• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3,5-(硝氨基)-1,2,4-三唑肼鹽的熱行為研究

    2016-11-03 00:43:59李吉禎張國(guó)防樊學(xué)忠王伯周付小龍胡榮祖
    固體火箭技術(shù) 2016年4期
    關(guān)鍵詞:化學(xué)

    李吉禎,張國(guó)防,樊學(xué)忠,王伯周,周 誠(chéng),付小龍,霍 歡,胡榮祖

    (1. 西安近代化學(xué)研究所,西安 710065;2. 應(yīng)用表面和膠體化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,陜西師范大學(xué)化學(xué)化工學(xué)院,西安 710062)

    ?

    3,5-(硝氨基)-1,2,4-三唑肼鹽的熱行為研究

    李吉禎1,2,張國(guó)防2,樊學(xué)忠1,王伯周1,周誠(chéng)1,付小龍1,霍歡1,胡榮祖1

    (1. 西安近代化學(xué)研究所,西安710065;2. 應(yīng)用表面和膠體化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,陜西師范大學(xué)化學(xué)化工學(xué)院,西安710062)

    3,5-(硝氨基)-1,2,4-三唑肼鹽;含能材料;相互作用;相容性;熱分解

    0 Introduction

    Compatibility of an energetic material refers to the change within a permissible range when the energetic material contacts with other materials by mixing or other processes[1-6]. In the practical applications of energetic materials, mixing of the energetic materials with explosives or components of propellants could give rise to some chemical interactions and thus lead to a potential danger to the propellants safety if the interactions are strong enough[1-3]. Therefore, compatibility is one of the important safety aspects related to the production and storage of energetic materials and studies on compatibility of energetic materials can decrease vulnerability of ammunition and weapons[1-3]. There are a few methods for evaluation of the compatibility of energetic materials[1-6], including Vacuum Stability Test (VST), Thermogravimetry (TG), Blush Pressure Method (BPM), and Differential Scanning Calorimetry (DSC), etc. To test different combinations of materials, DSC method with clear criteria is advisable[1-2]. In an investigation[3], it is shown that the results obtained with high-pressure DSC and TG/DTA measurements and obtained using vacuum stability tests were very similar for a same combination of materials.

    Triazole-derived compounds[7-12]are energetic materials with low sensitivity and high energy. Hydrazinium 3,5-dinitramino-1,2,4-triazolate (HDNAT) is a new energetic triazole-derived ionic compound, which can be used as a main component in solid propellants and high explosives for its high energy. We experimentally find that nitrogen content of HDNAT is 50.8%, density 1.89 g/cm3, enthalpy of formation 216.37 kJ/kg, detonation velocity 9 400 m/s and detonation pressure 36.0 GPa. It is also found that the addition of HDNAT can obviously enhance burning rates of solid propellants by our experiments, the burning rate of the composite modified double-based propellant is increased by about 15% with addition of 5% HDNAT.

    As a new energetic compound, thermal stability, interactions and compatibility of HDNAT with energetic materials in solid propellants or explosives are very important for HDNAT in its potential applications. Seldom, however, are investigations on these reported. Therefore in this work, thermal stability of HDNAT, interactions and compatibility of HDNAT with some energetic materials under the non-isothermal condition investigated by means of DSC technique, are reported.

    1 Experiment

    1.1Materials

    HDNAT is prepared by Xi'an Modern Chemistry Research Institute according to the synthetic procedure described by Metelkina E L, et al[13], with purity of 99.83%. Cyclotetramethylenetetranitroamine (HMX), cyclotrimethylenetrinitramine (RDX), nitrocellulose (NC, 12.0%N), nitroglycerine (NG), 125/100-NC/NG mixture (NC+NG) N-nitrodihydroxyethylamine-dinitrate (DINA) 3,4-bisnitrofurazanfuroxan (DNTF) and aluminum powder (Al) are all industrially produced. Mixtures of HDNAT and energetic components are each prepared with 50% HDNAT.

    The synthesis route of HDNAT is as follows.

    1.2Experimental equipments and conditions

    TG-DTG curves are obtained by using a TA 2950 thermogravimetric analyzer from TA Instruments (USA). The conditions for TG-DTG tests are as follows: sample mass, about 1.00 mg; heating rate (β), 5, 10, 15, 20 ℃/min; atmosphere, flowing rate of N2gas, 60 ml/min.

    DSC measurements are made with a model Netzsch DSC 204 HP differential scanning calorimeter from Netzsch (Germany). The conditions for DSC measurements are as follows: sample mass, about 2.00 mg; heating rate, 10 ℃/min; atmosphere, nitrogen 0.1 MPa, flow rate 50 ml/min. The conditions for PDSC measurements are as follows: sample mass, about 2.00 mg; heating rate, 10 ℃/min; static nitrogen, 1.0 MPa.

    The HDNAT, an employed energetic material of 2.00 mg or mixture of 50/50-HDNAT/each of the energetic materials of 1.00 mg/1.00 mg is sealed in an aluminum cell.

    2 Results and Discussion

    2.1Thermal decomposition behavior of HDNAT

    The DSC curves at different pressures and TG-DTG curves at different heating rates of HDNAT are shown in Fig.1 and Fig.2, respectively.

    Fig.1 DSC curves of HDNAT at different pressures

    The DSC curves of HDNAT show the decomposition processes in the temperature range of 160~230 ℃ with a main exothermic peak and a shoulder peak, where HDNAT decompose rapidly and form gas products. There are significant differences between the DSC curves of HDNAT at the pressures of 0.1 MPa and 1.0 MPa, at the latter pressure, the decomposition process of HDNAT is delayed because of the inhibition of gas products' escape by the pressure. With the change in pressure from 0.1 MPa to 1.0 MPa, the onset temperature changes from 180.72 ℃ to 186.64 ℃, the main exothermic peak temperature from 192.47 ℃ to 197.80 ℃, the shoulder peak temper-ature from 204.72 ℃ to 207.08 ℃, and the end temperature from 212.20 ℃ to 223.88 ℃.

    Fig.2 TG-DTG curves of HDNAT at different heating rates

    The TG-DTG curves of HDNAT (Fig.2) display a main peak with a shoulder in the DTG curves, corresponding to the two mass loss stages of HDNAT during its thermal decomposition. For the TG curve whenβ=10 ℃/min, the decomposition process begins at 177.24 ℃ and ends at 245.90 ℃, with the summit peak at 188.04 ℃ and the shoulder peak at 194.78 ℃, accompanied by 66.0% mass loss.

    2.2Calculation of nonisothermal reaction kinetics

    In order to obtain the kinetic parameters (the apparent activation energyEaand pre-exponential constantA) and the most probable kinetic model function, and explore the thermal decomposition mechanism of the major exothermic decomposition reaction of HDNAT, the DTG curves at heating rates of 5, 10, 15 and 20 ℃/min are dealt with mathematic means, and five integral methods [Eqs.(1)~(4) and (6)] and a differential method [Eq. (5)] listed in Table 1 are employed[14-16].

    Table 1 Kinetic analysis methods

    Where,αis the conversion degree of HDNAT decomposition;Tis the temperature (K) at time oft;T0is the temperature of the initial point at which the DTG curve deviates from the baseline;Tpis the peak temperature of DTG curve;Ris the gas constant;f(α) andG(α) are the differential model function and the integral model function, respectively; and the means ofEa,Aandβhave been mentioned earlier. Subscript s, data obtained byatava-esták's method; subscript k, data obtained by Kissiger's method; subscript o, data obtained by Ozawa's method. The data needed for the equations of the integral and differential methods,i,αi,β,Ti,Te(onset temperature),Tp,i=1, 2, 3, 4, are obtained from the DTG curves and summarized in Table 2.

    Table 2 Data for decomposition processes of HDNAT at different heating rates from TG-DTG curves

    The values ofEawere obtained by Ozawa's method [Eq.(6)] withαchanging from 0 to 1 as shown in Table 2. TheEa-αrelation is shown in Fig.3. It indicates that the activation energy of the decomposition processes changes greatly by diverse level with an increase in the conversion degree, except that for the range ofα=0.02~0.82, activation energy changes faintly, and it means that the decomposition mechanism of the process does not transfer in essence or the transference can be ignored. Therefore, it is feasible to research into the reaction mechanism and kinetics in the section ofα=0.02~0.82, according to the first mass loss stage, the main decomposition process of HDNAT in its TG curves.

    Forty-one types of kinetic model functions in Ref.[11] and the original data (data points 2~50) tabulated in Table 2 are put into Eq. (1)~(8), respectively, for calculations. The values ofEa, lgA, linear correlation coefficient (r), and standard mean square deviation (Q) can be calculated with the linear least-squares method at various heating rates of 5, 10, 15 and 20 ℃/min, and

    they are listed in Table 3. The most probable mechanism function is selected by the better values ofr, andQtaken from Ref.[11]. The results of satisfying the conditions mentioned above are also listed in Table 3.

    Fig.3 Ea-α curve of HDNAT obtained by Ozawa's method

    Methodβ/(℃/min)Ea/(kJ/mol)lg(A/s-1)rQOrdinary-integral5183.419.20.92990.299910191.820.10.93480.280615181.119.00.89370.448220185.619.50.94640.2308MacCallum-Tanner5183.819.30.93400.056510192.420.10.93840.052815181.619.00.89970.084520186.319.50.94960.0435?atava-?esták5180.218.90.93410.056510188.419.80.93850.052815178.318.70.89970.084520182.619.30.94970.0435Agrawal5183.419.20.92990.299910191.820.10.93480.280615181.119.00.89370.448220185.619.50.94640.2308Mean184.819.4——Kissiger185.719.30.99070.0182Ozawa183.9-0.99150.0034

    The values ofEa, 184.8 kJ/mol, andA, 1019.4s-1, obtained from a single nonisothermal DTG curve are in approximately good agreement with the values calculated by Kissinger's method and Ozawa's method. Therefore, a conclusion can be drawn that the reaction mechanism of the main exothermal decomposition process of HDNAT is classified as nucleation and growth withn=2/5, and the mechanism function is No.12, the Avrami-Erufeev equation.

    (7)

    We can obtain the kinetic equation of the exothermal decomposition reaction as follows:

    (8)

    2.3Interactions of HDNAT with some energetic materials

    Interactions of HDNAT with some energetic materials, such as HMX, RDX, NC, NG, etc., are studied in details by using DSC, and the typical DSC curves of the binary systems 1~8 are shown in Fig.4.

    (a) HDNAT/HMX               (b) HDNAT/RDX

    (c) HDNAT/NC               (d) HDNAT/NG

    (e) HDNAT/NC+NG               (f) HDNAT/Al

    (g) HDNAT/DINA               (h) HDNAT/DNTF

    From Fig. 4 the following observations can be made.The DSC curve of HMX consists of two endothermic peaks and one exothermic peak. The first peak at 200.32 ℃ is due to the crystal transformation fromαtoδ, and the second endothermic peak at 280.30 ℃ is assigned to the phase change from solid to liquid. The exothermic peak at 281.89 ℃ is caused by the rapid decomposition reaction of HMX.

    The endothermic peak in the DSC curve of RDX is caused by the phase change of RDX from solid to liquid. Similarly, the endothermic peaks in the DSC curves of DINA, HDNAT-DINA, DNTF and HDNAT-DNTF are caused by the phase changes of DINA and DNTF from solid to liquid.

    The DSC curve of the HDNAT/HMX mixture shows two exothermic peaks at 198.22 ℃ (with a shoulder at 208.74 ℃) and 282.44 ℃, which are almost similar to the corresponding peaks of pure HDNAT (at 197.80 ℃ with a shoulder at 207.08 ℃) and HMX (281.89 ℃) under thermal decomposition. And the endothermic peak at 280.01 ℃ in the DSC curve of the HDNAT/HMX mixture has almost no difference with the corresponding peak of the phase change of pure HMX (280.30 ℃). Only the weak endothermic peak of the crystal transformation of HMX disappears because of the superposition with the sharp exothermic peaks of HDNAT in the DSC curve of the binary system. These observations manifest that there is nearly no interaction between HDNAT and HMX. And a similar result can be obtained for the binary system HDNAT/Al.

    HDNAT, when mixed with RDX, decomposes rapidly in the temperature range of 186~197 ℃ centered at 193.88 ℃. The intermediate product of HDNAT decomposes with RDX, and a dull exothermic peak forms with peak temperature of 240.60 ℃. From the DSC curve of the HDNAT/RDX binary system, it can be observed that the endothermic peak of the phase change of RDX disappears because of the superposition with the shoulder peak of HDNAT, and the effect of RDX on HDNAT is more obvious than that of HDNAT on RDX.

    There is little effect of NC, NG or (NC+NG) on HDNAT. The main exothermic peak and the shoulder peak of HDNAT have no significant change in their positions and shapes in the DSC curves of the binary systems of HDNAT-NC, HDNAT-NG and HDNAT-(NC+NG). However, the decomposition process of HDNAT influences those of NC, NG and (NC+NG) considerably, NC, NG and (NC+NG) decompose rapidly when blended with HDNAT in the temperature range of 170~240 ℃.

    A striking interaction of DINA and HDNAT can be seen from the DSC curves of DINA, HDNAT and HDNAT/DINA. The decomposition of DINA is considerably accelerated by the addition of HDNAT with its exothermic peak moving from 197.80 ℃ to 183.78 ℃. Similarly, HDNAT shows its exothermic peak and shoulder peak at 183.78 ℃ (197.80 ℃ in pure HDNAT) and 204.73 ℃ (207.08 ℃ in pure HDNAT), respectively, in the DSC curve of HDNAT/DINA.

    The DSC curve of HDNAT/DNTF shows an evident interaction between HDNAT and DNTF, too. A main exothermic peak and a small shoulder peak at 187.02 ℃ and 222.60 ℃, respectively, are shown in the DSC curve of the HDNAT/DNTF binary system.

    2.4Compatibility of HDNAT with some energetic materials

    The compatibility of HDNAT with the energetic materials mentioned above is evaluated with the data of DSC curves above. The maximum exothermic peak temperatures of the energetic materials and the 50/50-HDNAT/energetic material binary systems are shown in Table 4.Where mixture system, 50/50-HDNAT/energetic component binary system; Single system, the component with its exothermic peak temperature smaller than another one in a two-component system;TP1, the maximum exothermic peak temperature of single system;TP2, the maximum exothermic peak temperature of mixture system; ΔTP=TP1-TP2.The evaluation standard of compatibility for explosives and contacted materials[1-2]are listed in Table 5.

    From both Table 4 and Table 5, the following observations can be made.

    Decomposition process of HDNAT is delayed by the addition of HMX and Al, the maximum exothermic peak temperature differences (ΔTp) between HDNAT and HDNAT-HMX or HDNAT-Al are -0.42 and -0.54 ℃, respectively. From the evaluation standard of compatibility in Table 5, it is concluded that the binary systems HDNAT-HMX or HDNAT-Al have good compatibility.

    The DSC curve of the binary system HDNAT-NC shows that there is only a little effect on the decomposition processes of HDNAT or NC by mixing HDNAT and NC, and the binary systems of HDNAT-NG and HDNAT-(NC+NG) are in the same way. The values of ΔTpare 0.48 ℃ between HDNAT and HDNAT-NC, 1.50 ℃ between HDNAT and HDNAT-NG, and 1.78 ℃ between HDNAT and HDNAT-(NC+NG), which indicate good compatibility between HDNAT and NC, NG or (NC+NG), too.

    Table 4 Data of the energetic materials and the 50/50-HDNAT/energetic material mixtures obtained by DSC

    Table 5 Evaluation standard of compatibility for explosives and contacted materials

    The value of ΔTpbetween HDNAT and HDNAT-RDX is 3.92 ℃, which displays that the decomposition reaction of the mixture is easy to take place and the mixture has fair compatibility.

    The values of ΔTpbetween DINA and HDNAT-DINA, DNTF and HDNAT-DNTF are 14.02 and 10.78 ℃, respectively, showing an increase in the rates of the decomposition reactions and a poor compatibility of the mixtures.

    The compatibility of the binary systems of HDNAT/energetic materials decreases in the order 6>1>3>4>5>2>8>7, and the relative thermal stability of the binary systems of HDNAT/energetic materials decreases in the same way.

    3 Conclusions

    There is obvious interactions between HDNAT and DINA or DNTF, a slight interaction between HDNAT and RDX, while little interactions between HDNAT and HMX, NC, NG, (NC+NG) or Al.

    The HDNAT-HMX, HDNAT-NC, HDNAT-NG, HDNAT-(NC+NG) and HDNAT-Al binary mixtures have good compatibility, and the HDNAT-RDX binary mixture has fair compatibility, and the HDNAT-DINA and HDNAT-DNTF binary systems have poor compatibility, however.

    [1]Beach N E, Canfield V K. Compatibility of explosives with polymers (III) [J]. Plastic. Rep., 1971, 40:73-76.

    [2]Beach, N E, Canfield V K. Compatibility of explosives with polymers (II) [R]. AD 721004, Springfield: NTIS, 1971.

    [3]W P C de Klerk, M A Schrader, A C van der Steen. Compatibility testing of energetic materials, which technique [J]. J. Therm. Anal. Cal., 1999, 56(3):1123-1131.

    [4]Yan Q L, Li X J, Zhang L Y, et al. Compatibility study of trans-1,4,5,8-tetranitro-1,4,5,8- tetraazadecalin (TNAD) with some energetic components and inert materials [J]. J. Hazard Mater., 2007, 160(2-3):529-534.

    [5]Liao L Q, Wei H Jian, Li J Z, et al. Compatibility of PNIMMO with some energetic materials [J]. J. Therm. Anal. Cal., 2012, 109(3):1571-1576.

    [6]Li J Z, Fan X Z, Fan X P, et al. Compatibility study of 1,3,3-tinitroaztidine with some energetic components and inert materials [J]. J. Therm. Anal. Cal., 2006, 85(3):779-784.

    [7]Wang Bozhou, Li Jizhen, Huo Huan, et al. Synthesis, characterization and thermal behaviors of 4-Amino-5-nitro-1,2,3-triazole (ANTZ) and its derivatives [J]. Chin. J. Chem., 2010, 28(5): 781-784.

    [8]Lsimpsom, R P, Pagoria A R, Mitchaland C L. Synthesis, properties and performance of the high explosive ANTA[J]. Prop. Exp. Pyro., 1994, 19(4):174-179.

    [9]Kien L, Ott Y, Donald G.Production of the ammonium salt of 3,5-dinitro-l,2,4-tiazole by solvent extraction [P], USP 4236014, 1980.

    [10]Xiong C L, Jia S Y, Wang X J, et al. Synthesis and extraction of anunonium salt of 3,5-dinitro-1,2,4-triazole [J]. Fine Chemical Intermediates, 2008, 38(2): 64-66 (in Chinese).

    [11]Jia S Y, Wang X J, Wang B Z, et al. Synthesis and crystal structure of 3,3'-dinitro-5,5'-azo-1H-1,2,4-triazole (DNAT) [J]. Chin. J. Exp. Prop., 2009, 32(1): 25-28 (in Chinese).

    [12]Darren L N, Michael A H, Herbert H H. Synthesis and explosive properties of 3,3'-dinitro-5,5'-azo-1H-1,2,4-triazole [J]. Ener. Mater., 2003, 21(1): 57-62.

    [13]Metelkina E L. 2-Nitroguanidine derivatives: V. synthesis and structure of 3,5-Bis(nitroamino)-1,2,4-triazole salts. acid-base properties of 3,5-bis(nitroamino)-1,2,4-triazole [J]. Russian J. Org. Chem., 2004, 40(4): 543-550.

    [14]Hu R Z, Shi Q Z. Thermal analysis kinetics [M]. Beijing: Science Press, 2001 (in Chinese).

    [15]Wu X M, Liu J H, Li W, et al. Thermal decomposition kinetics of complexes of rare earths (RE=Nd, Sm) with amino acid RE(Val)Cl3·6H2O [J]. Acta Phys. Chim. Sin., 2006, 22(8): 942-946.

    [16]Hu R Z, Chen S P, Gao S L, et al. Thermal decomposition kinetics of the Pb0.25Ba0.75(TNR)center dot H2O complex [J]. J. Hazard. Mater., 2005, 117(2-3): 103-110.

    (編輯:薛永利)

    猜你喜歡
    化學(xué)
    化學(xué)與日常生活
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    化學(xué):我有我“浪漫”
    化學(xué):舉一反三,有效學(xué)習(xí)
    考試周刊(2016年63期)2016-08-15 22:51:06
    化學(xué)與健康
    絢麗化學(xué)綻放
    少妇熟女aⅴ在线视频| 又紧又爽又黄一区二区| 性少妇av在线| 69av精品久久久久久| 久久亚洲精品不卡| 精品国产亚洲在线| 久久人妻av系列| 久久香蕉激情| 亚洲av电影在线进入| 免费看a级黄色片| 手机成人av网站| 久久精品亚洲熟妇少妇任你| 黄片大片在线免费观看| 成人免费观看视频高清| 伊人久久大香线蕉亚洲五| 日日爽夜夜爽网站| 久久精品国产99精品国产亚洲性色 | 天堂√8在线中文| 精品人妻1区二区| 变态另类成人亚洲欧美熟女 | 日韩欧美一区二区三区在线观看| 亚洲欧美激情在线| 欧美日本视频| 国产精品一区二区在线不卡| 久久这里只有精品19| а√天堂www在线а√下载| 一a级毛片在线观看| 亚洲精品国产区一区二| 欧美绝顶高潮抽搐喷水| 校园春色视频在线观看| 国产亚洲av嫩草精品影院| 亚洲av电影在线进入| 男人舔女人下体高潮全视频| 好男人电影高清在线观看| 欧美激情久久久久久爽电影 | 国产真人三级小视频在线观看| 国产午夜福利久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 很黄的视频免费| 色播亚洲综合网| 色哟哟哟哟哟哟| 人妻久久中文字幕网| 大型av网站在线播放| 国产精品九九99| 男女下面进入的视频免费午夜 | 女人被狂操c到高潮| 国产色视频综合| 极品教师在线免费播放| 他把我摸到了高潮在线观看| 中文亚洲av片在线观看爽| 国产精品乱码一区二三区的特点 | 一区二区日韩欧美中文字幕| 黄色 视频免费看| 国产精品乱码一区二三区的特点 | 国产欧美日韩一区二区三| 涩涩av久久男人的天堂| 亚洲 欧美 日韩 在线 免费| 啦啦啦韩国在线观看视频| 在线av久久热| 日本 欧美在线| 视频区欧美日本亚洲| 欧美av亚洲av综合av国产av| 亚洲电影在线观看av| 久久精品亚洲精品国产色婷小说| 成人18禁在线播放| 久99久视频精品免费| av视频在线观看入口| 亚洲久久久国产精品| 国产主播在线观看一区二区| 国产午夜福利久久久久久| 国产精品乱码一区二三区的特点 | 两个人免费观看高清视频| 国产高清视频在线播放一区| 欧美性长视频在线观看| 黑人欧美特级aaaaaa片| 99久久综合精品五月天人人| 成人国语在线视频| tocl精华| av网站免费在线观看视频| 久久人妻熟女aⅴ| 亚洲国产看品久久| 亚洲一区二区三区色噜噜| 亚洲国产精品合色在线| 免费一级毛片在线播放高清视频 | 一区二区三区高清视频在线| 一边摸一边抽搐一进一出视频| 丁香六月欧美| 亚洲精品国产色婷婷电影| 国产精品秋霞免费鲁丝片| 亚洲五月天丁香| 一个人免费在线观看的高清视频| 色综合亚洲欧美另类图片| 自线自在国产av| av福利片在线| 久久午夜亚洲精品久久| 国产精品久久久久久人妻精品电影| 亚洲人成77777在线视频| 亚洲精品美女久久久久99蜜臀| 久久亚洲精品不卡| 亚洲片人在线观看| 大型黄色视频在线免费观看| 在线观看66精品国产| 女性被躁到高潮视频| 我的亚洲天堂| 黄色丝袜av网址大全| 热99re8久久精品国产| 日韩有码中文字幕| 夜夜爽天天搞| 51午夜福利影视在线观看| 女性生殖器流出的白浆| 日本精品一区二区三区蜜桃| 国产主播在线观看一区二区| 欧美日本亚洲视频在线播放| 人人妻,人人澡人人爽秒播| 亚洲精品中文字幕在线视频| 不卡一级毛片| 亚洲欧美精品综合一区二区三区| 欧美乱色亚洲激情| 国产99久久九九免费精品| 最新美女视频免费是黄的| 在线播放国产精品三级| 色综合欧美亚洲国产小说| 99久久国产精品久久久| 日韩高清综合在线| 69av精品久久久久久| 黄频高清免费视频| 俄罗斯特黄特色一大片| 亚洲精品国产精品久久久不卡| 欧美老熟妇乱子伦牲交| 国产主播在线观看一区二区| 波多野结衣高清无吗| 欧美亚洲日本最大视频资源| 国产精品免费视频内射| 欧美日韩瑟瑟在线播放| 色播在线永久视频| 黑人操中国人逼视频| 99精品在免费线老司机午夜| av天堂久久9| 欧洲精品卡2卡3卡4卡5卡区| 桃色一区二区三区在线观看| 免费在线观看黄色视频的| 桃红色精品国产亚洲av| 人成视频在线观看免费观看| 国产高清有码在线观看视频 | 国产国语露脸激情在线看| 欧美成狂野欧美在线观看| 亚洲五月天丁香| 免费搜索国产男女视频| 一边摸一边抽搐一进一小说| 免费人成视频x8x8入口观看| 黄频高清免费视频| 亚洲精品中文字幕一二三四区| 久久久久久大精品| 极品教师在线免费播放| 日韩三级视频一区二区三区| 亚洲精品久久成人aⅴ小说| 国产成人系列免费观看| 此物有八面人人有两片| 亚洲精品在线观看二区| 自线自在国产av| 午夜视频精品福利| 亚洲一区二区三区色噜噜| 12—13女人毛片做爰片一| 在线观看www视频免费| 欧美精品亚洲一区二区| 国产伦一二天堂av在线观看| 在线国产一区二区在线| 99精品在免费线老司机午夜| 一级毛片精品| 午夜日韩欧美国产| 精品卡一卡二卡四卡免费| 久久国产亚洲av麻豆专区| 国产99久久九九免费精品| av电影中文网址| 欧美性长视频在线观看| 亚洲自偷自拍图片 自拍| 久久精品亚洲精品国产色婷小说| 无限看片的www在线观看| 麻豆一二三区av精品| 国产乱人伦免费视频| 老熟妇乱子伦视频在线观看| 国产乱人伦免费视频| 亚洲中文字幕日韩| 激情视频va一区二区三区| 亚洲全国av大片| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久久久亚洲av鲁大| 99国产极品粉嫩在线观看| 国产成人系列免费观看| 成在线人永久免费视频| 长腿黑丝高跟| 黄色视频不卡| av有码第一页| 亚洲一码二码三码区别大吗| 夜夜爽天天搞| 午夜免费激情av| 国产欧美日韩一区二区精品| 欧美成狂野欧美在线观看| 中文字幕色久视频| 国产亚洲欧美精品永久| 美女扒开内裤让男人捅视频| 国产成人啪精品午夜网站| 首页视频小说图片口味搜索| 99久久综合精品五月天人人| 亚洲第一电影网av| 久久青草综合色| 老司机深夜福利视频在线观看| 国语自产精品视频在线第100页| 悠悠久久av| 欧美+亚洲+日韩+国产| 亚洲成人精品中文字幕电影| 99热只有精品国产| 老汉色av国产亚洲站长工具| 51午夜福利影视在线观看| 国产精品 国内视频| 麻豆国产av国片精品| 久久久国产成人精品二区| 最近最新中文字幕大全电影3 | 如日韩欧美国产精品一区二区三区| 18禁黄网站禁片午夜丰满| 亚洲男人的天堂狠狠| 国产精品野战在线观看| 欧美绝顶高潮抽搐喷水| 国产乱人伦免费视频| 女人被躁到高潮嗷嗷叫费观| 国产av在哪里看| 美女大奶头视频| 悠悠久久av| 日韩精品青青久久久久久| 变态另类成人亚洲欧美熟女 | 精品欧美国产一区二区三| 99久久国产精品久久久| 国产精品亚洲美女久久久| 亚洲精品中文字幕在线视频| 午夜福利欧美成人| videosex国产| 亚洲免费av在线视频| 婷婷六月久久综合丁香| videosex国产| 国产精品久久视频播放| e午夜精品久久久久久久| 国产在线精品亚洲第一网站| 精品高清国产在线一区| 亚洲最大成人中文| 亚洲 欧美 日韩 在线 免费| 午夜a级毛片| 久久精品影院6| 极品教师在线免费播放| 51午夜福利影视在线观看| 国产欧美日韩一区二区精品| 国产成人一区二区三区免费视频网站| 91麻豆av在线| 国产精品电影一区二区三区| 色老头精品视频在线观看| 精品一区二区三区视频在线观看免费| 亚洲第一av免费看| 99精品欧美一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 亚洲黑人精品在线| 亚洲欧美激情综合另类| 最近最新中文字幕大全电影3 | 亚洲成a人片在线一区二区| 亚洲欧洲精品一区二区精品久久久| 久久 成人 亚洲| 精品福利观看| 乱人伦中国视频| 亚洲激情在线av| 成在线人永久免费视频| 两性夫妻黄色片| 亚洲avbb在线观看| 真人做人爱边吃奶动态| 精品少妇一区二区三区视频日本电影| www.自偷自拍.com| 国产91精品成人一区二区三区| 51午夜福利影视在线观看| 国产色视频综合| 亚洲精品av麻豆狂野| 国产精品亚洲一级av第二区| av天堂在线播放| 91精品三级在线观看| 亚洲五月天丁香| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美在线二视频| 脱女人内裤的视频| 又紧又爽又黄一区二区| 村上凉子中文字幕在线| 国产午夜精品久久久久久| 久久久久久久久久久久大奶| bbb黄色大片| 色尼玛亚洲综合影院| 99久久99久久久精品蜜桃| 精品少妇一区二区三区视频日本电影| 村上凉子中文字幕在线| 亚洲成人国产一区在线观看| 国产精品av久久久久免费| 久久午夜亚洲精品久久| 久久久精品国产亚洲av高清涩受| 中出人妻视频一区二区| 脱女人内裤的视频| 国产精品99久久99久久久不卡| 国产精品久久久久久亚洲av鲁大| 亚洲男人天堂网一区| 成在线人永久免费视频| 真人一进一出gif抽搐免费| 免费在线观看亚洲国产| 国产精品野战在线观看| 男人舔女人的私密视频| 欧美激情 高清一区二区三区| 久久精品国产亚洲av高清一级| 日本一区二区免费在线视频| 757午夜福利合集在线观看| 他把我摸到了高潮在线观看| 好男人在线观看高清免费视频 | 欧美成人免费av一区二区三区| 亚洲欧美激情在线| 久久精品人人爽人人爽视色| svipshipincom国产片| 亚洲专区中文字幕在线| 亚洲一码二码三码区别大吗| 精品第一国产精品| 日本五十路高清| 99riav亚洲国产免费| 香蕉久久夜色| 精品国产美女av久久久久小说| 这个男人来自地球电影免费观看| 午夜免费鲁丝| 波多野结衣高清无吗| 91av网站免费观看| 成人亚洲精品av一区二区| 在线观看66精品国产| 欧美激情极品国产一区二区三区| 非洲黑人性xxxx精品又粗又长| 欧美乱码精品一区二区三区| 亚洲少妇的诱惑av| 久久天躁狠狠躁夜夜2o2o| 我的亚洲天堂| 涩涩av久久男人的天堂| a级毛片在线看网站| 99精品在免费线老司机午夜| 亚洲自拍偷在线| a在线观看视频网站| 国产精品永久免费网站| 色婷婷久久久亚洲欧美| 免费少妇av软件| 欧美日韩亚洲综合一区二区三区_| 午夜精品在线福利| 亚洲男人的天堂狠狠| 高潮久久久久久久久久久不卡| 色综合婷婷激情| 久久精品91蜜桃| 宅男免费午夜| 中亚洲国语对白在线视频| e午夜精品久久久久久久| 黑人欧美特级aaaaaa片| 一级黄色大片毛片| 国产免费av片在线观看野外av| 亚洲七黄色美女视频| 制服人妻中文乱码| 欧美精品亚洲一区二区| av有码第一页| 亚洲国产精品久久男人天堂| 成人国产一区最新在线观看| 又大又爽又粗| 韩国av一区二区三区四区| 国产私拍福利视频在线观看| 精品国产一区二区久久| 熟妇人妻久久中文字幕3abv| 久久婷婷人人爽人人干人人爱 | www日本在线高清视频| 国产精品久久久久久亚洲av鲁大| 亚洲av电影在线进入| 99久久精品国产亚洲精品| 亚洲最大成人中文| 深夜精品福利| 午夜老司机福利片| 色婷婷久久久亚洲欧美| 亚洲久久久国产精品| 在线av久久热| 日本黄色视频三级网站网址| 亚洲av熟女| 色播在线永久视频| 男人舔女人下体高潮全视频| 成人手机av| 91在线观看av| 他把我摸到了高潮在线观看| aaaaa片日本免费| 精品一区二区三区视频在线观看免费| 琪琪午夜伦伦电影理论片6080| aaaaa片日本免费| 国产精品国产高清国产av| 男女下面进入的视频免费午夜 | 神马国产精品三级电影在线观看 | 精品少妇一区二区三区视频日本电影| 久久精品国产清高在天天线| 成人手机av| 美女 人体艺术 gogo| 欧美激情久久久久久爽电影 | 法律面前人人平等表现在哪些方面| 亚洲人成网站在线播放欧美日韩| 亚洲中文av在线| 99久久综合精品五月天人人| 欧美大码av| 国产精品乱码一区二三区的特点 | 亚洲精品久久国产高清桃花| 亚洲男人的天堂狠狠| 精品少妇一区二区三区视频日本电影| 美女高潮到喷水免费观看| 国产精品亚洲av一区麻豆| 欧美成人午夜精品| 在线免费观看的www视频| 18禁黄网站禁片午夜丰满| 又黄又爽又免费观看的视频| 欧美午夜高清在线| 免费人成视频x8x8入口观看| 99久久综合精品五月天人人| 久久久久久人人人人人| 啦啦啦 在线观看视频| 亚洲成av人片免费观看| 色老头精品视频在线观看| 国产男靠女视频免费网站| 亚洲精品中文字幕一二三四区| 精品日产1卡2卡| 中文字幕精品免费在线观看视频| 国产三级黄色录像| 91av网站免费观看| 日韩欧美在线二视频| 亚洲欧美日韩另类电影网站| 叶爱在线成人免费视频播放| 大码成人一级视频| 变态另类成人亚洲欧美熟女 | 黄色a级毛片大全视频| 纯流量卡能插随身wifi吗| 99国产综合亚洲精品| 成人18禁高潮啪啪吃奶动态图| 国产男靠女视频免费网站| 国产熟女午夜一区二区三区| 欧美 亚洲 国产 日韩一| 天堂动漫精品| 熟女少妇亚洲综合色aaa.| 成人国产一区最新在线观看| 亚洲国产欧美一区二区综合| 热re99久久国产66热| 国产精品久久久久久精品电影 | 99国产精品免费福利视频| 国产成人欧美| 亚洲五月天丁香| 在线国产一区二区在线| 男女做爰动态图高潮gif福利片 | www.熟女人妻精品国产| 久热爱精品视频在线9| 一二三四社区在线视频社区8| 女人精品久久久久毛片| 一级黄色大片毛片| 久久精品人人爽人人爽视色| 久久人人爽av亚洲精品天堂| 夜夜看夜夜爽夜夜摸| 国产一区二区在线av高清观看| 亚洲av电影不卡..在线观看| 激情视频va一区二区三区| 免费观看人在逋| 国产成人欧美在线观看| 一级a爱视频在线免费观看| 国产高清有码在线观看视频 | 日日夜夜操网爽| 在线观看免费视频网站a站| 国产亚洲欧美98| 亚洲精品在线观看二区| 久久久国产成人免费| 激情在线观看视频在线高清| 美女高潮到喷水免费观看| 黑人欧美特级aaaaaa片| 亚洲视频免费观看视频| 日韩欧美在线二视频| 美女午夜性视频免费| 国产精品亚洲av一区麻豆| 天天躁夜夜躁狠狠躁躁| 久久精品成人免费网站| 亚洲国产日韩欧美精品在线观看 | 在线观看舔阴道视频| 国产私拍福利视频在线观看| 少妇的丰满在线观看| 国产一级毛片七仙女欲春2 | 黄频高清免费视频| 亚洲中文日韩欧美视频| 国产精品久久久久久精品电影 | 无人区码免费观看不卡| 中文亚洲av片在线观看爽| 国产精品 国内视频| 757午夜福利合集在线观看| 国产一区二区三区在线臀色熟女| 国产在线精品亚洲第一网站| 久热这里只有精品99| 成年女人毛片免费观看观看9| 国产亚洲精品第一综合不卡| 最近最新免费中文字幕在线| 免费一级毛片在线播放高清视频 | 国产aⅴ精品一区二区三区波| 国产精品久久久久久精品电影 | 中文字幕人妻熟女乱码| 在线观看66精品国产| 亚洲av第一区精品v没综合| 精品卡一卡二卡四卡免费| 精品人妻1区二区| 日韩大码丰满熟妇| 日韩精品中文字幕看吧| 亚洲狠狠婷婷综合久久图片| 欧美最黄视频在线播放免费| 精品乱码久久久久久99久播| 亚洲人成伊人成综合网2020| 免费无遮挡裸体视频| 日韩视频一区二区在线观看| 国产aⅴ精品一区二区三区波| 搡老岳熟女国产| 欧美激情极品国产一区二区三区| 日本三级黄在线观看| 涩涩av久久男人的天堂| 国产熟女午夜一区二区三区| 变态另类成人亚洲欧美熟女 | 免费不卡黄色视频| 久久久久久人人人人人| 一区二区三区精品91| 老司机在亚洲福利影院| 一级,二级,三级黄色视频| 亚洲午夜精品一区,二区,三区| 51午夜福利影视在线观看| 黑人操中国人逼视频| 久久久国产精品麻豆| 99精品在免费线老司机午夜| 国产精品二区激情视频| 在线播放国产精品三级| 一区福利在线观看| 99久久综合精品五月天人人| 日韩免费av在线播放| 久久精品成人免费网站| 少妇熟女aⅴ在线视频| 香蕉丝袜av| 无限看片的www在线观看| 最近最新中文字幕大全免费视频| 欧美乱码精品一区二区三区| 大陆偷拍与自拍| 丁香六月欧美| 欧美黑人欧美精品刺激| 亚洲男人的天堂狠狠| 午夜福利18| 操美女的视频在线观看| ponron亚洲| 嫁个100分男人电影在线观看| 老司机在亚洲福利影院| 久久人妻福利社区极品人妻图片| 我的亚洲天堂| 国产主播在线观看一区二区| 久久久国产成人精品二区| 午夜精品国产一区二区电影| 国产亚洲av嫩草精品影院| 一二三四在线观看免费中文在| 十八禁人妻一区二区| 精品不卡国产一区二区三区| 老鸭窝网址在线观看| 手机成人av网站| 亚洲精品中文字幕一二三四区| 国产亚洲精品综合一区在线观看 | 精品国产乱子伦一区二区三区| 亚洲av美国av| 国产精品一区二区在线不卡| 久久精品aⅴ一区二区三区四区| √禁漫天堂资源中文www| 美女免费视频网站| 精品欧美一区二区三区在线| avwww免费| 一卡2卡三卡四卡精品乱码亚洲| 99re在线观看精品视频| 99久久综合精品五月天人人| 美女大奶头视频| 久久久国产成人精品二区| 国产在线观看jvid| 日韩一卡2卡3卡4卡2021年| 精品久久久久久,| 美女扒开内裤让男人捅视频| 女人高潮潮喷娇喘18禁视频| 亚洲色图 男人天堂 中文字幕| 免费在线观看影片大全网站| 久久久精品国产亚洲av高清涩受| 国产精品亚洲一级av第二区| 国产伦人伦偷精品视频| 国产熟女xx| 免费看美女性在线毛片视频| 精品久久久精品久久久| 在线天堂中文资源库| 在线国产一区二区在线| 午夜福利免费观看在线| 亚洲国产欧美网| 国内毛片毛片毛片毛片毛片| 在线十欧美十亚洲十日本专区| 91av网站免费观看| 国产精品99久久99久久久不卡| 高清毛片免费观看视频网站| 亚洲 欧美 日韩 在线 免费| 亚洲精品久久国产高清桃花| 亚洲精品中文字幕在线视频| 亚洲免费av在线视频| 啦啦啦免费观看视频1| 久久久久精品国产欧美久久久| 日本精品一区二区三区蜜桃| 免费在线观看日本一区| 亚洲av日韩精品久久久久久密| 熟妇人妻久久中文字幕3abv| 亚洲精华国产精华精| 999久久久精品免费观看国产| 99精品久久久久人妻精品| 男人舔女人的私密视频| 国产成人欧美在线观看| 在线永久观看黄色视频| 国产成人免费无遮挡视频| 国产伦人伦偷精品视频| 啦啦啦观看免费观看视频高清 |