包淑華
(1.華北電力大學數(shù)理學院,河北 保定 071003;2.呼倫貝爾學院數(shù)學與統(tǒng)計學院,內(nèi)蒙古 呼倫貝爾 021008)
Bernstein型算子在Wiener空間逼近的平均誤差
包淑華1,2
(1.華北電力大學數(shù)理學院,河北 保定 071003;2.呼倫貝爾學院數(shù)學與統(tǒng)計學院,內(nèi)蒙古 呼倫貝爾 021008)
利用多個相鄰點函數(shù)值的平均值代替單點函數(shù)值構造Bernstein型算子.利用Wiener空間的基本性質,借助一些常用不等式及多變量分塊求和的技巧,得到了該算子在Wiener空間上逼近的誤差估計.結果表明,該算子在上述測度空間上的平均逼近誤差與經(jīng)典Bernstein算子相應的平均逼近誤差是同階的.
Bernstein型算子;Wiener空間;平均誤差
多項式具有結構簡單、易于計算和存貯的特點,因此是一類首選的函數(shù)逼近工具.對于區(qū)間[0,1]上的連續(xù)函數(shù)f(x),Bernstein多項式(也叫Bernstein算子)定義為
對于區(qū)間[0,1]上的連續(xù)函數(shù)f(x),令
[1]XU G Q.The simultaneous approximation average errors for Bernstein operators on the r-fold integrated Wiener space[J].NMTMA,2012,5(3):403-422.
[2]丁春梅.Bernstein型算子同時逼近誤差[J].數(shù)學物理學報,2010,30(1):142-153.DING C M.The errors of simultaneous approximation by Bernstein type operators[J].Acta Mathematica Scientia,2010,30(1):142-153(in Chinese).
[3]YOSHIHIDE K.A note on generalized Bernstein polynomial density estimators[J].Statistical Methodology,2011,8:136-153.
[4]許貴橋.插值多項式在一重積分Wiener空間下的同時逼近平均誤差[J].中國科學:數(shù)學,2011,41(5):407-426.XU G Q.The simultaneous approximation average errors for interpolationpolynomialsonthe1-foldintegratedWienerspace[J].SciSinMath,2011,41(5):407-426(in Chinese).
[5]虞旦盛.Bernstein算子對具有奇性函數(shù)的加權同時逼近[J].數(shù)學學報,2015,58(4):535-550.YU D S.Weighted simultaneous approximation by Bernstein operators forfunctionswithsingularities[J].ActaMathematicaSinica,2015,58(4):535-550(in Chinese).
[6]KLAUSR.Average-caseAnalysisofNumerical Problems[M].New York:Springer Verlag,2000.
[7]DEVORERA,LORENTZGG.ConstructiveApproximation[M].Berlin:Springer Verlag,1993.
(責任編校馬新光)
Average errors for Bernstein type operator approximation on Wiener space
BAO Shuhua1,2
(1.Mathematics and Physics College,North China Electric Power University,Baoding 071003,Hebei Province,China;2.School of Mathematics and Statistics,Hulunbuir University,Hulunbuir 021008,Inner Mongolia,China)
By using average value of multi neighboring points function values instead of the single value,a Bernstein type operator is constructed.By combining with the basic property of Wiener space,some common inequalities and skills of multivariable block summation,the error estimate of approximation for this operator is obtained on the Wiener space.The conclusion shows that the average approximation errors are in the same order with the classic Bernstein operator on the measuring space.
Bernstein type operator;Wiener space;average errors
O172.42
A
1671-1114(2016)02-0015-04
2015-09-01
內(nèi)蒙古自治區(qū)自然科學基金資助項目(2015BS0103).
包淑華(1984—),女,講師,主要從事函數(shù)逼近論方面的研究.