免费大全7| 高清视频免费观看一区二区| 女性被躁到高潮视频| 国产一区二区在线观看日韩| 日韩一区二区视频免费看| 大片免费播放器 马上看| 国产精品国产三级专区第一集| 午夜福利视频在线观看免费| 久久99热这里只频精品6学生| 天天操日日干夜夜撸| 黑人巨大精品欧美一区二区蜜桃 | 最近2019中文字幕mv第一页| 日本vs欧美在线观看视频| 色5月婷婷丁香| 99久久精品国产国产毛片| 精品久久久久久久久亚洲| 两个人免费观看高清视频| 最后的刺客免费高清国语| 制服诱惑二区| 久久这里有精品视频免费| 成人无遮挡网站| 精品人妻偷拍中文字幕| 婷婷色av中文字幕| 桃花免费在线播放| 精品一品国产午夜福利视频| 国产日韩一区二区三区精品不卡 | 亚洲综合色网址| 日韩熟女老妇一区二区性免费视频| 99热6这里只有精品| 爱豆传媒免费全集在线观看| 久久鲁丝午夜福利片| 久久久久国产精品人妻一区二区| 色婷婷av一区二区三区视频| 亚洲久久久国产精品| 亚洲四区av| 成人国产麻豆网| 国产伦理片在线播放av一区| 久久久久网色| 少妇人妻久久综合中文| 欧美+日韩+精品| av女优亚洲男人天堂| 日本vs欧美在线观看视频| 精品少妇黑人巨大在线播放| 九色亚洲精品在线播放| 亚洲一级一片aⅴ在线观看| 久久鲁丝午夜福利片| 中文字幕精品免费在线观看视频 | 成人国产av品久久久| 国产免费视频播放在线视频| 汤姆久久久久久久影院中文字幕| 日本欧美视频一区| 亚洲婷婷狠狠爱综合网| 欧美精品一区二区免费开放| 久热这里只有精品99|