• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    固態(tài)Photo-CIDNP效應(yīng)

    2016-11-08 06:00:09王孝杰THAMARATHSmithaSurendranALIAA4BODEBelaMATYSIKrg
    物理化學(xué)學(xué)報(bào) 2016年2期
    關(guān)鍵詞:萊頓安德魯斯萊比錫

    王孝杰 THAMARATH Smitha Surendran ALIAA.,4BODE Bela E. MATYSIK J?rg,*

    (1國(guó)防科技大學(xué)理學(xué)院化學(xué)與生物學(xué)系,長(zhǎng)沙410073;2萊比錫大學(xué)分析化學(xué)研究所,萊比錫04103,德國(guó);3萊頓大學(xué)化學(xué)院,萊頓2300RA,荷蘭;4萊比錫大學(xué)醫(yī)學(xué)物理與生物物理研究所,萊比錫D-04107,德國(guó);5圣安德魯斯大學(xué)化學(xué)與生物醫(yī)學(xué)研究院,圣安德魯斯KY16 9ST,蘇格蘭)

    [Review]

    固態(tài)Photo-CIDNP效應(yīng)

    王孝杰1,*THAMARATH Smitha Surendran2,3ALIAA.2,3,4BODE Bela E.5MATYSIK J?rg2,3,*

    (1國(guó)防科技大學(xué)理學(xué)院化學(xué)與生物學(xué)系,長(zhǎng)沙410073;2萊比錫大學(xué)分析化學(xué)研究所,萊比錫04103,德國(guó);3萊頓大學(xué)化學(xué)院,萊頓2300RA,荷蘭;4萊比錫大學(xué)醫(yī)學(xué)物理與生物物理研究所,萊比錫D-04107,德國(guó);5圣安德魯斯大學(xué)化學(xué)與生物醫(yī)學(xué)研究院,圣安德魯斯KY16 9ST,蘇格蘭)

    光化學(xué)誘導(dǎo)動(dòng)態(tài)核極化(photo-CIDNP)是一種在光照條件下由于產(chǎn)生非玻爾茲曼核自旋極化而使核磁共振(NMR)波譜信號(hào)強(qiáng)度發(fā)生明顯變化的效應(yīng)。這種效應(yīng)在液體NMR中已為人所熟知,并通過經(jīng)典的自由基對(duì)機(jī)理得到解釋。固態(tài)photo-CIDNP效應(yīng)發(fā)現(xiàn)的較晚,本文介紹了在光合反應(yīng)中心及藍(lán)光受體中發(fā)現(xiàn)的固態(tài)photo-CIDNP效應(yīng),詳細(xì)闡述了固態(tài)photo-CIDNP效應(yīng)產(chǎn)生的自由基對(duì)自旋動(dòng)力學(xué)的機(jī)理,包括三旋混合(TSM)、衰變差異(DD)和弛豫差異(DR),重點(diǎn)介紹了類球紅桿菌光合反應(yīng)中心固態(tài)photo-CIDNP效應(yīng)的磁場(chǎng)依賴性,這種場(chǎng)依賴性在同一分子中的不同核之間表現(xiàn)出明顯的差異。本文綜述了固態(tài)photo-CIDNP效應(yīng)的現(xiàn)象、理論及其磁場(chǎng)依賴特性的最新進(jìn)展。

    光化學(xué)誘導(dǎo)動(dòng)態(tài)核極化;魔角旋轉(zhuǎn);核磁共振;自由基對(duì);自旋化學(xué)

    doi:10.3866/PKU.WHXB201511272

    1 Introduction

    Photochemically induced dynamic nuclear polarization(photo-CIDNP)is an effect that produces non-Boltzmann nuclear spin polarization that can be observed by nuclear magnetic resonance (NMR)spectroscopyasenhancedabsorptive(positive)oremissive (negative)signals.Thephoto-CIDNPeffect is produced during a chemical reaction,therefore,the relevant mechanistic chemistry studies can take advantage of this effect.

    The effect is well known in liquid-state NMR where it is explained most generally by the classical radical pair mechanism (RPM)1,2.However,due to restrictions on molecular weight of sample in liquid NMR and the necessity of molecular diffusion, the applicability of the liquid-state photo-CIDNP effect is limited by molecular weight and viscosity3.These limits can be overcome by the solid-state photo-CIDNP effect.

    The solid-state photo-CIDNP effect was observed for the first timein1994byMcDermott′sgroup4infrozenand quinone-blocked bacterial reaction centers(RCs)of15N-labeled Rhodobacter(R.) sphaeroides by magic-angle spinning(MAS)NMR.Subsequent studies5,6found that the effect allows for signal enhancement of factors of several 10000 s.Such strong signal enhancement allows for example selectively observing photosynthetic cofactors forming radical-pairs at nanomolar concentrations in membranes, cells,and even in entire plants7.Due to the long13C relaxation time in solids,the nuclear polarization of subsequent photocycles can be accumulated in continuous illumination experiments making photo-CIDNP MAS NMR a sensitive analytical tool for studying radical pairs8-10.

    2 Solid-state photo-CIDNP effect

    2.1Phenomenon

    The solid-state photo-CIDNP effect was observed for the first time in 1994;meanwhile the effect has been shown in various other RCs11-13.Most solid-state photo-CIDNP researchhas been carried out on the purple bacterium R.sphaeroides as a model organism for bacterial photosynthesis14,15.Our group measured the13C MAS NMR spectra of quinone depleted RCs of R. sphaeroides wild-type(WT)and of the carotenoid-less mutant R26 in the dark and under illumination,respectively.The result is shown in Fig.1.In the spectrum obtained in the dark,the expected broad protein resonances appear.Under illumination with continuous white light,several strong light-induced signals appeared. These signals are generated due to the solid-state photo-CIDNP effect.

    Fig.1 13C MAS NMR spectra of quinone depleted RCs of R. sphaeroides WT(A1,A2)and of the carotenoid-less mutant R26(B1,B2)in the dark(A1,B1)and under continuous illumination with white light(A2,B2)at 4.7 T16

    The solid-state photo-CIDNP effect has been observed in all natural photosynthetic RCs studied so far13.Using this effect for enhancing NMR signals,a series of studies of photosynthetic RCs have been carried out.The photo-CIDNP MAS NMR has become an important means in mechanistic research of photosynthetic charge separation.Despite great efforts,experiments on systems other than natural photosynthetic RCs were unsuccessful for a long time.It has been discussed whether the effect might be confined to natural photosynthetic RCs.

    Recently,we observed the solid-state photo-CIDNP effect in a rather different,nonphotosynthetic protein,a mutant of the bluelight photoreceptor phototropin(LOV1-C57S)17.This is the first observation of this effect in a non-photosynthetic system,this demonstrated that thesolid-statephoto-CIDNPeffect is not a peculiarity of photosynthetic systems.The result is shown in Fig.2.

    Since the occurrence of the solid-state photo-CIDNP effect had been limited to photosynthetic RCs for a long time,this method has not attracted much attention,although its capacity to enhance NMR signals dramatically has been recognized.Our observation of the solid-state photo-CIDNP effect in phototropin allows us to assume that the effect can arise in other photoactive electrontransfer proteins too.Induction of the effect in artificial diads would certainly allow evolving a generally applicable method for signal enhancement in NMR.

    Fig.2 13C MAS NMR spectra of phototropin LOV1-C57S obtained at a magnetic field of 2.3 T in the dark(A)and under continuous illumination with white light(B)17

    2.2Fundamentals

    The cyclic spin-chemical processes producing such high nuclear polarizations are now understood18for a spin-correlated radical pair interacting with a single nuclear spin in quinone depleted RCsof R.sphaeroides.Under illumination,RCs form radical pairs with the primary electron donor P,the so-called“special pair”of two bacteriochlorophylls(BChl),as radical cation and the primary electron acceptor Φ,a bacteriopheophytin(BPhe),as radical anion (Scheme 1).

    Scheme 1 Kinetics and spin dynamics of solid state photo-CIDNP in R.sphaeroides WT and R26 RCs

    The radical pair mechanism(RPM)19,20,well established in liquid-state photo-CIDNP,is active in spin-sorting,i.e.,enriching one nuclear spin state in one of the two decay channels of the radical pair and depleting it in the other.Since the product state in Scheme 1 is identical for both branches of the radical-pair decay, in steady-state experiments using continuous illumination the process of spin sorting does not lead to observable net nuclear polarization:the polarizations arising from the two channels exactly cancel.

    Time-resolved experiments(Fig.3,spectrum C),however,are able to observe the spin-sorting by the RPM.Fig.3 shows the evolution of signal intensity on microsecond timescale.Initially positive(absorptive)transient nuclear polarization occurs and is visible up to 10 μs.This initial phase is due to the RPM and shows selectively the enriched nuclear polarization on the singlet decay pathway.This polarization is only transiently visible,in this case because the nuclear polarization occurring on the triplet decay pathway is shifted and broadened beyond detection by the nearby paramagnetic carotenoid triplet21.After the decay of the transient nuclear polarization from the singlet decay channel,a new pattern occurs,showing an entirely negative(emissive)envelope on the 100 μs timescale.Equilibration of the polarization by spin diffusion on ms timescale leads to the all-emissivesteady-state intensity pattern(Fig.3,spectrum B)22.

    Fig.3 13C MAS NMR spectra of WT RCs measured in the dark (A),under continuous illumination(B),and after a nanosecond-laser flash(C)22

    The all-emissive steady-state pattern is caused by two solidstate mechanisms,called the three-spin mixing(TSM)23,24and the differential decay(DD)25.

    In the electron-electron-nuclear TSM mechanism,the symmetry of the coherent spin evolution in the correlated radical pair is broken by state mixing due to electron-electron coupling and pseudosecular hyperfine coupling(hfc).State mixing is maximized at the double matching condition 2|ΔΩ|=2|ωI|=|A|,i.e.,the difference of the electron Zeeman frequencies(ΔΩ),the nuclear Zeeman frequency(ωI)and the secular part of the hyperfine interaction(A)must match.

    In the DD mechanism,the symmetry between the singlet and triplet decay pathways is broken by different lifetimes of the S and of the T0states of the radical pair and by pseudosecular hyperfine coupling.In this case,only a single matching of interactions 2|ωI|=|A|is required and the difference of singlet and triplet radical pair lifetimes must be of the order of the inverse hfc.

    During the radical pair evolution the TSM and DD mechanisms in RCs of R.sphaeroides WT lead to a set of entirely emissive (negative)signals,whose relative intensity encodes information on spin density distribution in the radical pair state26.The sign of the signal depends on the signs of the secular hyperfine coupling and of the g tensor difference27.

    In RCs having a long donor triplet lifetime as in the carotenoidless mutant R26 of R.sphaeroides,contributions from a third mechanism have been observed28.Here,the polarization generated by RPM,which has the same amplitude and opposite signs in the singlet and triplet decay branches and thus usually cancels in steady state experiments,is partially maintained29,30due to differentlongitudinal nuclear relaxation in the two branches.In the solid state this has been termed the differential relaxation(DR) mechanism to emphasize that RPM polarization is modified according to the different relaxation rates for different nuclei27.This mechanism explains the differences between photo-CIDNP MAS NMR spectra of RCs of R.sphaeroides WT and R2616.The DR mechanism relies on enhanced nuclear relaxation in the triplet branch,which is in turn caused by fluctuations of the anisotropic hyperfine couplings of these nuclei to the donor triplet(3P)state. Therefore,relative line intensity in this case also encodes information on the electron spin density distribution in the3P state16. This mechanism can also occur under liquid-state conditions and is also called“cyclic reaction”mechanism.

    2.3Magnetic field dependence

    It was found that the solid-statephoto-CIDNPeffecthas a feature of magnetic field dependence.The effect is closely related to the strength of the external magnetic field.The occurrence of the effect is limited to certain field windows,and the maximum intensity enhancement occurs when the matching conditions are fulfilled.

    From RCs of R.sphaeroides,the best investigated photosynthetic RC,the field-dependence of the amplitude of the solid-state photo-CIDNPeffect has been studied in the range from 1.4 to 17.6 T in WT and R26,respectively(Figs.4-7)16.At fields below 2.4 T,our hardware does not allow for1H decoupling.To compare the effect of decoupling on the spectra,we measured1H-coupled and decoupled spectra for both samples at this field.The comparison shows that in particular the signals around 100 originating from methine bridge carbons,which are directly bound to a proton,are broadened beyond detection in the1H-coupled spectra while the other signals just broaden substantially.

    Fig.4 13C MAS NMR spectra of quinone depleted RCs of R. sphaeroides WT in the dark(A1-D1)and under illumination(A2-D2)at 17.6 T(A1,A2),9.4 T(B1,B2),4.7 T(C1,C2),and 2.4 T(D1,D2)16

    Fig.5 13C MAS NMR spectra of quinone depleted RCs of R. sphaeroides R26 in the dark(A1-D1)and under illumination(A2-D2)at 17.6 T(A1,A2),9.4 T(B1,B2),4.7 T(C1,C2), and 2.4 T(D1,D2)16

    Fig.6 13C MAS NMR spectra of quinone depleted RCs of R. sphaeroides WT in the dark(A1,B1)and under illumination (A2,B2)at 2.4 T(A1,A2)and 1.4 T(B1,B2)16

    Within the entire field regime,the intensity patterns are different between spectra of WT and R26 RCs.While the first are entirely emissive spectra,in the latter both emissive and absorptive lines occur.The optimum for the spectral resolution is reached at about 4.7 T since at 2.4 T the spectral dispersion becomes too poor.WT RCs show the maximum enhancement around

    2.4T.On the other hand,for R26 RCs the maximum enhancement is not reached at 1.4 T and the ratio between positive and negative signals is changed strongly in favor of the first.For 1.4 T,we estimate an enhancement factor of at least 80000 due to the DR mechanism.Experiments at even lower fields would require a field cycling system to avoid further loss of resolution.

    Fig.7 13C MAS NMR spectra of quinone depleted RCs of R. sphaeroides R26 in the dark(A1,B1)and under illumination (A2,B2)at 2.4 T(A1,A2)and 1.4 T(B1,B2)16

    Fig.8 13C MAS NMR spectra of phototropin LOV1-C57S under illumination at magnetic fields of 4.7 T(A)and 2.4 T(B)31

    After the first observation17of the solid state photo-CIDNP effect in LOV1-C57S,we also studied31the effect of different intensities of magnetic fields.The results show that the solid-state photo-CIDNP effect produced by the non-photosynthetic protein also has magnetic field dependence.

    As can be seen from Fig.8,the chemical shifts of the main signals are the same in both spectra that measured in different magnetic fields.It shows that the radical pair formed in the composition is the same in both experiments.In contrast to the entirely emissive(negative)peaks in the photo-CIDNP MAS NMR spectra observed at 2.4 T,the light-induced13C NMR peaks at 4.7 T show mixed absorptive/emissive enhancement pattern.It shows a strong magnetic field effect on the solid-state photo-CIDNP effect.

    This large difference in magnetic field dependence for different nuclei reflects the large variety of hyperfine factors found in this comparable small-sized radical pair.

    3 Results and prospect

    The solid-state photo-CIDNP effect has the capacity to enhance NMR signals dramatically.We estimate an enhancement factor of at least 80000 in RCs of R.sphaeroides at 1.4 T.Our observation of the solid-state photo-CIDNP effect in phototropin demonstrated that the effect is not a peculiarity of photosynthetic systems.It can arise in other photoactive electron-transfer proteins too.The solidstate photo-CIDNP effect can be explained by three mechanisms that operative in the spin-dynamics of radical pairs such as TSM, DD,and DR.All the observed solid-state photo-CIDNP effect has a feature of magnetic field dependence.The effect is closely related to the strength of the external magnetic field.This fielddependence is well distinguished for the various nuclei.

    We have seen that the solid mechanisms of the photo-CIDNP effect(TSM mechanism,DD mechanism,and DR mechanism) acting in RCs of R.sphaeroides show a broad maximum at high fields as it is expected for a matching mechanism.The low-field TSM theory32predicts the occurrence of a second broad maximum, which matches the magnetic field strength in the tens of microtesla (μT).The region is the same order of magnitude with the earth's magnetic field,which led us to speculate that solid-state photo-CIDNP effect at earth field plays a role in the magnetoreception of biological systems.

    Theobservationofthesolid-statephoto-CIDNPeffect in phototropin has been shown that this effect is not limited to natural photosynthetic systems.In the same way that photo-CIDNP MAS NMR has provided detailed insights into photosynthetic electron transport in RCs,we anticipate a variety of applications in mechanistic studies of other photoactive proteins.Currently,we areusingthesolid-statephoto-CIDNPeffecttoresearch the functionality of blue-light photoreceptors.It may be possible to characterize the photoinduced electron transfer process in cryptochrome in detail.Cryptochrome(Cry)is a member of the family of flavin-containingblue-light photoreceptors.Many research results33support the hypothesis of light-induced spin-dynamics as source of magnetoreception and suggest cryptochrome as the magnetoreceptor.Moreover,the radical pair formed in the cryptochrome photoreaction is sensitive to much weaker magnetic fields.Nevertheless,there is still no direct evidence for the Crybased model of avian magnetoreception.A recent review34proposes that it requires a new experimental analysis tool to solve this problem.photo-CIDNP MAS NMR may allow to characterize in detail the photoinduced flavin and tryptophan radicals in cryptochrome,thereby providing direct experimental means to study the related mechanism.

    Acknowledgments:The authors would like to thank Prof. Gunnar Jeschke(ETH Zürich)and Dr.Tilman Kottke(Univ. Bielefeld).

    References

    (1)Bargon,J.;Fischer,F.;Johnson,U.Z.Naturforsch.A 1967,22, 1551.

    (2)Ward,H.R.;Lawler,R.G.J.Am.Chem.Soc.1967,89,5518.doi:10.1021/ja00997a078

    (3)Richter,G.;Weber,S.;R?misch,W.;Bacher,A.;Fischer,M.; Eisenreich,W.J.Am.Chem.Soc.2005,127,17245.doi: 10.1021/ja053785n

    (4)Zysmilich,M.;McDermott,A.J.Am.Chem.Soc.1994,116, 8362.doi:10.1021/ja00097a052

    (5)Prakash,S.;Alia;Gast,P.;de Groot,H.J.M.;Jeschke,G.; Matysik,J.J.Am.Chem.Soc.2005,127,14290.doi:10.1021/ ja054015e

    (6)Prakash,S.;Alia;Gast,P.;de Groot,H.J.M.;Matysik,J.; Jeschke,G.J.Am.Chem.Soc.2006,128,12794.doi:10.1021/ ja0623616

    (7)Janssen,G.J.;Daviso,E.;van Son,M.;de Groot,H.J.M.; Alia,A.;Matysik,J.Photosynth.Res.2010,104,275.doi: 10.1007/s11120-009-9508-1

    (8)Roy,E.;Alia,A.;Gast,P.;van Gorkom,H.J.;de Groot,H.J. M.;Jeschke,G.;Matysik,J.Biochem.Biophys.Acta 2007, 1767,610.doi:0.1016/j.bbabio.2006.12.012

    (9)Prakash,S.;Alia,A.;Gast,P.;de Groot,H.J.M.;Jeschke,G.; Matysik,J.Biochemistry 2007,46,8953.doi:10.1021/ bi700559b

    (10)Roy,E.;Rohmer,T.;Gast,P.;Jeschke,G.;Alia,A.;Matysik,J. Biochemistry 2008,47,4629.doi:10.1021/bi800030g

    (11)Alia;Roy,E.;Gast,P.;van Gorkom,H.J.;de Groot,H.J.M.; Jeschke,G.;Matysik,J.J.Am.Chem.Soc.2004,126,12819.

    (12)Diller,A.;Roy,E.;Gast,P.;van Gorkom,H.J.;de Groot,H.J. M.;Glaubitz,C.;Jeschke,G.;Matysik,J.;Alia,A.Proc.Natl. Acad.Sci.U.S.A.2007,104,12767.doi:10.1073/ pnas.0701763104

    (13)Matysik,J.;Diller,A.;Roy,E.;Alia,A.Photosynth.Res.2009, 102,427.doi:10.1007/s11120-009-9403-9

    (14)Hoff,A.J.;Deisenhofer,J.Phys.Rep.1997,287,2.

    (15)Hunter,C.N.;Daldal,F.;Thurnauer,M.C.;Beatty,J.T.The Phototropic Purple Bacteria;Springer:Dordrecht,The Netherlands,2008.

    (16)Thamarath,S.S.;Bode,B.E.;Prakash,S.;Karthick,B.S.S. G.;Alia,A.;Jeschke,G.;Matysik,J.J.Am.Chem.Soc.2012, 134,5921.doi:10.1021/ja2117377

    (17)Thamarath,S.S.;Heberle,J.;Hore,P.;Kottke,T.;Matysik,J. J.Am.Chem.Soc.2010,132,15542.doi:10.1021/ja1082969

    (18)Hore,P.J.;Hunter,D.A.;McKie,C.D.;Hoff,A.J.Chem.Phys. Lett.1987,137,495.doi:10.1016/0009-2614(87)80617-6

    (19)Closs,G.L.;Closs,L.E.J.Am.Chem.Soc.1969,91,4549. doi:10.1021/ja01044a041

    (20)Kaptein,R.;Oosterhoff,J.L.Chem.Phys.Lett.1969,4,195. doi:10.1016/0009-2614(69)80098-9

    (21)Wirtz,A.C.;van Hemert,M.C.;Lugtenburg,J.;Frank,H.A.; Groenen,E.J.J.Biophys.J.2007,93,981.doi:10.1529/ biophysj.106.103473

    (22)Daviso,E.;Jeschke,G.;Matysik,J.J.Phys.Chem.C 2009, 113,10269.doi:10.1021/jp900286q

    (23)Jeschke,G.J.Chem.Phys.1997,106,10072.doi:10.1063/ 1.474063

    (24)Jeschke,G.J.Am.Chem.Soc.1998,120,4425.

    (25)Polenova,T.;McDermott,A.E.J.Phys.Chem.B 1999,103, 535.doi:10.1021/jp9822642

    (26)Diller,A.;Prakash,S.;Alia,A.;Gast,P.;Matysik,J.;Jeschke, G.J.Phys.Chem.B 2007,111,10606.doi:10.1021/jp072428r

    (27)Jeschke,G.;Matysik,J.Chem.Phys.2003,294,239.doi: 10.1016/S0301-0104(03)00278-7

    (28)McDermott,A.;Zysmilich,M.G.;Polenova,T.Solid State Nucl.Magn.Reson.1998,11,21.doi:10.1016/S0926-2040(97) 00094-5

    (29)Closs,G.L.Chem.Phys.Lett.1975,32,277.doi:10.1016/ 0009-2614(75)85123-2

    (30)Goldstein,R.A.;Boxer,S.G.Biophys.J.1987,51,937.doi: 10.1016/S0006-3495(87)83421-5

    (31)Wang,X.J.;Thamarath,S.S.;Matysik,J.Acta Chim.Sin. 2013,71,169.[王孝杰,Thamarath,S.S.,Matysik,J.化學(xué)學(xué)報(bào),2013,71,169.]doi:10.6023/A12121093

    (32)Jeschke,G.;Anger,B.C.;Bode,B.E.;Matysik,J.J.Phys. Chem.A 2011,115,9919.doi:10.1021/jp204921q

    (33)Wang,J.;Du,X.L.;Pan,W.S.;Wang,X.J.;Wu,W.J. J.Photochem.Photobiol.C 2015,22,84.doi:10.1016/j. jphotochemrev.2014.12.001

    (34)Chaves,I.;Pokorny,R.;Byrdin,M.;Hoang,N.;Ritz,T.; Brettel,K.;Essen,L.O.;van der Horst,G.T.J.;Batschauer, A.;Ahmad,M.Annu.Rev.Plant Biol.2011,62,335.doi: 10.1146/annurev-arplant-042110-103759

    The Solid-State Photo-CIDNP Effect

    WANG Xiao-Jie1,*THAMARATH Smitha Surendran2,3ALIAA.2,3,4BODE Bela E.5MATYSIK J?rg2,3,*
    (1Department of Chemistry and Biology,College of Science,National University of Defense Technology,Changsha 410073,P.R. China;2Institut für Analytische Chemie,Universit?t Leipzig,Linnéstr.3,04103 Leipzig,Gemany;3Leiden Institute of Chemistry,Einsteinweg 55,2300 RA Leiden,The Netherlands;4Institute of Medical Physics and Biophysics,University of Leipzig, D-04107 Leipzig,Germany;5EaStCHEM School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews,St Andrews,KY16 9ST,Scotland)

    Photochemically induced dynamic nuclear polarization(photo-CIDNP)is an effect that produces non-Boltzmann nuclear spin polarization,which can be observed as a modification of signal intensity in nuclear magnetic resonance(NMR)spectroscopy.The effect is well known in liquid-state NMR,where it is explained most generally by the classical radical pair mechanism(RPM).In the solid-state,additional mechanisms are operative in the spin-dynamics of radical pairs,such as three-spin mixing(TSM),differential decay(DD)and differential relaxation(DR).The observed solid-state photo-CIDNP effect is strongly magnetic field dependent, and this field-dependence is well distinguished for the various nuclei.Here,we provide an account of the phenomenology,theory and properties of the magnetic field dependence of the solid-state photo-CIDNP effect.

    Photo-CIDNP;Magic angle spinning;Nuclear magnetic resonance;Radical pair; Spin chemistry

    September 21,2015;Revised:November 26,2015;Published on Web:November 27,2015.*Corresponding authors.WANG Xiao-Jie,Email:yj605@126.com;Tel:+86-13308490803.MATYSIK J?rg,joerg.matysik@uni-leipzig.de.

    O646.8

    The project was supported by the Netherlands Organization for Scientific Research(NWO)(713.012.001).

    荷蘭科學(xué)研究組織(NWO)(713.012.001)資助項(xiàng)目

    ?Editorial office ofActa Physico-Chimica Sinica

    猜你喜歡
    萊頓安德魯斯萊比錫
    神偷失手
    每一個(gè)用心澆灌的夢(mèng)想都會(huì)盛開艷麗的花朵
    93歲二戰(zhàn)老兵三年跑遍全美國(guó)
    德國(guó) 萊比錫哥特節(jié)
    倫勃朗和他的時(shí)代:美國(guó)萊頓收藏館藏品展
    朱莉·安德魯斯生活備忘錄(一):早年的聲樂訓(xùn)練
    歌劇(2017年4期)2017-05-17 04:07:17
    周末逛逛萊比錫農(nóng)業(yè)展
    圣安德魯斯感悟
    民生周刊(2015年5期)2015-09-10 21:29:04
    美女被艹到高潮喷水动态| 国产蜜桃级精品一区二区三区| 午夜福利免费观看在线| 青草久久国产| 亚洲天堂国产精品一区在线| 国产亚洲av高清不卡| 美女午夜性视频免费| 国产精品日韩av在线免费观看| 禁无遮挡网站| 亚洲在线观看片| 色老头精品视频在线观看| 精品人妻1区二区| 九色成人免费人妻av| 久久久久国内视频| 久久热在线av| 一级黄色大片毛片| 免费电影在线观看免费观看| 亚洲精品久久国产高清桃花| 制服人妻中文乱码| 精品国产亚洲在线| АⅤ资源中文在线天堂| 久久久色成人| 最近最新中文字幕大全电影3| 国产精品国产高清国产av| 久久久国产欧美日韩av| 日日干狠狠操夜夜爽| 成年免费大片在线观看| 欧美日本视频| 美女免费视频网站| 少妇裸体淫交视频免费看高清| 黄色片一级片一级黄色片| 精品国产乱子伦一区二区三区| 成人特级黄色片久久久久久久| 国产精品av视频在线免费观看| 51午夜福利影视在线观看| 夜夜夜夜夜久久久久| 中文字幕高清在线视频| 久久精品人妻少妇| 麻豆国产97在线/欧美| 给我免费播放毛片高清在线观看| 啦啦啦观看免费观看视频高清| 亚洲熟女毛片儿| 他把我摸到了高潮在线观看| 国产成人影院久久av| 欧洲精品卡2卡3卡4卡5卡区| 黑人巨大精品欧美一区二区mp4| 国产主播在线观看一区二区| 99riav亚洲国产免费| 亚洲精品乱码久久久v下载方式 | 久久精品91蜜桃| 国产欧美日韩一区二区三| 久久天躁狠狠躁夜夜2o2o| 欧美另类亚洲清纯唯美| 变态另类成人亚洲欧美熟女| 欧美午夜高清在线| 俺也久久电影网| 久久国产精品人妻蜜桃| 九九久久精品国产亚洲av麻豆 | 亚洲成av人片在线播放无| 伊人久久大香线蕉亚洲五| 欧美日韩中文字幕国产精品一区二区三区| 桃色一区二区三区在线观看| 久久久久国产精品人妻aⅴ院| 精华霜和精华液先用哪个| 日本免费a在线| 久久久国产成人精品二区| 国产成+人综合+亚洲专区| 男人舔女人的私密视频| 我要搜黄色片| 女人被狂操c到高潮| 国产免费男女视频| 精品国产三级普通话版| 男插女下体视频免费在线播放| 午夜久久久久精精品| 日本成人三级电影网站| 亚洲精品美女久久久久99蜜臀| 毛片女人毛片| 美女被艹到高潮喷水动态| 国产爱豆传媒在线观看| 亚洲狠狠婷婷综合久久图片| 欧美3d第一页| 三级男女做爰猛烈吃奶摸视频| 久久99热这里只有精品18| 国产精品久久视频播放| 国产aⅴ精品一区二区三区波| 久久香蕉精品热| 国产精品,欧美在线| 给我免费播放毛片高清在线观看| 亚洲国产欧美网| 婷婷精品国产亚洲av在线| av在线天堂中文字幕| 欧美3d第一页| 精品不卡国产一区二区三区| 国产精品九九99| 18禁黄网站禁片午夜丰满| 精品久久久久久久人妻蜜臀av| 久久欧美精品欧美久久欧美| 国产成人精品久久二区二区91| 亚洲avbb在线观看| 午夜福利在线观看免费完整高清在 | 天堂网av新在线| 国产精品综合久久久久久久免费| 日本免费a在线| 人妻久久中文字幕网| 一个人看的www免费观看视频| 久久99热这里只有精品18| 黄片大片在线免费观看| 人人妻人人看人人澡| 欧美日本亚洲视频在线播放| 欧美成人一区二区免费高清观看 | a级毛片a级免费在线| 国产日本99.免费观看| 国产伦在线观看视频一区| 亚洲国产精品sss在线观看| 狠狠狠狠99中文字幕| 亚洲国产中文字幕在线视频| 人妻夜夜爽99麻豆av| 女生性感内裤真人,穿戴方法视频| 久久这里只有精品19| 一本综合久久免费| www日本黄色视频网| 亚洲五月天丁香| 久久热在线av| 色在线成人网| cao死你这个sao货| 制服人妻中文乱码| 日本与韩国留学比较| 亚洲精品中文字幕一二三四区| 日本三级黄在线观看| 夜夜看夜夜爽夜夜摸| 老汉色av国产亚洲站长工具| 99久国产av精品| 精品福利观看| 国产成年人精品一区二区| 在线观看免费午夜福利视频| 亚洲av五月六月丁香网| 床上黄色一级片| 国产视频内射| 夜夜看夜夜爽夜夜摸| 国产亚洲欧美在线一区二区| 一卡2卡三卡四卡精品乱码亚洲| 变态另类成人亚洲欧美熟女| 亚洲狠狠婷婷综合久久图片| 久久午夜综合久久蜜桃| 亚洲真实伦在线观看| 最近最新中文字幕大全免费视频| 高潮久久久久久久久久久不卡| 国产三级中文精品| 两个人视频免费观看高清| 久久伊人香网站| 动漫黄色视频在线观看| 黄频高清免费视频| 啦啦啦韩国在线观看视频| 国产野战对白在线观看| 黄片大片在线免费观看| 超碰成人久久| 99热只有精品国产| 中出人妻视频一区二区| 老汉色∧v一级毛片| 淫秽高清视频在线观看| 精品久久久久久久久久久久久| 老汉色∧v一级毛片| 俄罗斯特黄特色一大片| 久久久精品大字幕| 日韩 欧美 亚洲 中文字幕| 在线观看午夜福利视频| 亚洲av成人一区二区三| 热99在线观看视频| 美女 人体艺术 gogo| 成人国产综合亚洲| 亚洲av电影在线进入| 久久久久国产一级毛片高清牌| 日本成人三级电影网站| 久久久久久国产a免费观看| 久久久久国产一级毛片高清牌| 九九在线视频观看精品| 偷拍熟女少妇极品色| 日本三级黄在线观看| 久久久久久人人人人人| 嫩草影院入口| 美女被艹到高潮喷水动态| 在线视频色国产色| 麻豆国产av国片精品| 香蕉久久夜色| 天堂√8在线中文| 性欧美人与动物交配| 欧美日韩综合久久久久久 | 淫妇啪啪啪对白视频| 一区二区三区高清视频在线| 制服丝袜大香蕉在线| 国产 一区 欧美 日韩| 欧美又色又爽又黄视频| 色播亚洲综合网| 精品久久久久久久久久免费视频| 亚洲国产看品久久| 在线免费观看不下载黄p国产 | 久久久久性生活片| 国产激情欧美一区二区| 女人高潮潮喷娇喘18禁视频| 亚洲无线在线观看| 精品久久久久久成人av| 女人高潮潮喷娇喘18禁视频| 99在线视频只有这里精品首页| 国产伦一二天堂av在线观看| 国产av不卡久久| 特大巨黑吊av在线直播| 又粗又爽又猛毛片免费看| 母亲3免费完整高清在线观看| 国产探花在线观看一区二区| 日韩欧美精品v在线| 禁无遮挡网站| 一个人看的www免费观看视频| 亚洲中文av在线| 熟女少妇亚洲综合色aaa.| 我的老师免费观看完整版| 制服丝袜大香蕉在线| 午夜精品一区二区三区免费看| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费午夜福利视频| 全区人妻精品视频| 亚洲aⅴ乱码一区二区在线播放| 怎么达到女性高潮| 久久精品国产清高在天天线| 国产v大片淫在线免费观看| 午夜福利在线观看免费完整高清在 | 亚洲乱码一区二区免费版| 在线观看午夜福利视频| 色老头精品视频在线观看| 久久香蕉国产精品| 观看免费一级毛片| 久久亚洲精品不卡| 欧美3d第一页| 神马国产精品三级电影在线观看| 青草久久国产| 在线a可以看的网站| 午夜福利免费观看在线| 看免费av毛片| 97超视频在线观看视频| 日韩欧美在线二视频| 此物有八面人人有两片| 香蕉国产在线看| 757午夜福利合集在线观看| 床上黄色一级片| 亚洲第一电影网av| 99re在线观看精品视频| 熟女人妻精品中文字幕| 成年女人看的毛片在线观看| a级毛片在线看网站| 亚洲午夜理论影院| 天堂√8在线中文| 国产久久久一区二区三区| 成人av一区二区三区在线看| 这个男人来自地球电影免费观看| 久久久久国产精品人妻aⅴ院| 欧美日韩中文字幕国产精品一区二区三区| 精品一区二区三区av网在线观看| 色噜噜av男人的天堂激情| 无人区码免费观看不卡| 不卡一级毛片| 久久久久国内视频| 国产黄片美女视频| 亚洲欧美一区二区三区黑人| 亚洲一区二区三区不卡视频| 国产亚洲欧美在线一区二区| 免费在线观看日本一区| 久久精品国产清高在天天线| 亚洲国产精品久久男人天堂| 美女大奶头视频| 在线观看免费午夜福利视频| 我的老师免费观看完整版| 天天躁日日操中文字幕| 日本熟妇午夜| 日本免费a在线| 99国产精品99久久久久| 久久久水蜜桃国产精品网| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利欧美成人| 狂野欧美激情性xxxx| 久久久久久人人人人人| 国产欧美日韩一区二区精品| 999久久久精品免费观看国产| 久久久久久久精品吃奶| 国产免费男女视频| 精品国产乱码久久久久久男人| 日日夜夜操网爽| 国产精品久久久人人做人人爽| 日本黄色片子视频| 亚洲精品在线观看二区| 中文字幕精品亚洲无线码一区| 亚洲 欧美 日韩 在线 免费| 成人无遮挡网站| 超碰成人久久| 俄罗斯特黄特色一大片| 在线观看舔阴道视频| 亚洲av成人av| 国产综合懂色| 色综合亚洲欧美另类图片| 国产精品亚洲av一区麻豆| 男人舔女人的私密视频| 一进一出抽搐动态| 国产乱人视频| 黄色片一级片一级黄色片| 国产一区二区三区视频了| 嫩草影院入口| 一二三四在线观看免费中文在| 在线观看美女被高潮喷水网站 | 老司机午夜十八禁免费视频| 此物有八面人人有两片| 美女 人体艺术 gogo| 黄色 视频免费看| a在线观看视频网站| 又黄又爽又免费观看的视频| 亚洲欧美一区二区三区黑人| 亚洲最大成人中文| 性色av乱码一区二区三区2| 国产成人精品久久二区二区免费| 欧美性猛交黑人性爽| 夜夜躁狠狠躁天天躁| 亚洲美女视频黄频| 亚洲男人的天堂狠狠| 精品久久久久久,| 免费在线观看成人毛片| 男人舔奶头视频| 欧美日韩一级在线毛片| 99久久久亚洲精品蜜臀av| 久久久久九九精品影院| 亚洲电影在线观看av| 国模一区二区三区四区视频 | 香蕉国产在线看| 99视频精品全部免费 在线 | 亚洲真实伦在线观看| 一进一出抽搐动态| 波多野结衣高清无吗| 久久久国产成人免费| 午夜福利在线观看免费完整高清在 | 亚洲激情在线av| 欧美另类亚洲清纯唯美| 久久精品aⅴ一区二区三区四区| 亚洲第一欧美日韩一区二区三区| 在线视频色国产色| 91麻豆av在线| 国产一区二区在线观看日韩 | 国产aⅴ精品一区二区三区波| avwww免费| 亚洲av电影不卡..在线观看| 在线观看一区二区三区| 精品日产1卡2卡| 精品久久久久久,| 国产亚洲欧美98| 国产乱人视频| 日本撒尿小便嘘嘘汇集6| 91字幕亚洲| 国产麻豆成人av免费视频| 12—13女人毛片做爰片一| 真人一进一出gif抽搐免费| 精品国产超薄肉色丝袜足j| 桃红色精品国产亚洲av| 欧美日韩黄片免| 香蕉国产在线看| 999久久久精品免费观看国产| 亚洲五月婷婷丁香| 国产午夜福利久久久久久| 18禁裸乳无遮挡免费网站照片| 亚洲专区国产一区二区| x7x7x7水蜜桃| 午夜免费成人在线视频| 亚洲成a人片在线一区二区| 99国产极品粉嫩在线观看| 国产淫片久久久久久久久 | 亚洲av中文字字幕乱码综合| 国产高清视频在线观看网站| 国产v大片淫在线免费观看| 国产爱豆传媒在线观看| 欧美黑人欧美精品刺激| 国产一级毛片七仙女欲春2| 免费看十八禁软件| 久久精品国产综合久久久| 日韩欧美三级三区| 精品久久久久久久久久久久久| 啦啦啦免费观看视频1| 操出白浆在线播放| 看黄色毛片网站| 他把我摸到了高潮在线观看| 很黄的视频免费| 看片在线看免费视频| 国产精品一及| 国产精品 欧美亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影免费在线| 精品国产超薄肉色丝袜足j| 母亲3免费完整高清在线观看| 老司机深夜福利视频在线观看| 精品久久久久久久毛片微露脸| 黑人欧美特级aaaaaa片| 欧美av亚洲av综合av国产av| 欧美日韩福利视频一区二区| 99视频精品全部免费 在线 | 看免费av毛片| 国产精品免费一区二区三区在线| 婷婷丁香在线五月| 亚洲精品在线观看二区| 最近在线观看免费完整版| 曰老女人黄片| 欧美性猛交黑人性爽| 国产成人av激情在线播放| 亚洲精品一区av在线观看| 在线观看日韩欧美| 黑人巨大精品欧美一区二区mp4| 狠狠狠狠99中文字幕| 亚洲午夜理论影院| 亚洲熟妇中文字幕五十中出| 午夜成年电影在线免费观看| 2021天堂中文幕一二区在线观| 亚洲欧美日韩高清专用| 特级一级黄色大片| 久久久久久大精品| 淫妇啪啪啪对白视频| 国产精品av视频在线免费观看| 老司机午夜福利在线观看视频| www.自偷自拍.com| 99在线视频只有这里精品首页| 三级男女做爰猛烈吃奶摸视频| 日本a在线网址| 日韩欧美在线乱码| 床上黄色一级片| 黑人欧美特级aaaaaa片| 久久99热这里只有精品18| 亚洲欧美精品综合久久99| 亚洲精品在线观看二区| 操出白浆在线播放| 国产极品精品免费视频能看的| 欧美xxxx黑人xx丫x性爽| 欧美绝顶高潮抽搐喷水| 国产精品九九99| 精品久久久久久久久久免费视频| 特级一级黄色大片| 国产精品免费一区二区三区在线| 中亚洲国语对白在线视频| 中文资源天堂在线| 色综合站精品国产| 亚洲在线观看片| 香蕉av资源在线| 精品99又大又爽又粗少妇毛片 | 国产精品精品国产色婷婷| 可以在线观看毛片的网站| 国产私拍福利视频在线观看| 亚洲欧美精品综合久久99| 日本五十路高清| 午夜精品久久久久久毛片777| 在线a可以看的网站| 欧美在线一区亚洲| 中文字幕最新亚洲高清| 色在线成人网| 免费在线观看成人毛片| 一区二区三区高清视频在线| 男人的好看免费观看在线视频| 老司机在亚洲福利影院| 亚洲精品中文字幕一二三四区| 99久久精品一区二区三区| 国产精品一及| 国产精品永久免费网站| 啦啦啦免费观看视频1| 桃色一区二区三区在线观看| 日韩免费av在线播放| 99精品久久久久人妻精品| 日韩中文字幕欧美一区二区| 老鸭窝网址在线观看| 天天一区二区日本电影三级| 91av网站免费观看| 亚洲午夜理论影院| 亚洲av日韩精品久久久久久密| 亚洲欧美日韩高清在线视频| 亚洲,欧美精品.| 九色国产91popny在线| 九九久久精品国产亚洲av麻豆 | 可以在线观看毛片的网站| 免费高清视频大片| 国产高清videossex| 九九久久精品国产亚洲av麻豆 | 日韩中文字幕欧美一区二区| 国模一区二区三区四区视频 | 最近最新免费中文字幕在线| 两性午夜刺激爽爽歪歪视频在线观看| 90打野战视频偷拍视频| 99热精品在线国产| www.999成人在线观看| 亚洲在线自拍视频| 美女黄网站色视频| 国产 一区 欧美 日韩| 精品乱码久久久久久99久播| 最近最新中文字幕大全电影3| 国产私拍福利视频在线观看| 国产高清videossex| 丰满人妻一区二区三区视频av | 少妇的丰满在线观看| 亚洲成人精品中文字幕电影| 国产视频内射| 97碰自拍视频| 国产精品美女特级片免费视频播放器 | 亚洲国产欧洲综合997久久,| 真实男女啪啪啪动态图| 中文字幕人妻丝袜一区二区| 国产精品一区二区免费欧美| 最好的美女福利视频网| 国产单亲对白刺激| 美女午夜性视频免费| 欧美另类亚洲清纯唯美| 男人舔女人下体高潮全视频| 精品午夜福利视频在线观看一区| 最好的美女福利视频网| 久久久国产成人精品二区| 波多野结衣高清无吗| 热99re8久久精品国产| 欧美一区二区精品小视频在线| 好男人在线观看高清免费视频| 欧美三级亚洲精品| 国产亚洲av嫩草精品影院| 亚洲国产高清在线一区二区三| 青草久久国产| 国内精品美女久久久久久| 久久久国产成人免费| 国产精品久久久久久亚洲av鲁大| 老司机午夜十八禁免费视频| 亚洲真实伦在线观看| 非洲黑人性xxxx精品又粗又长| 嫩草影视91久久| 在线观看日韩欧美| 日韩免费av在线播放| 亚洲人与动物交配视频| 久久欧美精品欧美久久欧美| 日本黄色片子视频| 日韩成人在线观看一区二区三区| 欧美黄色淫秽网站| 成人三级黄色视频| 成熟少妇高潮喷水视频| 热99在线观看视频| 国产精品永久免费网站| 他把我摸到了高潮在线观看| 99热这里只有是精品50| 国产欧美日韩精品亚洲av| 美女被艹到高潮喷水动态| 成人特级av手机在线观看| 亚洲午夜理论影院| 男女之事视频高清在线观看| 日本熟妇午夜| 一个人观看的视频www高清免费观看 | 无限看片的www在线观看| 99国产综合亚洲精品| 99国产精品一区二区三区| 夜夜爽天天搞| 小说图片视频综合网站| 久久九九热精品免费| 一区二区三区高清视频在线| 午夜激情福利司机影院| 久久人人精品亚洲av| 亚洲欧美精品综合久久99| 精品国产三级普通话版| 国产又黄又爽又无遮挡在线| 美女高潮喷水抽搐中文字幕| 啦啦啦韩国在线观看视频| 淫秽高清视频在线观看| 欧美日韩国产亚洲二区| 国产黄色小视频在线观看| 又黄又粗又硬又大视频| cao死你这个sao货| 国产亚洲av高清不卡| 好男人在线观看高清免费视频| 午夜福利在线在线| 亚洲一区高清亚洲精品| 日本 av在线| 真实男女啪啪啪动态图| 国产一区二区激情短视频| 黑人操中国人逼视频| 性色av乱码一区二区三区2| 亚洲av五月六月丁香网| 日韩高清综合在线| 三级国产精品欧美在线观看 | 久久久久久九九精品二区国产| x7x7x7水蜜桃| 亚洲专区国产一区二区| 青草久久国产| 国产三级中文精品| 免费看日本二区| 久久精品国产亚洲av香蕉五月| 一本精品99久久精品77| 丰满人妻一区二区三区视频av | 91麻豆av在线| 国产不卡一卡二| 亚洲av成人精品一区久久| 欧美性猛交黑人性爽| 超碰成人久久| 国产成人影院久久av| 男人舔女人的私密视频| 色综合欧美亚洲国产小说| 国产91精品成人一区二区三区| 美女被艹到高潮喷水动态| 国产伦人伦偷精品视频| av天堂中文字幕网| 精品一区二区三区视频在线 | 国产高清激情床上av| 夜夜躁狠狠躁天天躁| 黄色视频,在线免费观看| 免费无遮挡裸体视频| 中国美女看黄片| 大型黄色视频在线免费观看| 国产单亲对白刺激| 99久久精品热视频| 99精品在免费线老司机午夜| 叶爱在线成人免费视频播放| 国产精品99久久99久久久不卡| 男人和女人高潮做爰伦理| 免费看a级黄色片| 国产精品永久免费网站| 国产一区二区在线av高清观看| 国产伦在线观看视频一区|