• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal behavior of hydrazinium 3,5-dinitramino-1,2,4-triazolate

    2016-11-03 03:19:54LIJizhenZHANGGuofangFANXuezhongWANGBozhouZHOUChengFUXiaolongHUOHuanHURongzu
    固體火箭技術(shù) 2016年4期
    關(guān)鍵詞:化學(xué)

    LI Ji-zhen,ZHANG Guo-fang,F(xiàn)AN Xue-zhong,WANG Bo-zhou,ZHOU Cheng,F(xiàn)U Xiao-long,HUO Huan,HU Rong-zu

    (1. Xi'an Modern Chemistry Research Institute, Xi'an 710065, China;2. Key Laboratory of Applied Surface and Colloid Chemistry, MOE/School of Chemistry & Chemical Engineering,Shaanxi Normal University, Xi'an 710062, China)

    ?

    Thermal behavior of hydrazinium 3,5-dinitramino-1,2,4-triazolate

    LI Ji-zhen1,2,ZHANG Guo-fang2,F(xiàn)AN Xue-zhong1,WANG Bo-zhou1,ZHOU Cheng1,F(xiàn)U Xiao-long1,HUO Huan1,HU Rong-zu1

    (1. Xi'an Modern Chemistry Research Institute, Xi'an710065, China;2. Key Laboratory of Applied Surface and Colloid Chemistry, MOE/School of Chemistry & Chemical Engineering,Shaanxi Normal University, Xi'an710062, China)

    hydrazinium 3,5-dinitramino-1,2,4-triazolate;energetic material;interaction;compatibility;thermal decomposition

    0 Introduction

    Compatibility of an energetic material refers to the change within a permissible range when the energetic material contacts with other materials by mixing or other processes[1-6]. In the practical applications of energetic materials, mixing of the energetic materials with explosives or components of propellants could give rise to some chemical interactions and thus lead to a potential danger to the propellants safety if the interactions are strong enough[1-3]. Therefore, compatibility is one of the important safety aspects related to the production and storage of energetic materials and studies on compatibility of energetic materials can decrease vulnerability of ammunition and weapons[1-3]. There are a few methods for evaluation of the compatibility of energetic materials[1-6], including Vacuum Stability Test (VST), Thermogravimetry (TG), Blush Pressure Method (BPM), and Differential Scanning Calorimetry (DSC), etc. To test different combinations of materials, DSC method with clear criteria is advisable[1-2]. In an investigation[3], it is shown that the results obtained with high-pressure DSC and TG/DTA measurements and obtained using vacuum stability tests were very similar for a same combination of materials.

    Triazole-derived compounds[7-12]are energetic materials with low sensitivity and high energy. Hydrazinium 3,5-dinitramino-1,2,4-triazolate (HDNAT) is a new energetic triazole-derived ionic compound, which can be used as a main component in solid propellants and high explosives for its high energy. We experimentally find that nitrogen content of HDNAT is 50.8%, density 1.89 g/cm3, enthalpy of formation 216.37 kJ/kg, detonation velocity 9 400 m/s and detonation pressure 36.0 GPa. It is also found that the addition of HDNAT can obviously enhance burning rates of solid propellants by our experiments, the burning rate of the composite modified double-based propellant is increased by about 15% with addition of 5% HDNAT.

    As a new energetic compound, thermal stability, interactions and compatibility of HDNAT with energetic materials in solid propellants or explosives are very important for HDNAT in its potential applications. Seldom, however, are investigations on these reported. Therefore in this work, thermal stability of HDNAT, interactions and compatibility of HDNAT with some energetic materials under the non-isothermal condition investigated by means of DSC technique, are reported.

    1 Experiment

    1.1Materials

    HDNAT is prepared by Xi'an Modern Chemistry Research Institute according to the synthetic procedure described by Metelkina E L, et al[13], with purity of 99.83%. Cyclotetramethylenetetranitroamine (HMX), cyclotrimethylenetrinitramine (RDX), nitrocellulose (NC, 12.0%N), nitroglycerine (NG), 125/100-NC/NG mixture (NC+NG) N-nitrodihydroxyethylamine-dinitrate (DINA) 3,4-bisnitrofurazanfuroxan (DNTF) and aluminum powder (Al) are all industrially produced. Mixtures of HDNAT and energetic components are each prepared with 50% HDNAT.

    The synthesis route of HDNAT is as follows.

    1.2Experimental equipments and conditions

    TG-DTG curves are obtained by using a TA 2950 thermogravimetric analyzer from TA Instruments (USA). The conditions for TG-DTG tests are as follows: sample mass, about 1.00 mg; heating rate (β), 5, 10, 15, 20 ℃/min; atmosphere, flowing rate of N2gas, 60 ml/min.

    DSC measurements are made with a model Netzsch DSC 204 HP differential scanning calorimeter from Netzsch (Germany). The conditions for DSC measurements are as follows: sample mass, about 2.00 mg; heating rate, 10 ℃/min; atmosphere, nitrogen 0.1 MPa, flow rate 50 ml/min. The conditions for PDSC measurements are as follows: sample mass, about 2.00 mg; heating rate, 10 ℃/min; static nitrogen, 1.0 MPa.

    The HDNAT, an employed energetic material of 2.00 mg or mixture of 50/50-HDNAT/each of the energetic materials of 1.00 mg/1.00 mg is sealed in an aluminum cell.

    2 Results and Discussion

    2.1Thermal decomposition behavior of HDNAT

    The DSC curves at different pressures and TG-DTG curves at different heating rates of HDNAT are shown in Fig.1 and Fig.2, respectively.

    Fig.1 DSC curves of HDNAT at different pressures

    The DSC curves of HDNAT show the decomposition processes in the temperature range of 160~230 ℃ with a main exothermic peak and a shoulder peak, where HDNAT decompose rapidly and form gas products. There are significant differences between the DSC curves of HDNAT at the pressures of 0.1 MPa and 1.0 MPa, at the latter pressure, the decomposition process of HDNAT is delayed because of the inhibition of gas products' escape by the pressure. With the change in pressure from 0.1 MPa to 1.0 MPa, the onset temperature changes from 180.72 ℃ to 186.64 ℃, the main exothermic peak temperature from 192.47 ℃ to 197.80 ℃, the shoulder peak temper-ature from 204.72 ℃ to 207.08 ℃, and the end temperature from 212.20 ℃ to 223.88 ℃.

    Fig.2 TG-DTG curves of HDNAT at different heating rates

    The TG-DTG curves of HDNAT (Fig.2) display a main peak with a shoulder in the DTG curves, corresponding to the two mass loss stages of HDNAT during its thermal decomposition. For the TG curve whenβ=10 ℃/min, the decomposition process begins at 177.24 ℃ and ends at 245.90 ℃, with the summit peak at 188.04 ℃ and the shoulder peak at 194.78 ℃, accompanied by 66.0% mass loss.

    2.2Calculation of nonisothermal reaction kinetics

    In order to obtain the kinetic parameters (the apparent activation energyEaand pre-exponential constantA) and the most probable kinetic model function, and explore the thermal decomposition mechanism of the major exothermic decomposition reaction of HDNAT, the DTG curves at heating rates of 5, 10, 15 and 20 ℃/min are dealt with mathematic means, and five integral methods [Eqs.(1)~(4) and (6)] and a differential method [Eq. (5)] listed in Table 1 are employed[14-16].

    Table 1 Kinetic analysis methods

    Where,αis the conversion degree of HDNAT decomposition;Tis the temperature (K) at time oft;T0is the temperature of the initial point at which the DTG curve deviates from the baseline;Tpis the peak temperature of DTG curve;Ris the gas constant;f(α) andG(α) are the differential model function and the integral model function, respectively; and the means ofEa,Aandβhave been mentioned earlier. Subscript s, data obtained byatava-esták's method; subscript k, data obtained by Kissiger's method; subscript o, data obtained by Ozawa's method. The data needed for the equations of the integral and differential methods,i,αi,β,Ti,Te(onset temperature),Tp,i=1, 2, 3, 4, are obtained from the DTG curves and summarized in Table 2.

    Table 2 Data for decomposition processes of HDNAT at different heating rates from TG-DTG curves

    The values ofEawere obtained by Ozawa's method [Eq.(6)] withαchanging from 0 to 1 as shown in Table 2. TheEa-αrelation is shown in Fig.3. It indicates that the activation energy of the decomposition processes changes greatly by diverse level with an increase in the conversion degree, except that for the range ofα=0.02~0.82, activation energy changes faintly, and it means that the decomposition mechanism of the process does not transfer in essence or the transference can be ignored. Therefore, it is feasible to research into the reaction mechanism and kinetics in the section ofα=0.02~0.82, according to the first mass loss stage, the main decomposition process of HDNAT in its TG curves.

    Forty-one types of kinetic model functions in Ref.[11] and the original data (data points 2~50) tabulated in Table 2 are put into Eq. (1)~(8), respectively, for calculations. The values ofEa, lgA, linear correlation coefficient (r), and standard mean square deviation (Q) can be calculated with the linear least-squares method at various heating rates of 5, 10, 15 and 20 ℃/min, and

    they are listed in Table 3. The most probable mechanism function is selected by the better values ofr, andQtaken from Ref.[11]. The results of satisfying the conditions mentioned above are also listed in Table 3.

    Fig.3 Ea-α curve of HDNAT obtained by Ozawa's method

    Methodβ/(℃/min)Ea/(kJ/mol)lg(A/s-1)rQOrdinary-integral5183.419.20.92990.299910191.820.10.93480.280615181.119.00.89370.448220185.619.50.94640.2308MacCallum-Tanner5183.819.30.93400.056510192.420.10.93840.052815181.619.00.89970.084520186.319.50.94960.0435?atava-?esták5180.218.90.93410.056510188.419.80.93850.052815178.318.70.89970.084520182.619.30.94970.0435Agrawal5183.419.20.92990.299910191.820.10.93480.280615181.119.00.89370.448220185.619.50.94640.2308Mean184.819.4——Kissiger185.719.30.99070.0182Ozawa183.9-0.99150.0034

    The values ofEa, 184.8 kJ/mol, andA, 1019.4s-1, obtained from a single nonisothermal DTG curve are in approximately good agreement with the values calculated by Kissinger's method and Ozawa's method. Therefore, a conclusion can be drawn that the reaction mechanism of the main exothermal decomposition process of HDNAT is classified as nucleation and growth withn=2/5, and the mechanism function is No.12, the Avrami-Erufeev equation.

    (7)

    We can obtain the kinetic equation of the exothermal decomposition reaction as follows:

    (8)

    2.3Interactions of HDNAT with some energetic materials

    Interactions of HDNAT with some energetic materials, such as HMX, RDX, NC, NG, etc., are studied in details by using DSC, and the typical DSC curves of the binary systems 1~8 are shown in Fig.4.

    (c) HDNAT/NC               (d) HDNAT/NG

    (e) HDNAT/NC+NG               (f) HDNAT/Al

    (g) HDNAT/DINA               (h) HDNAT/DNTF

    From Fig. 4 the following observations can be made.The DSC curve of HMX consists of two endothermic peaks and one exothermic peak. The first peak at 200.32 ℃ is due to the crystal transformation fromαtoδ, and the second endothermic peak at 280.30 ℃ is assigned to the phase change from solid to liquid. The exothermic peak at 281.89 ℃ is caused by the rapid decomposition reaction of HMX.

    The endothermic peak in the DSC curve of RDX is caused by the phase change of RDX from solid to liquid. Similarly, the endothermic peaks in the DSC curves of DINA, HDNAT-DINA, DNTF and HDNAT-DNTF are caused by the phase changes of DINA and DNTF from solid to liquid.

    The DSC curve of the HDNAT/HMX mixture shows two exothermic peaks at 198.22 ℃ (with a shoulder at 208.74 ℃) and 282.44 ℃, which are almost similar to the corresponding peaks of pure HDNAT (at 197.80 ℃ with a shoulder at 207.08 ℃) and HMX (281.89 ℃) under thermal decomposition. And the endothermic peak at 280.01 ℃ in the DSC curve of the HDNAT/HMX mixture has almost no difference with the corresponding peak of the phase change of pure HMX (280.30 ℃). Only the weak endothermic peak of the crystal transformation of HMX disappears because of the superposition with the sharp exothermic peaks of HDNAT in the DSC curve of the binary system. These observations manifest that there is nearly no interaction between HDNAT and HMX. And a similar result can be obtained for the binary system HDNAT/Al.

    HDNAT, when mixed with RDX, decomposes rapidly in the temperature range of 186~197 ℃ centered at 193.88 ℃. The intermediate product of HDNAT decomposes with RDX, and a dull exothermic peak forms with peak temperature of 240.60 ℃. From the DSC curve of the HDNAT/RDX binary system, it can be observed that the endothermic peak of the phase change of RDX disappears because of the superposition with the shoulder peak of HDNAT, and the effect of RDX on HDNAT is more obvious than that of HDNAT on RDX.

    There is little effect of NC, NG or (NC+NG) on HDNAT. The main exothermic peak and the shoulder peak of HDNAT have no significant change in their positions and shapes in the DSC curves of the binary systems of HDNAT-NC, HDNAT-NG and HDNAT-(NC+NG). However, the decomposition process of HDNAT influences those of NC, NG and (NC+NG) considerably, NC, NG and (NC+NG) decompose rapidly when blended with HDNAT in the temperature range of 170~240 ℃.

    A striking interaction of DINA and HDNAT can be seen from the DSC curves of DINA, HDNAT and HDNAT/DINA. The decomposition of DINA is considerably accelerated by the addition of HDNAT with its exothermic peak moving from 197.80 ℃ to 183.78 ℃. Similarly, HDNAT shows its exothermic peak and shoulder peak at 183.78 ℃ (197.80 ℃ in pure HDNAT) and 204.73 ℃ (207.08 ℃ in pure HDNAT), respectively, in the DSC curve of HDNAT/DINA.

    The DSC curve of HDNAT/DNTF shows an evident interaction between HDNAT and DNTF, too. A main exothermic peak and a small shoulder peak at 187.02 ℃ and 222.60 ℃, respectively, are shown in the DSC curve of the HDNAT/DNTF binary system.

    2.4Compatibility of HDNAT with some energetic materials

    The compatibility of HDNAT with the energetic materials mentioned above is evaluated with the data of DSC curves above. The maximum exothermic peak temperatures of the energetic materials and the 50/50-HDNAT/energetic material binary systems are shown in Table 4.Where mixture system, 50/50-HDNAT/energetic component binary system; Single system, the component with its exothermic peak temperature smaller than another one in a two-component system;TP1, the maximum exothermic peak temperature of single system;TP2, the maximum exothermic peak temperature of mixture system; ΔTP=TP1-TP2.The evaluation standard of compatibility for explosives and contacted materials[1-2]are listed in Table 5.

    From both Table 4 and Table 5, the following observations can be made.

    Decomposition process of HDNAT is delayed by the addition of HMX and Al, the maximum exothermic peak temperature differences (ΔTp) between HDNAT and HDNAT-HMX or HDNAT-Al are -0.42 and -0.54 ℃, respectively. From the evaluation standard of compatibility in Table 5, it is concluded that the binary systems HDNAT-HMX or HDNAT-Al have good compatibility.

    The DSC curve of the binary system HDNAT-NC shows that there is only a little effect on the decomposition processes of HDNAT or NC by mixing HDNAT and NC, and the binary systems of HDNAT-NG and HDNAT-(NC+NG) are in the same way. The values of ΔTpare 0.48 ℃ between HDNAT and HDNAT-NC, 1.50 ℃ between HDNAT and HDNAT-NG, and 1.78 ℃ between HDNAT and HDNAT-(NC+NG), which indicate good compatibility between HDNAT and NC, NG or (NC+NG), too.

    Table 4 Data of the energetic materials and the 50/50-HDNAT/energetic material mixtures obtained by DSC

    Table 5 Evaluation standard of compatibility for explosives and contacted materials

    The value of ΔTpbetween HDNAT and HDNAT-RDX is 3.92 ℃, which displays that the decomposition reaction of the mixture is easy to take place and the mixture has fair compatibility.

    The values of ΔTpbetween DINA and HDNAT-DINA, DNTF and HDNAT-DNTF are 14.02 and 10.78 ℃, respectively, showing an increase in the rates of the decomposition reactions and a poor compatibility of the mixtures.

    The compatibility of the binary systems of HDNAT/energetic materials decreases in the order 6>1>3>4>5>2>8>7, and the relative thermal stability of the binary systems of HDNAT/energetic materials decreases in the same way.

    3 Conclusions

    There is obvious interactions between HDNAT and DINA or DNTF, a slight interaction between HDNAT and RDX, while little interactions between HDNAT and HMX, NC, NG, (NC+NG) or Al.

    The HDNAT-HMX, HDNAT-NC, HDNAT-NG, HDNAT-(NC+NG) and HDNAT-Al binary mixtures have good compatibility, and the HDNAT-RDX binary mixture has fair compatibility, and the HDNAT-DINA and HDNAT-DNTF binary systems have poor compatibility, however.

    [1]Beach N E, Canfield V K. Compatibility of explosives with polymers (III) [J]. Plastic. Rep., 1971, 40:73-76.

    [2]Beach, N E, Canfield V K. Compatibility of explosives with polymers (II) [R]. AD 721004, Springfield: NTIS, 1971.

    [3]W P C de Klerk, M A Schrader, A C van der Steen. Compatibility testing of energetic materials, which technique [J]. J. Therm. Anal. Cal., 1999, 56(3):1123-1131.

    [4]Yan Q L, Li X J, Zhang L Y, et al. Compatibility study of trans-1,4,5,8-tetranitro-1,4,5,8- tetraazadecalin (TNAD) with some energetic components and inert materials [J]. J. Hazard Mater., 2007, 160(2-3):529-534.

    [5]Liao L Q, Wei H Jian, Li J Z, et al. Compatibility of PNIMMO with some energetic materials [J]. J. Therm. Anal. Cal., 2012, 109(3):1571-1576.

    [6]Li J Z, Fan X Z, Fan X P, et al. Compatibility study of 1,3,3-tinitroaztidine with some energetic components and inert materials [J]. J. Therm. Anal. Cal., 2006, 85(3):779-784.

    [7]Wang Bozhou, Li Jizhen, Huo Huan, et al. Synthesis, characterization and thermal behaviors of 4-Amino-5-nitro-1,2,3-triazole (ANTZ) and its derivatives [J]. Chin. J. Chem., 2010, 28(5): 781-784.

    [8]Lsimpsom, R P, Pagoria A R, Mitchaland C L. Synthesis, properties and performance of the high explosive ANTA[J]. Prop. Exp. Pyro., 1994, 19(4):174-179.

    [9]Kien L, Ott Y, Donald G.Production of the ammonium salt of 3,5-dinitro-l,2,4-tiazole by solvent extraction [P], USP 4236014, 1980.

    [10]Xiong C L, Jia S Y, Wang X J, et al. Synthesis and extraction of anunonium salt of 3,5-dinitro-1,2,4-triazole [J]. Fine Chemical Intermediates, 2008, 38(2): 64-66 (in Chinese).

    [11]Jia S Y, Wang X J, Wang B Z, et al. Synthesis and crystal structure of 3,3'-dinitro-5,5'-azo-1H-1,2,4-triazole (DNAT) [J]. Chin. J. Exp. Prop., 2009, 32(1): 25-28 (in Chinese).

    [12]Darren L N, Michael A H, Herbert H H. Synthesis and explosive properties of 3,3'-dinitro-5,5'-azo-1H-1,2,4-triazole [J]. Ener. Mater., 2003, 21(1): 57-62.

    [13]Metelkina E L. 2-Nitroguanidine derivatives: V. synthesis and structure of 3,5-Bis(nitroamino)-1,2,4-triazole salts. acid-base properties of 3,5-bis(nitroamino)-1,2,4-triazole [J]. Russian J. Org. Chem., 2004, 40(4): 543-550.

    [14]Hu R Z, Shi Q Z. Thermal analysis kinetics [M]. Beijing: Science Press, 2001 (in Chinese).

    [15]Wu X M, Liu J H, Li W, et al. Thermal decomposition kinetics of complexes of rare earths (RE=Nd, Sm) with amino acid RE(Val)Cl3·6H2O [J]. Acta Phys. Chim. Sin., 2006, 22(8): 942-946.

    [16]Hu R Z, Chen S P, Gao S L, et al. Thermal decomposition kinetics of the Pb0.25Ba0.75(TNR)center dot H2O complex [J]. J. Hazard. Mater., 2005, 117(2-3): 103-110.

    (編輯:薛永利)

    3,5-(硝氨基)-1,2,4-三唑肼鹽的熱行為研究

    李吉禎1,2,張國(guó)防2,樊學(xué)忠1,王伯周1,周誠(chéng)1,付小龍1,霍歡1,胡榮祖1

    (1. 西安近代化學(xué)研究所,西安710065;2. 應(yīng)用表面和膠體化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,陜西師范大學(xué)化學(xué)化工學(xué)院,西安710062)

    3,5-(硝氨基)-1,2,4-三唑肼鹽;含能材料;相互作用;相容性;熱分解

    V512Document Code:AArticle ID:1006-2793(2016)04-0529-09

    10.7673/j.issn.1006-2793.2016.04.015

    Receivied date:2016-03-01;Revised date:2016-04-21。

    Fundation project:Supported by the National Sciense Fundation of China(21401124);China Postdoctional Science Fundation(2014M560745)。

    Biography:LI Ji-zhen(1980—),mail,associate professor,speciality:Solid rocket propellent.E-mail:JizhenLi@126.com

    猜你喜歡
    化學(xué)
    化學(xué)與日常生活
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    化學(xué):我有我“浪漫”
    化學(xué):舉一反三,有效學(xué)習(xí)
    考試周刊(2016年63期)2016-08-15 22:51:06
    化學(xué)與健康
    絢麗化學(xué)綻放
    国产熟女xx| 女人高潮潮喷娇喘18禁视频| 国产aⅴ精品一区二区三区波| 午夜福利免费观看在线| 中文亚洲av片在线观看爽| 中文字幕人妻熟人妻熟丝袜美 | e午夜精品久久久久久久| 极品教师在线免费播放| 精品久久久久久,| 国产精品一区二区三区四区免费观看 | 日日夜夜操网爽| 国产欧美日韩一区二区精品| 久久久久久大精品| 亚洲精品日韩av片在线观看 | 中文字幕人妻丝袜一区二区| a级一级毛片免费在线观看| 免费看日本二区| 一边摸一边抽搐一进一小说| 欧美在线黄色| 91字幕亚洲| 国产亚洲精品久久久久久毛片| 免费观看精品视频网站| 熟女少妇亚洲综合色aaa.| 午夜激情欧美在线| 午夜福利在线观看吧| 岛国视频午夜一区免费看| 国产精品乱码一区二三区的特点| 欧美在线一区亚洲| www.999成人在线观看| 国产精品香港三级国产av潘金莲| 精品一区二区三区视频在线观看免费| 免费av观看视频| 天堂影院成人在线观看| 国产精品久久久久久久久免 | 成人国产一区最新在线观看| 中文资源天堂在线| 在线播放国产精品三级| 色综合欧美亚洲国产小说| 夜夜爽天天搞| 好看av亚洲va欧美ⅴa在| 亚洲av免费高清在线观看| 欧美性猛交╳xxx乱大交人| 国产精品一及| 村上凉子中文字幕在线| 亚洲专区国产一区二区| 窝窝影院91人妻| 日本撒尿小便嘘嘘汇集6| 色播亚洲综合网| 国产不卡一卡二| 亚洲 欧美 日韩 在线 免费| 在线播放无遮挡| 老司机午夜福利在线观看视频| 久久午夜亚洲精品久久| 国产精品精品国产色婷婷| 97人妻精品一区二区三区麻豆| 手机成人av网站| 国产成人av激情在线播放| 成年免费大片在线观看| 久久久国产成人免费| 两个人视频免费观看高清| 琪琪午夜伦伦电影理论片6080| 神马国产精品三级电影在线观看| 亚洲av二区三区四区| 一本综合久久免费| 中文字幕高清在线视频| 国产综合懂色| 久久久久精品国产欧美久久久| 欧美黄色淫秽网站| 男女之事视频高清在线观看| 亚洲国产欧洲综合997久久,| 91av网一区二区| 欧美+亚洲+日韩+国产| 小说图片视频综合网站| 91九色精品人成在线观看| 男女那种视频在线观看| 色av中文字幕| 国产美女午夜福利| 在线观看午夜福利视频| 亚洲欧美一区二区三区黑人| 五月玫瑰六月丁香| 亚洲激情在线av| 亚洲欧美日韩无卡精品| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美日韩东京热| 日韩欧美在线乱码| 成人一区二区视频在线观看| 欧美国产日韩亚洲一区| 国产精品美女特级片免费视频播放器| 亚洲内射少妇av| 欧美日本亚洲视频在线播放| 天堂av国产一区二区熟女人妻| 欧美一级a爱片免费观看看| 国产久久久一区二区三区| 老司机午夜十八禁免费视频| 男人的好看免费观看在线视频| 99国产综合亚洲精品| 床上黄色一级片| 国产精品一及| 黄色女人牲交| 日韩 欧美 亚洲 中文字幕| 男女午夜视频在线观看| 亚洲自拍偷在线| 国产精品综合久久久久久久免费| 一个人看的www免费观看视频| 757午夜福利合集在线观看| 熟妇人妻久久中文字幕3abv| 桃色一区二区三区在线观看| 国内揄拍国产精品人妻在线| 久久久久久九九精品二区国产| 久久国产精品影院| 欧美绝顶高潮抽搐喷水| 在线观看66精品国产| 动漫黄色视频在线观看| 成人高潮视频无遮挡免费网站| 中文资源天堂在线| 窝窝影院91人妻| 日韩国内少妇激情av| 国产av麻豆久久久久久久| 国产精品一区二区免费欧美| 三级毛片av免费| 免费观看的影片在线观看| 性色av乱码一区二区三区2| 久久久精品欧美日韩精品| 久久久久久大精品| 老汉色av国产亚洲站长工具| 久久久久久久久大av| 免费av毛片视频| 亚洲精品成人久久久久久| 亚洲精品一区av在线观看| 欧美一区二区精品小视频在线| 999久久久精品免费观看国产| h日本视频在线播放| 激情在线观看视频在线高清| 国产精品一区二区三区四区免费观看 | 亚洲片人在线观看| 亚洲国产精品sss在线观看| 日本黄大片高清| 久久香蕉精品热| 免费看光身美女| 国产av麻豆久久久久久久| 亚洲在线自拍视频| 免费一级毛片在线播放高清视频| 中文字幕久久专区| 制服人妻中文乱码| 高潮久久久久久久久久久不卡| 欧美中文综合在线视频| 桃色一区二区三区在线观看| 两人在一起打扑克的视频| 在线观看免费午夜福利视频| 最近在线观看免费完整版| 韩国av一区二区三区四区| 人人妻人人看人人澡| 9191精品国产免费久久| 欧美+日韩+精品| 一级黄色大片毛片| 亚洲国产精品合色在线| 一本综合久久免费| 日韩国内少妇激情av| 久久精品亚洲精品国产色婷小说| 亚洲国产欧美网| 波多野结衣巨乳人妻| 啦啦啦观看免费观看视频高清| 99精品久久久久人妻精品| 欧美zozozo另类| 欧美激情在线99| 夜夜爽天天搞| 在线观看午夜福利视频| 欧美黑人巨大hd| 国产高清有码在线观看视频| 狠狠狠狠99中文字幕| 九色成人免费人妻av| 有码 亚洲区| 最近视频中文字幕2019在线8| 嫩草影院精品99| 中出人妻视频一区二区| 无人区码免费观看不卡| 18禁黄网站禁片午夜丰满| 国产中年淑女户外野战色| 欧美色欧美亚洲另类二区| 色综合欧美亚洲国产小说| 精品久久久久久成人av| av黄色大香蕉| 国产激情欧美一区二区| 波多野结衣巨乳人妻| 国产毛片a区久久久久| 国产黄片美女视频| 网址你懂的国产日韩在线| 在线观看66精品国产| 久久国产精品人妻蜜桃| 淫妇啪啪啪对白视频| 国产探花在线观看一区二区| 国产高清videossex| 精品人妻一区二区三区麻豆 | 嫩草影院精品99| 亚洲欧美一区二区三区黑人| 日韩欧美精品免费久久 | 长腿黑丝高跟| 免费电影在线观看免费观看| 久久精品影院6| 综合色av麻豆| 香蕉丝袜av| 观看美女的网站| 99久久无色码亚洲精品果冻| 精品日产1卡2卡| 精品熟女少妇八av免费久了| 久久草成人影院| 欧美中文综合在线视频| 精品久久久久久,| 免费看a级黄色片| 最新中文字幕久久久久| 亚洲av一区综合| 性色av乱码一区二区三区2| 母亲3免费完整高清在线观看| 国产成人影院久久av| 欧美乱妇无乱码| 首页视频小说图片口味搜索| 精品99又大又爽又粗少妇毛片 | 三级国产精品欧美在线观看| 中文字幕av成人在线电影| 哪里可以看免费的av片| 亚洲欧美日韩高清专用| 国产精品久久视频播放| 男女床上黄色一级片免费看| 99在线视频只有这里精品首页| 啦啦啦韩国在线观看视频| 国产精品影院久久| 日韩欧美免费精品| 成人鲁丝片一二三区免费| 又黄又粗又硬又大视频| 国产不卡一卡二| 最好的美女福利视频网| 久久久精品欧美日韩精品| 69av精品久久久久久| 成人无遮挡网站| 久久久久性生活片| av黄色大香蕉| 特级一级黄色大片| 在线天堂最新版资源| 99国产极品粉嫩在线观看| 亚洲激情在线av| 国产一区二区三区在线臀色熟女| 亚洲av第一区精品v没综合| 亚洲成av人片免费观看| e午夜精品久久久久久久| 级片在线观看| 啦啦啦韩国在线观看视频| 欧美+日韩+精品| av福利片在线观看| 久久久久亚洲av毛片大全| 亚洲美女黄片视频| 国产精品久久久久久精品电影| 久久香蕉国产精品| 狠狠狠狠99中文字幕| 亚洲av免费高清在线观看| 狂野欧美激情性xxxx| 99久久精品一区二区三区| 国产亚洲精品久久久久久毛片| 午夜影院日韩av| 亚洲精品色激情综合| 女人十人毛片免费观看3o分钟| 欧美日韩福利视频一区二区| 成人18禁在线播放| 国产激情欧美一区二区| 日本黄色视频三级网站网址| 一级a爱片免费观看的视频| 偷拍熟女少妇极品色| 国产亚洲av嫩草精品影院| 欧美一级毛片孕妇| 国产精品野战在线观看| 精品不卡国产一区二区三区| 国产成人系列免费观看| 亚洲国产欧美人成| 久久九九热精品免费| 亚洲男人的天堂狠狠| 国产亚洲精品av在线| 老熟妇仑乱视频hdxx| 一进一出好大好爽视频| а√天堂www在线а√下载| 国产美女午夜福利| 人妻丰满熟妇av一区二区三区| 1024手机看黄色片| 校园春色视频在线观看| 麻豆一二三区av精品| 亚洲中文字幕一区二区三区有码在线看| 黄色女人牲交| 久久久久久国产a免费观看| 国产成人影院久久av| 成熟少妇高潮喷水视频| 可以在线观看毛片的网站| h日本视频在线播放| 欧美日本亚洲视频在线播放| 国产精品日韩av在线免费观看| 国产麻豆成人av免费视频| 免费一级毛片在线播放高清视频| 亚洲专区中文字幕在线| 亚洲18禁久久av| 欧美在线一区亚洲| 国产视频内射| 九色国产91popny在线| 国产精品99久久久久久久久| 亚洲成人久久性| 免费电影在线观看免费观看| 无遮挡黄片免费观看| 国产亚洲欧美在线一区二区| 一本久久中文字幕| 亚洲欧美精品综合久久99| 亚洲国产精品合色在线| 欧美bdsm另类| 美女高潮喷水抽搐中文字幕| 国产精品久久久久久人妻精品电影| 1024手机看黄色片| 日本一本二区三区精品| 在线天堂最新版资源| 精品人妻1区二区| 亚洲av美国av| 99国产精品一区二区蜜桃av| 老司机午夜十八禁免费视频| 免费在线观看日本一区| 亚洲最大成人中文| 午夜福利在线在线| 久久精品综合一区二区三区| 女人被狂操c到高潮| 国产99白浆流出| 叶爱在线成人免费视频播放| 亚洲男人的天堂狠狠| 日本成人三级电影网站| 美女高潮喷水抽搐中文字幕| 18禁黄网站禁片午夜丰满| 无限看片的www在线观看| 欧美bdsm另类| 日韩av在线大香蕉| 亚洲国产精品久久男人天堂| 国产黄片美女视频| 国内揄拍国产精品人妻在线| 亚洲黑人精品在线| 亚洲久久久久久中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 18禁黄网站禁片免费观看直播| 91久久精品国产一区二区成人 | 国产麻豆成人av免费视频| 中文字幕av在线有码专区| 色哟哟哟哟哟哟| 久久久久久国产a免费观看| 久久久国产成人精品二区| 无限看片的www在线观看| 欧美av亚洲av综合av国产av| 亚洲av一区综合| 首页视频小说图片口味搜索| 少妇熟女aⅴ在线视频| 五月伊人婷婷丁香| 岛国在线免费视频观看| 99热这里只有精品一区| 欧美日韩综合久久久久久 | 亚洲精华国产精华精| 日本在线视频免费播放| 国产黄片美女视频| 国产精品av视频在线免费观看| 禁无遮挡网站| 亚洲av中文字字幕乱码综合| 在线观看av片永久免费下载| 露出奶头的视频| 国产视频内射| 欧美激情久久久久久爽电影| 国内精品久久久久精免费| 一区二区三区激情视频| www.999成人在线观看| 成人av在线播放网站| 看黄色毛片网站| 精品国产超薄肉色丝袜足j| 国产黄a三级三级三级人| 美女 人体艺术 gogo| 亚洲国产欧美网| 久久婷婷人人爽人人干人人爱| 日韩亚洲欧美综合| 欧美精品啪啪一区二区三区| 国产视频内射| 又黄又粗又硬又大视频| 久久久久久久久久黄片| 一本一本综合久久| 搞女人的毛片| 长腿黑丝高跟| 午夜激情欧美在线| 国产精品爽爽va在线观看网站| 老熟妇仑乱视频hdxx| 午夜两性在线视频| 国产精品免费一区二区三区在线| 久久性视频一级片| 国产精品电影一区二区三区| 精品电影一区二区在线| 超碰av人人做人人爽久久 | svipshipincom国产片| 精品久久久久久久人妻蜜臀av| 男女午夜视频在线观看| 男女视频在线观看网站免费| 亚洲欧美日韩高清在线视频| 日本五十路高清| 最近最新中文字幕大全免费视频| 高清在线国产一区| 亚洲 国产 在线| 最近最新中文字幕大全免费视频| www.熟女人妻精品国产| 老汉色∧v一级毛片| 亚洲狠狠婷婷综合久久图片| 夜夜夜夜夜久久久久| 在线观看66精品国产| 亚洲18禁久久av| 非洲黑人性xxxx精品又粗又长| 欧美日韩精品网址| 亚洲av美国av| www国产在线视频色| 免费无遮挡裸体视频| 国产欧美日韩一区二区三| 男人和女人高潮做爰伦理| 久久精品亚洲精品国产色婷小说| 黄片小视频在线播放| a在线观看视频网站| 日日摸夜夜添夜夜添小说| 日韩 欧美 亚洲 中文字幕| 久久九九热精品免费| 99久久99久久久精品蜜桃| 国产精品av视频在线免费观看| 毛片女人毛片| 黄色片一级片一级黄色片| 美女被艹到高潮喷水动态| 午夜免费成人在线视频| 天天躁日日操中文字幕| 国产激情欧美一区二区| 中文字幕av成人在线电影| 国产黄色小视频在线观看| 夜夜夜夜夜久久久久| 国产精品1区2区在线观看.| 亚洲精品美女久久久久99蜜臀| 国产麻豆成人av免费视频| 香蕉久久夜色| 精品国产美女av久久久久小说| 亚洲成av人片免费观看| 99热精品在线国产| 少妇人妻一区二区三区视频| 日韩欧美精品免费久久 | 黄色片一级片一级黄色片| 亚洲欧美日韩东京热| 丰满的人妻完整版| 51国产日韩欧美| av天堂中文字幕网| 久久香蕉国产精品| 色尼玛亚洲综合影院| 亚洲精品亚洲一区二区| 日本 欧美在线| 国产成人a区在线观看| 神马国产精品三级电影在线观看| 亚洲自拍偷在线| 美女cb高潮喷水在线观看| 熟妇人妻久久中文字幕3abv| 国产欧美日韩一区二区三| 亚洲人成电影免费在线| 婷婷亚洲欧美| 亚洲熟妇熟女久久| 老司机午夜福利在线观看视频| 亚洲精品在线美女| 欧美日韩乱码在线| 黑人欧美特级aaaaaa片| 欧美日本亚洲视频在线播放| 一本久久中文字幕| 日韩国内少妇激情av| 亚洲av成人av| 国产久久久一区二区三区| 欧美日本亚洲视频在线播放| 嫁个100分男人电影在线观看| 91九色精品人成在线观看| 亚洲,欧美精品.| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频日本深夜| 天天添夜夜摸| 男女那种视频在线观看| 精品人妻1区二区| a在线观看视频网站| 成人永久免费在线观看视频| 国产精品一区二区三区四区久久| 亚洲国产精品久久男人天堂| 又粗又爽又猛毛片免费看| 久久亚洲真实| 波多野结衣巨乳人妻| 搡女人真爽免费视频火全软件 | 男女午夜视频在线观看| 欧美一区二区国产精品久久精品| 久久久国产成人精品二区| 天堂av国产一区二区熟女人妻| 午夜影院日韩av| 久久久久国内视频| 国产免费男女视频| 少妇的逼好多水| svipshipincom国产片| 亚洲精品在线观看二区| 午夜精品久久久久久毛片777| av天堂中文字幕网| av在线天堂中文字幕| 成人欧美大片| 久久久成人免费电影| 国产成人aa在线观看| 一个人看的www免费观看视频| 国产亚洲欧美在线一区二区| 99热这里只有精品一区| 大型黄色视频在线免费观看| 亚洲精品影视一区二区三区av| 久久久久久久久中文| 国产私拍福利视频在线观看| 非洲黑人性xxxx精品又粗又长| 小说图片视频综合网站| 天美传媒精品一区二区| 丁香六月欧美| 丰满人妻一区二区三区视频av | 波多野结衣巨乳人妻| 国产成年人精品一区二区| 99久久综合精品五月天人人| 久久久久亚洲av毛片大全| 99在线视频只有这里精品首页| 国产乱人伦免费视频| 久久久久久久午夜电影| 欧美大码av| 国产三级在线视频| 午夜福利在线观看吧| 亚洲一区二区三区不卡视频| 亚洲精品色激情综合| 尤物成人国产欧美一区二区三区| 日本与韩国留学比较| 国产亚洲av嫩草精品影院| 精品福利观看| 观看美女的网站| 亚洲午夜理论影院| 琪琪午夜伦伦电影理论片6080| 精品久久久久久久久久免费视频| 他把我摸到了高潮在线观看| 亚洲精品乱码久久久v下载方式 | 热99re8久久精品国产| 欧美日韩黄片免| 久久久久九九精品影院| 变态另类成人亚洲欧美熟女| 母亲3免费完整高清在线观看| 成人永久免费在线观看视频| 国产黄a三级三级三级人| 真实男女啪啪啪动态图| 美女黄网站色视频| 精品久久久久久久久久久久久| 九九久久精品国产亚洲av麻豆| 国产精品 欧美亚洲| 五月伊人婷婷丁香| 亚洲成a人片在线一区二区| 91字幕亚洲| 欧美色视频一区免费| 精品国产亚洲在线| 99久久无色码亚洲精品果冻| 内射极品少妇av片p| 亚洲性夜色夜夜综合| 看免费av毛片| 美女高潮喷水抽搐中文字幕| 亚洲人成网站高清观看| 亚洲激情在线av| 久久久国产成人精品二区| 国产成人欧美在线观看| 日本与韩国留学比较| 免费在线观看成人毛片| 2021天堂中文幕一二区在线观| 欧美3d第一页| 欧美在线黄色| 精品99又大又爽又粗少妇毛片 | 女人被狂操c到高潮| 村上凉子中文字幕在线| 国产单亲对白刺激| 啦啦啦免费观看视频1| 亚洲人成网站在线播| 国产精品久久久久久精品电影| 黄色丝袜av网址大全| 亚洲美女视频黄频| 真实男女啪啪啪动态图| 亚洲av免费在线观看| 精品久久久久久久久久免费视频| 国产欧美日韩精品亚洲av| 高潮久久久久久久久久久不卡| 变态另类丝袜制服| 波多野结衣巨乳人妻| 国产精品精品国产色婷婷| 内射极品少妇av片p| 亚洲性夜色夜夜综合| 国产探花极品一区二区| 我要搜黄色片| 99久久九九国产精品国产免费| 亚洲精品影视一区二区三区av| 小说图片视频综合网站| 久久午夜亚洲精品久久| 国产一区二区三区视频了| 99在线视频只有这里精品首页| 伊人久久大香线蕉亚洲五| 亚洲人成伊人成综合网2020| 村上凉子中文字幕在线| 国产成人欧美在线观看| 黄色女人牲交| 国产又黄又爽又无遮挡在线| 深夜精品福利| 久久久精品大字幕| 成年女人永久免费观看视频| 国产亚洲精品综合一区在线观看| 日本免费a在线| 99久久九九国产精品国产免费| 最后的刺客免费高清国语| 国产视频一区二区在线看| 在线观看日韩欧美| 精品国产亚洲在线| 男人的好看免费观看在线视频| 12—13女人毛片做爰片一| 美女 人体艺术 gogo| 亚洲精品日韩av片在线观看 | 美女被艹到高潮喷水动态| 九九久久精品国产亚洲av麻豆| 久久久国产成人精品二区| 国产三级中文精品|