• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterizations of Null Holomorphic Sectional Curvature of GCR-Lightlike Submanifolds of Indefinite Nearly K¨ahler Manifolds

    2016-10-24 02:18:02RachnaRaniSangeetKumarRakeshKumarandRNagaich
    Analysis in Theory and Applications 2016年2期
    關(guān)鍵詞:白熾燈紅外光低電平

    RachnaRani,SangeetKumar,RakeshKumarandR.K.Nagaich

    1Department of Mathematics,University College,Moonak 148033,Punjab,India

    2Department of Mathematics,Sri Guru Teg Bahadur Khalsa College,Sri Anandpur Sahib 140118,Punjab,India

    3Department of Basic and Applied Sciences,Punjabi University,Patiala 147002,Punjab,India

    4Department of Mathematics,Punjabi University,Patiala 147002,Punjab,India

    ?

    Characterizations of Null Holomorphic Sectional Curvature of GCR-Lightlike Submanifolds of Indefinite Nearly K¨ahler Manifolds

    RachnaRani1,SangeetKumar2,RakeshKumar3,?andR.K.Nagaich4

    1Department of Mathematics,University College,Moonak 148033,Punjab,India

    2Department of Mathematics,Sri Guru Teg Bahadur Khalsa College,Sri Anandpur Sahib 140118,Punjab,India

    3Department of Basic and Applied Sciences,Punjabi University,Patiala 147002,Punjab,India

    4Department of Mathematics,Punjabi University,Patiala 147002,Punjab,India

    .We obtain the expressions for sectional curvature,holomorphic sectional curvature and holomorphic bisectional curvature of a GCR-lightlike submanifold of an indefinite nearly K¨ahler manifold and obtain characterization theorems for holomorphic sectional and holomorphic bisectional curvature.We also establish a condition for a GCR-lightlike submanifold of an indefinite complex space form to be a null holomorphically flat.

    Indefinite nearly K¨ahler manifold,GCR-lightlike submanifold,holomorphic sectional curvature,holomorphic bisectional curvature.

    AMS Subject Classifications:53C15,53C40,53C50

    1 Introduction

    Due to the growing importance of lightlike submanifolds in mathematical physics and relativity[5]and the significant applications of CR structures in relativity[3,4],Duggal and Bejancu[5]introduced the notion of CR-lightlike submanifolds of indefinite K¨ahler manifolds.Contrary to the classical theory of CR-submanifolds,CR-lightlike submanifolds do not include complex and totally real lightlike submanifolds as subcases.Therefore Duggal and Sahin[7]introduced SCR-lightlike submanifolds of indefinite K¨ahler manifold which contain complex and totally real subcases but do not include CR andSCR cases.Therefore Duggal and Sahin[8]introduced GCR-lightlike submanifolds of indefinite K¨ahler manifolds,which behaves as an umbrella of complex,totally real,screen real and CR-lightlike submanifolds and further studied by[11-13].Husain and Deshmukh[10]studied CR submanifolds of nearly K¨ahler manifolds.Recently,Sangeet et al.[14]introduced GCR-lightlike submanifolds of indefinite nearly K¨ahler manifolds and obtained their existence in indefinite nearly K¨ahler manifolds of constant holomorphic sectional curvature c and of constant type α.In present paper,we obtain the expressions for sectional curvature,holomorphic sectional curvature and holomorphic bisectional curvature of a GCR-lightlike submanifold of an indefinite nearly K¨ahler manifold and obtain characterization theorems for holomorphic sectional and holomorphic bisectional curvature.

    2 Lightlike submanifolds

    Let(ˉM,ˉg)be a real(m+n)-dimensional semi-Riemannian manifold of constant index q such that m,n≥1,1≤q≤m+n-1 and(M,g)be an m-dimensional submanifold ofˉM and g be the induced metric ofˉg on M.Ifˉg is degenerate on the tangent bundle TM of M then M is called a lightlike submanifold ofˉM,for detail see[5].For a degenerate metric g on M,TM⊥is a degenerate n-dimensional subspace of TxˉM.Thus both TxM and TxM⊥are degenerate orthogonal subspaces but no longer complementary.In this case,there exists a subspace RadTxM=TxM∩TxM⊥which is known as radical(null)subspace.If the mapping RadTM:x∈M-→RadTxM,defines a smooth distribution on M of rank r>0 then the submanifold M ofˉM is called an r-lightlike submanifold and RadTM is called the radical distribution on M.Screen distribution S(TM)is a semi-Riemannian complementary distribution of Rad(TM)in TM therefore

    and S(TM⊥)is a complementary vector subbundle to RadTM in TM⊥.Let tr(TM)and ltr(TM)be complementary(but not orthogonal)vector bundles to TM in TˉM|Mand to RadTM in S(TM⊥)⊥respectively.Then we have

    Let u be a local coordinate neighborhood of M and consider the local quasi-orthonormal fields of frames ofˉM along M,on u as{ξ1,···,ξr,Wr+1,···,Wn,N1,···,Nr,Xr+1,···,Xm},where{ξ1,···,ξr},{N1,···,Nr}are local lightlike bases of Γ(RadTM|u),Γ(ltr(TM)|u)and{Wr+1,···,Wn},{Xr+1,···,Xm}are local orthonormal bases of Γ(S(TM⊥)|u)and Γ(S(TM)|u)respectively.For these quasi-orthonormal fields of frames,we have

    Theorem 2.1(see[5]).Let(M,g)be an r-lightlike submanifold of a semi-Riemannian manifold(ˉM,ˉg).Then there exists a complementary vector bundle ltr(TM)of RadTM in S(TM⊥)⊥anda basis of ltr(TM)|uconsisting of smooth section{Ni}of S(TM⊥)⊥|u,where u is a coordinate neighborhood of M such that

    Letˉ?be the Levi-Civita connection onˉM then according to the decomposition(2.2b),the Gauss and Weingarten formulas are given by

    forany X,Y∈Γ(TM)and U∈Γ(tr(TM)),where{?XY,AUX}and{h(X,Y),?⊥XU}belong to Γ(TM)and Γ(tr(TM)),respectively.Here?is a torsion-free linear connection on M,h is a symmetric bilinear form on Γ(TM)which is called second fundamental form,AUis a linear a operator on M and known as shape operator.

    According to(2.2a)considering the projection morphisms L and S of tr(TM)on ltr(TM)and S(TM⊥)respectively,then(2.3)become

    As hland hsare Γ(ltr(TM))-valued and Γ(S(TM⊥))-valued respectively,therefore theyare called thelightlike secondfundamental formand thescreensecondfundamental form on M.In particular

    where X∈Γ(TM),N∈Γ(ltr(TM))and W∈Γ(S(TM⊥)).Using(2.4)and(2.5)we obtain

    for any W∈Γ(S(TM⊥)).Let P be the projection morphism of TM on S(TM)then using(2.1),we can induce some new geometric objects on the screen distribution S(TM)on M as

    Using(2.4)and(2.7),we obtainfor any X,Y∈Γ(TM),ξ∈Γ(Rad(TM))and N∈Γ(ltr(TM)).

    In general,the induced connection?on M is not a metric connection.Sinceˉ?is a metric connection,by using(2.4),we get

    However,it is important to note that??is a metric connection on S(TM).

    Denote byˉR and R the curvature tensors ofˉ?and?respectively then by straightforward calculations(see[5]),we have

    where

    Then Codazzi equation is given respectively by

    Gray[9],defined nearly K¨ahler manifolds as

    Definition 2.1.Let(ˉM,ˉJ,ˉg)be an indefinite almost Hermitian manifold andˉ?be the Levi-Civita connection onˉM with respect toˉg.ThenˉM is called an indefinite nearly K¨ahler manifold if

    or equivalently

    It is well known that every K¨ahler manifold is a nearly K¨ahler manifold but converse is not true.S6with its canonical almost complex structure is a nearly K¨ahler manifold but not a K¨ahler manifold.Due to rich geometric and topological properties,the study of nearly K¨ahler manifolds is as important as that of K¨ahler manifolds.Therefore we studied the geometryof CR,SCR and GCR-lightlike submanifolds of an indefinite nearly K¨ahler manifolds in[14].

    Nearly K¨ahler manifold of constant holomorphic curvature c is denoted byˉM(c)and its curvature tensor fieldˉR is given by,[15]

    and the sectional curvature is given by

    A nearly K¨ahler manifold is said to be of constant type α[9],if there exists a real valued C∞function α onˉM such that

    3 Generalized Cauchy-Riemann lightlike submanifolds

    In this section,we briefly recall generalized Cauchy-Riemann(GCR)-lightlike submanifold of an indefinite nearly K¨ahler manifold(ˉM,ˉg,ˉJ),for detail see[14].

    Definition3.1(see[14]).Let(M,g,S(TM))be a real lightlike submanifold ofan indefinite nearly K¨ahler manifold(ˉM,ˉg,ˉJ)then M is called a generalized Cauchy-Riemann(GCR)-lightlike submanifold if the following conditions are satisfied

    (A)There exist two subbundles D1and D2of Rad(TM)such that

    (B)There exist two subbundles D0and D′of S(TM)such that

    where D0is a non degenerate distribution on M,L1and L2are vector subbundles of ltr(TM)and S(TM)⊥respectively.

    Then the tangent bundle TM of M is decomposed as

    M is called a proper GCR-lightlike submanifold if D1/={0},D2/={0},D0/={0}and L2/={0}.

    Let Q,P1and P2be the projections on D,ˉJ(L1)=M1andˉJ(L2)=M2,respectively. Then for any X∈Γ(TM),we have X=QX+P1X+P2X,applyingˉJ both sides,we obtain

    and we can write the Eq.(3.1)as

    where TX and wX are the tangential and transversal components ofˉJX,respectively. Similarly

    for any V∈Γ(tr(TM)),where BV and CV are the sections of TM and tr(TM)respectively.ApplyingˉJ to(3.2)and(3.3),we get T2=-I-Bω,and C2=-I-ωB.Using nearly K¨ahlerian property ofˉ?with(2.5),we have the following lemma.

    Lemma 3.1(see[14]).Let M be a GCR-lightlike submanifold of an indefinite nearly K¨ahler manifoldˉM.Then we have

    and

    for any X,Y∈Γ(TM),where

    4 Holomorphic sectional curvature of a GCR-lightlike submanifold

    LetˉM be an indefinite nearly K¨ahler manifold of constant holomorphic curvature c the using(2.9)and(2.14)for any X,Y,Z,W vector fields on TM,we obtain

    Using(2.6)in(4.1),we obtain

    Thenthe sectional curvature KM(X,Y)=g(R(X,Y)Y,X)of M determinedby orthonormal vectors X and Y of Γ(D0⊕M2)and given by

    Corollary 4.1.Let M be a GCR-lightlike submanifold of an indefinite nearly K¨ahler manifold of constant holomorphic sectional curvature c.Then sectional curvature of M is given by

    if

    (i)M2defines a totally geodesic foliation inˉM.

    從圖6中不難發(fā)現(xiàn),當(dāng)單片機(jī)DAC接口PA4為低電平時(shí),MOS管2N7002截止,白熾燈光源熄滅,而當(dāng)單片機(jī)DAC接口PA4為高電平時(shí),MOS管2N7002導(dǎo)通,白熾燈光源處于工作狀態(tài)。該電路能夠?qū)崟r(shí)調(diào)制紅外光信號(hào),降低外界環(huán)境光照的影響,并達(dá)到延長(zhǎng)紅外光源使用壽命的目的。

    (ii)D0defines a totally geodesic foliation inˉM.

    (iii)M is totally geodesic inˉM.

    Definition 4.1.The holomorphic sectional curvature H(X)=g(R(X,ˉJX)ˉJX,X)of M determined by a unit vector X∈Γ(D0)is the sectional curvature of a plane section{X,ˉJX}.

    Then using(2.8)and(4.3),for a unit vector field X∈Γ(D0),we get

    Theorem 4.1(see[14]).Let M be a GCR-lightlike submanifold of an indefinite nearly K¨ahler manifoldˉM then the distribution D is integrable if and only if h(X,ˉJY)=h(Y,ˉJX),for any X,Y∈Γ(D).

    Theorem 4.2.Let M be a GCR-lightlike submanifold of an indefinite nearly K¨ahler manifold ˉM(c)with constant holomorphic sectional curvature c and the distribution D0is integrable then H(X)≤c for any unit vector field X∈Γ(D0).

    Proof.Since D0is integrable therefore using the Theorem 4.1,we have h(ˉJX,ˉJX)= -h(X,X),for any unit vector field X∈Γ(D0).Therefore from(4.5),we obtain

    Definition 4.2.A GCR-lightlike submanifold M of an indefinite nearly K¨ahler manifold ˉM is said to be D-totally geodesic(resp.D′-totally geodesic)if and only if h(X,Y)=0 for any X,Y∈Γ(D0)(resp.X,Y∈Γ(D′)).

    Lemma 4.1.Let M be a GCR-lightlike submanifold of an indefinite nearly K¨ahler manifoldˉM. If the distribution D0defines a totally geodesic foliation inˉM then M is D0-geodesic.

    Proof.To show M is D0-geodesic we have to prove

    for any X,Y∈Γ(D0),ξ∈Γ(Rad(TM))and W∈Γ(S(TM⊥)).Since D0defines totally geodesic foliation inˉM therefore we obtain

    and

    Hence the assertion follows.

    Theorem 4.3.Let M be a GCR-lightlike submanifold of an indefinite nearly K¨ahler manifoldˉM with constant holomorphic sectional curvature c.If D0defines a totally geodesic foliation inˉM then H(X)=c,for any unit vector field X∈Γ(D0).

    Proof.The assertion follows directly using the Lemma 4.1 in(4.5).

    Theorem 4.4.Let M be a GCR-lightlike submanifold of an indefinite nearly K¨ahler manifoldˉM of constant type α and of constant holomorphic sectional curvature c.If M is M2-totally geodesic then

    where KM(X,Y)is the sectional curvature of the plane section X∧Y in M2?D′.

    Proof.Let plane section X∧Y is spanned by the orthonormal unit vectors X,Y∈Γ(M2)?Γ(D′),then using(2.8)in(4.3),we get

    SinceˉM is of constant type α,using(2.15)we obtain

    Using the hypothesis that M is M2-totally geodesic in(4.8),the assertion follows.

    Definition 4.3.The holomorphic bisectional curvature for the pair of unit vector fields{X,Y}onˉM is given by

    Definition 4.4.A GCR-lightlike submanifold M of an indefinite nearly K¨ahler manifold ˉM is said to be mixed geodesic if and only if h(X,Y)=0 for any X∈Γ(D)and Y∈Γ(D′).

    Theorem 4.5.Let M be a mixed geodesic GCR-lightlike submanifold of an indefinite nearly K¨ahler manifoldˉM with D0as a parallel distribution with respect to?on M.ThenˉH(X,Z)=0,for any X∈Γ(D0)and Z∈Γ(M2).

    Proof.Let X,Y∈Γ(D0)and Z∈Γ(M2)then using the hypothesis that the distribution D0is parallel with respect to?on M,we have

    Hence the non degeneracy of the distribution D0implies that,T?XZ=0,that is

    for any Z∈Γ(M2).Now replacing Y byˉJX respectively in(2.11)and then taking inner product withˉJZ,for any X∈Γ(D0)and Z∈Γ(M2).Then by virtue of(2.10b),we get

    Hence using that M is mixed totally geodesic with(4.9),the assertion follows.

    ofconstantholomorphic sectional curvature c.In order that it may admit a mixed geodesic GCR-lightlike submanifold M with parallel distribution D0,it is necessary that c≥0.

    this implies that c≥0.

    Thus the assertion follows.

    Definition 4.5(see[6]).A lightlike submanifold(M,g)of a semi-Riemannian manifold(ˉM,ˉg)is said to be a totally umbilical inˉM if there is a smoothtransversal vector field H∈Γ(tr(TM))on M,called the transversal curvature vector field of M,such that h(X,Y)= Hˉg(X,Y),for X,Y∈Γ(TM).Using(2.5),it is clear that M is a totally umbilical,if and only if,on each coordinate neighborhood u there exist smooth vector fields Hl∈Γ(ltr(TM))and Hs∈Γ(S(TM⊥))such that

    for X,Y∈Γ(TM)and W∈Γ(S(TM⊥)).M is called totally geodesic if H=0,that is,if h(X,Y)=0.

    Theorem 4.8(see[14]).Let M be a totally umbilical proper GCR-lightlike submanifold of an indefinite nearly K¨ahler manifoldˉM.If D0defines a totally geodesic foliation in M then the induced connection?is a metric connection.Moreover,hs=0.

    Theorem 4.9.Let M be a totally umbilical GCR-lightlike submanifold of an indefinite nearly K¨ahler manifold of constant holomorphic sectional curvature c/=0 with the distribution D0defining a totally geodesic foliation in M.Then M is of constant curvature if and only ifˉM is of constant type c.

    Proof.Let X,Y∈Γ(D0⊕M2)be two orthonormal vectors such that g(X,Y)=g(X,ˉJY)= 0.Since M is a totally umbilical GCR-lightlike submanifold with the distribution D0defining a totally geodesic foliation in M therefore using(4.3)and(4.5),the sectional curvature and holomorphic sectional curvature of M are given,respectively,by

    and

    It follows that ifˉM is of constant type c,then KM(X,Y)=c+‖Hs‖2.Hence M is a space of constant curvature c.

    5 Null holomorphically flat GCR-lightlike submanifold

    where V is an arbitrary non-null vector in π.

    where Vuis an arbitrary non-null vector in π.

    Let M be a GCR-lightlike submanifold of an indefinite nearly K¨ahler manifold of constant holomorphic sectional curvature c then using(4.2),the null sectional sectional

    curvature of π with respect to ξ is given by

    Then using(2.8),we obtain

    We know that a plane π is called holomorphic if it remains invariant under the action of the almost complex structureˉJ,that is,if π={Z,ˉJZ}.The sectional curvature associated with the holomorphic plane is called the holomorphic sectional curvature,denoted by ˉH(π)and given byˉH(π)=ˉR(Z,ˉJZ,Z,ˉJZ)/ˉg(Z,Z)2.The holomorphic plane π={Z,ˉJZ}is called null or degenerate if and only if Z is a null vector.A manifold(ˉM,ˉg,ˉJ)is called null holomorphically flat if the curvature tensorˉR satisfies,(see[2])

    for all null vectors Z.Putˉg(ˉR(X,Y)Z,W)=ˉR(X,Y,Z,W),then from(5.2),we obtain

    Thus(5.3)becomes

    Let M be a totally umbilical lightlike submanifold then,we have h(ˉJξ,ˉJξ)=Hg(ˉJξ,ˉJξ)= Hg(ξ,ξ)=0 and h(ξ,ˉJξ)=Hg(ξ,ˉJξ)=0,for any ξ∈Γ(Rad(TM)).Thus from(5.4),we have the following theorem.

    Theorem 5.1.Let M be a GCR-lightlike submanifold of an indefinite nearly K¨ahler manifold of constant holomorphic sectional curvature c.If M is totally umbilical lightlike submanifold then M is null holomorphically flat.

    Moreover,from(5.4)it isclear thattheexpressionof R(ξ,ˉJξ,ξ,ˉJξ)is expressedinterms of screen second fundamental forms of M,thus GCR-lightlike submanifold M of an indefinite nearly K¨ahler manifold of constant holomorphic sectional curvature c is null holomorphically flat if M is totally geodesic.

    [1]J.K.Beem and P.E.Ehrlich,Global Lorentzian Geometry,Marcel Dekker,New York,1981.

    [2]A.Bonome,R.Castro,E.Garcia-Rio and L.M.Hervella,Null holomorphically flat indefinite almost Hermitian manifolds,Illinois J.Math.,39(1995),635-660.

    [3]K.L.Duggal,CR structures and Lorentizian geometry,Acta Appl.Math.,7(1986),211-223.

    [4]K.L.Duggal,Lorentzian geometry of CR submanifolds,Acta Appl.Math.,17(1989),171-193.

    [5]K.L.Duggal and A.Bejancu,Lightlike submanifolds of semi-Riemannian manifolds and applications,Vol.364 of Mathematics and its Applications,Kluwer Academic Publishers,The Netherlands,1996.

    [6]K.L.Duggal and D.H.Jin,Totally umbilical lightlike submanifolds,Kodai Math.J.,26(2003),49-68.

    [7]K.L.Duggal andB.Sahin,ScreenCauchy-Riemannlightlike submanifolds,ActaMath.Hungar.,106(2005),125-153.

    [8]K.L.Duggal and B.Sahin,Generalized Cauchy-Riemann lightlike submanifolds of K¨ahler manifolds,Acta Math.Hungar.,112(2006),107-130.

    [9]A.Gray,Nearly K¨ahler manifolds,J.Differential Geom.,4(1970),283-309.

    [10]S.I.Husain and S.Deshmukh,CR submanifolds of a nearly K¨ahler manifold,Indian J.Pure Appl.Math.,18(1987),979-990.

    [11]Rakesh Kumar,Sangeet Kumar and R.K.Nagaich,GCR-lightlike product of indefinite K¨ahler manifolds,ISRN Geometry,(2011),Article ID 531281,13 pages.

    [12]Sangeet Kumar,Rakesh Kumar and R.K.Nagaich,Characterization of holomorphic bisectional curvature of GCR-lightlike submanifolds,Adv.Math.Phys.,(2012),Article ID 356263,18 pages.

    [13]Rakesh Kumar,Sangeet Kumar and R.K.Nagaich,Integrability of distributions in GCR-lightlike submanifolds of indefinite K¨ahler manifolds,Commun.Korean Math.Soc.,27(2012),591-602.

    [14]Sangeet Kumar,Rakesh Kumar and R.K.Nagaich,GCR-lightlike submanifolds of indefinite nearly K¨ahler manifolds,Bull.Korean Math.Soc.,50(2013),1173-1192.

    [15]K.Yano and M.Kon,Structures on Manifolds,Series in Pure Mathematics,Vol.3,World Scientific,Singapore,1984.

    .Email addresses:rachna@pbi.ac.in(R.Rani),sp7maths@gmail.com(S.Kumar),dr rk37c@yahoo.co.in(R.Kumar),nagaich58rakesh@gmail.com(R.K.Nagaich)

    28 June 2013;Accepted(in revised version)11 April 2016

    猜你喜歡
    白熾燈紅外光低電平
    神奇窗戶讓室內(nèi)四季如春
    數(shù)字電路中“邏輯非”的用法辨析
    甲硝唑配合紅外光治療慢性宮頸炎的有效性及對(duì)復(fù)發(fā)率的影響
    鐵道車輛高/低電平信號(hào)智能發(fā)生器設(shè)計(jì)
    石墨烯纖維可應(yīng)用于中紅外光電子器件通訊
    英國(guó):愛(ài)迪生專利檔案以7.5萬(wàn)美元售出
    陜西檔案(2020年4期)2020-12-07 03:00:01
    2017款凱迪拉克2.8L/3.0L/3.2L/3.6L車型低電平參考電壓總線電路圖
    俄羅斯:擬禁用50瓦以上白熾燈
    為節(jié)能,俄擬禁用50瓦以上白熾燈
    有關(guān)紅外光電子物理研究的幾個(gè)問(wèn)題
    精品人妻视频免费看| 最近中文字幕高清免费大全6| 亚洲精品久久久久久婷婷小说| 在线精品无人区一区二区三 | 亚洲av在线观看美女高潮| 日韩 亚洲 欧美在线| 丰满乱子伦码专区| www.色视频.com| 国产一区二区三区av在线| 三级经典国产精品| 午夜免费观看性视频| 99久久人妻综合| 国产美女午夜福利| 亚洲欧美日韩卡通动漫| 国产成人精品婷婷| 久久99蜜桃精品久久| 成年美女黄网站色视频大全免费 | 久久久久久伊人网av| 22中文网久久字幕| 精品少妇黑人巨大在线播放| 成人午夜精彩视频在线观看| 国产在线一区二区三区精| 国产亚洲一区二区精品| 欧美成人a在线观看| a级毛片免费高清观看在线播放| 精品久久久久久电影网| 只有这里有精品99| av网站免费在线观看视频| 波野结衣二区三区在线| 少妇的逼水好多| 亚洲人成网站高清观看| 亚洲不卡免费看| 久久精品夜色国产| 国语对白做爰xxxⅹ性视频网站| 免费观看无遮挡的男女| 一级毛片电影观看| 国产男人的电影天堂91| 日本av免费视频播放| 久久久亚洲精品成人影院| 成人亚洲欧美一区二区av| 欧美+日韩+精品| 久久久精品免费免费高清| 丝瓜视频免费看黄片| 国产精品伦人一区二区| 亚洲国产色片| 免费观看的影片在线观看| 久久国产亚洲av麻豆专区| 一级二级三级毛片免费看| 国产精品精品国产色婷婷| 亚洲精品乱久久久久久| 国产精品无大码| 大码成人一级视频| 国产伦在线观看视频一区| 欧美成人午夜免费资源| 人妻少妇偷人精品九色| 久久久国产一区二区| 男女下面进入的视频免费午夜| 亚洲熟女精品中文字幕| 日韩欧美 国产精品| 亚洲电影在线观看av| 欧美人与善性xxx| 99热这里只有是精品50| 亚洲精品国产av蜜桃| 久久久久国产精品人妻一区二区| 97热精品久久久久久| 久久久久久久精品精品| 99九九线精品视频在线观看视频| 国产精品国产三级国产av玫瑰| 国产 一区精品| 身体一侧抽搐| 你懂的网址亚洲精品在线观看| 性高湖久久久久久久久免费观看| 91精品一卡2卡3卡4卡| a级一级毛片免费在线观看| 少妇精品久久久久久久| 久久99热6这里只有精品| 国产成人aa在线观看| 丰满少妇做爰视频| 在线观看免费高清a一片| 综合色丁香网| 日韩强制内射视频| 啦啦啦在线观看免费高清www| 美女国产视频在线观看| 99久久精品热视频| 少妇人妻 视频| 日产精品乱码卡一卡2卡三| 高清视频免费观看一区二区| 国产视频内射| 啦啦啦中文免费视频观看日本| 在线观看一区二区三区| 美女脱内裤让男人舔精品视频| av黄色大香蕉| 国产精品久久久久成人av| 久久久精品94久久精品| 免费观看a级毛片全部| 久久国产精品大桥未久av | 久久精品久久久久久久性| 国产av国产精品国产| 亚洲国产精品专区欧美| 人体艺术视频欧美日本| 欧美高清成人免费视频www| 三级国产精品片| 男男h啪啪无遮挡| 国产 一区精品| 高清午夜精品一区二区三区| 午夜视频国产福利| 一级av片app| 欧美xxxx黑人xx丫x性爽| 日韩大片免费观看网站| 男人舔奶头视频| 内射极品少妇av片p| 老师上课跳d突然被开到最大视频| 老司机影院成人| av一本久久久久| 精品国产乱码久久久久久小说| 老司机影院毛片| 国产伦理片在线播放av一区| 免费黄频网站在线观看国产| 亚洲欧美一区二区三区国产| 高清不卡的av网站| 国产男人的电影天堂91| av播播在线观看一区| 黄色日韩在线| 80岁老熟妇乱子伦牲交| 九九爱精品视频在线观看| 91精品国产国语对白视频| 久久人人爽人人爽人人片va| 国产精品一区二区三区四区免费观看| videos熟女内射| 少妇人妻精品综合一区二区| 少妇猛男粗大的猛烈进出视频| 亚洲av成人精品一二三区| 日本黄大片高清| 免费看光身美女| 亚洲精品自拍成人| 亚洲欧美中文字幕日韩二区| 激情五月婷婷亚洲| 国产精品人妻久久久影院| 欧美精品一区二区免费开放| 亚洲欧美一区二区三区黑人 | 精品一区在线观看国产| 久久久亚洲精品成人影院| 精品一区二区三卡| 天天躁日日操中文字幕| 免费播放大片免费观看视频在线观看| 久久精品国产亚洲av涩爱| 18禁动态无遮挡网站| 91精品国产国语对白视频| 麻豆国产97在线/欧美| 成人毛片60女人毛片免费| 99热这里只有精品一区| 嫩草影院入口| 国产 一区精品| 三级经典国产精品| 欧美日韩亚洲高清精品| 丰满少妇做爰视频| 美女主播在线视频| 久久久久国产网址| 建设人人有责人人尽责人人享有的 | 少妇人妻一区二区三区视频| 亚洲美女搞黄在线观看| 久久6这里有精品| 日韩中字成人| 欧美日本视频| 大又大粗又爽又黄少妇毛片口| 热re99久久精品国产66热6| 啦啦啦中文免费视频观看日本| 国产一区二区三区av在线| 国产精品一区二区三区四区免费观看| 国产日韩欧美亚洲二区| 成人二区视频| 狂野欧美白嫩少妇大欣赏| 丰满少妇做爰视频| 夜夜骑夜夜射夜夜干| 丝袜喷水一区| 欧美变态另类bdsm刘玥| 18+在线观看网站| 丝袜喷水一区| 午夜免费男女啪啪视频观看| 日本欧美视频一区| 99热这里只有精品一区| 少妇 在线观看| 超碰97精品在线观看| 中文乱码字字幕精品一区二区三区| 中国三级夫妇交换| 成年美女黄网站色视频大全免费 | 欧美激情国产日韩精品一区| 亚洲av不卡在线观看| 久久97久久精品| 美女福利国产在线 | av播播在线观看一区| 欧美亚洲 丝袜 人妻 在线| 国产成人精品福利久久| 人人妻人人爽人人添夜夜欢视频 | 精品一区二区三卡| 美女视频免费永久观看网站| 99久久人妻综合| 亚洲精品国产av蜜桃| 亚洲av不卡在线观看| 精品亚洲成a人片在线观看 | 欧美国产精品一级二级三级 | 久久久国产一区二区| 国产高清国产精品国产三级 | 精品人妻一区二区三区麻豆| 亚洲三级黄色毛片| 老师上课跳d突然被开到最大视频| 亚洲av中文字字幕乱码综合| 中文字幕人妻熟人妻熟丝袜美| av线在线观看网站| 成人一区二区视频在线观看| 欧美丝袜亚洲另类| 欧美xxxx黑人xx丫x性爽| 久久久久性生活片| 久久精品夜色国产| 在线免费十八禁| 性色av一级| 国产精品伦人一区二区| 一级爰片在线观看| 免费少妇av软件| 中文字幕人妻熟人妻熟丝袜美| 国产毛片在线视频| 国产成人freesex在线| 亚洲中文av在线| 日韩欧美 国产精品| 纵有疾风起免费观看全集完整版| 深夜a级毛片| 欧美日韩视频精品一区| 少妇人妻一区二区三区视频| 97超视频在线观看视频| 丰满乱子伦码专区| 啦啦啦视频在线资源免费观看| 简卡轻食公司| 大片免费播放器 马上看| 国产精品久久久久久av不卡| av卡一久久| 国产淫片久久久久久久久| 2021少妇久久久久久久久久久| 能在线免费看毛片的网站| 少妇熟女欧美另类| 美女福利国产在线 | 亚洲精品久久午夜乱码| 老司机影院成人| 日日摸夜夜添夜夜爱| 丰满人妻一区二区三区视频av| 22中文网久久字幕| 欧美日韩在线观看h| 在线观看一区二区三区| 亚洲欧美成人综合另类久久久| 2018国产大陆天天弄谢| 国产高清国产精品国产三级 | 性色av一级| 老师上课跳d突然被开到最大视频| 又爽又黄a免费视频| 精品人妻一区二区三区麻豆| 欧美97在线视频| 久久久欧美国产精品| av卡一久久| 久久99热这里只频精品6学生| 最近中文字幕高清免费大全6| 99久久精品国产国产毛片| 一区二区三区四区激情视频| 欧美国产精品一级二级三级 | 亚洲中文av在线| .国产精品久久| 亚洲av中文av极速乱| 久久久午夜欧美精品| av播播在线观看一区| 精品国产乱码久久久久久小说| 大码成人一级视频| 啦啦啦视频在线资源免费观看| videossex国产| 99久国产av精品国产电影| 春色校园在线视频观看| 婷婷色av中文字幕| 免费黄网站久久成人精品| 久久久久精品性色| 亚洲va在线va天堂va国产| 纯流量卡能插随身wifi吗| 99热这里只有是精品50| 国产av一区二区精品久久 | 久久久久久久久久久丰满| 国产成人精品一,二区| 国产日韩欧美在线精品| 超碰av人人做人人爽久久| 舔av片在线| 一级毛片久久久久久久久女| 性色avwww在线观看| 日本欧美国产在线视频| 一级黄片播放器| 国产成人a区在线观看| 日日摸夜夜添夜夜添av毛片| 中国美白少妇内射xxxbb| 亚洲精华国产精华液的使用体验| 久久女婷五月综合色啪小说| 高清黄色对白视频在线免费看 | 狂野欧美激情性bbbbbb| 免费看日本二区| 精品亚洲成a人片在线观看 | 免费播放大片免费观看视频在线观看| 亚洲国产精品专区欧美| 国产亚洲欧美精品永久| 狂野欧美激情性xxxx在线观看| 亚洲国产欧美人成| 性色avwww在线观看| 国产美女午夜福利| 国产91av在线免费观看| 又黄又爽又刺激的免费视频.| 人妻一区二区av| av天堂中文字幕网| 欧美精品人与动牲交sv欧美| 亚洲精品自拍成人| 精品一区二区免费观看| 亚洲精品国产色婷婷电影| 91久久精品国产一区二区成人| 久久国内精品自在自线图片| 欧美成人精品欧美一级黄| 97在线人人人人妻| 秋霞伦理黄片| 国产探花极品一区二区| h日本视频在线播放| 精品国产露脸久久av麻豆| 男人舔奶头视频| 久久久久视频综合| 观看美女的网站| 久久国内精品自在自线图片| 国产视频内射| 亚洲av成人精品一区久久| 人妻一区二区av| 蜜臀久久99精品久久宅男| 大片电影免费在线观看免费| 视频中文字幕在线观看| 欧美xxxx黑人xx丫x性爽| a级毛片免费高清观看在线播放| 少妇的逼好多水| 搡老乐熟女国产| 亚洲精品乱久久久久久| 少妇丰满av| 午夜福利高清视频| 2022亚洲国产成人精品| 美女高潮的动态| 国产欧美日韩一区二区三区在线 | 久久影院123| 久久精品夜色国产| 亚洲国产精品国产精品| 黄色欧美视频在线观看| 中文字幕免费在线视频6| 亚洲精品国产av蜜桃| 欧美3d第一页| 国产一区有黄有色的免费视频| 秋霞伦理黄片| 色5月婷婷丁香| 大陆偷拍与自拍| 日韩av不卡免费在线播放| 99热国产这里只有精品6| 免费久久久久久久精品成人欧美视频 | 这个男人来自地球电影免费观看 | 日韩三级伦理在线观看| 国产亚洲最大av| 91精品国产国语对白视频| 久久午夜福利片| 深爱激情五月婷婷| 久久影院123| 美女cb高潮喷水在线观看| 99热全是精品| 午夜免费观看性视频| 精品少妇黑人巨大在线播放| 国产成人精品福利久久| 亚洲精品乱码久久久久久按摩| 国产精品无大码| 亚洲自偷自拍三级| 久久国内精品自在自线图片| 欧美成人精品欧美一级黄| 高清在线视频一区二区三区| 内射极品少妇av片p| 精华霜和精华液先用哪个| 激情五月婷婷亚洲| 春色校园在线视频观看| 亚洲精品国产av蜜桃| 熟女av电影| 1000部很黄的大片| 少妇人妻久久综合中文| 久久韩国三级中文字幕| 亚洲图色成人| 尾随美女入室| 黄色日韩在线| 亚洲欧美精品专区久久| 黑人高潮一二区| 亚洲国产精品一区三区| 青春草国产在线视频| 一级爰片在线观看| 亚洲成色77777| 看非洲黑人一级黄片| 91在线精品国自产拍蜜月| 99热6这里只有精品| 亚洲av在线观看美女高潮| 性高湖久久久久久久久免费观看| 亚洲欧美精品专区久久| 激情 狠狠 欧美| 中文字幕制服av| 亚洲国产精品999| 22中文网久久字幕| 黑人高潮一二区| 六月丁香七月| 中文字幕制服av| 成人美女网站在线观看视频| 亚洲av欧美aⅴ国产| 免费av中文字幕在线| 久久精品夜色国产| 国产淫语在线视频| 欧美精品人与动牲交sv欧美| 国产精品女同一区二区软件| 精品99又大又爽又粗少妇毛片| 国产有黄有色有爽视频| 午夜激情久久久久久久| 少妇人妻精品综合一区二区| 亚洲最大成人中文| 国产精品一区二区性色av| 国产精品国产三级国产av玫瑰| 国产片特级美女逼逼视频| 国产色婷婷99| 亚洲电影在线观看av| 街头女战士在线观看网站| 九色成人免费人妻av| 青春草国产在线视频| 一个人免费看片子| 日韩成人伦理影院| 成年美女黄网站色视频大全免费 | 欧美成人一区二区免费高清观看| 狂野欧美白嫩少妇大欣赏| 成人综合一区亚洲| 国产成人精品久久久久久| 日本wwww免费看| 舔av片在线| av国产久精品久网站免费入址| 色视频www国产| 日韩成人伦理影院| 精品一区二区免费观看| 男男h啪啪无遮挡| 亚洲成人一二三区av| 老女人水多毛片| 人妻制服诱惑在线中文字幕| 午夜日本视频在线| 国产成人91sexporn| 美女xxoo啪啪120秒动态图| 国产色爽女视频免费观看| 国产伦在线观看视频一区| 国产日韩欧美在线精品| 久久精品熟女亚洲av麻豆精品| 国产伦精品一区二区三区四那| 亚洲天堂av无毛| 男人和女人高潮做爰伦理| 如何舔出高潮| 国产在线免费精品| 午夜福利在线在线| 亚州av有码| 三级国产精品片| 欧美日韩一区二区视频在线观看视频在线| 舔av片在线| 国产乱人偷精品视频| 只有这里有精品99| 国产免费一区二区三区四区乱码| 日韩电影二区| 寂寞人妻少妇视频99o| 偷拍熟女少妇极品色| 欧美日韩国产mv在线观看视频 | 色5月婷婷丁香| 免费人妻精品一区二区三区视频| 国产免费一区二区三区四区乱码| 欧美高清性xxxxhd video| 国产欧美日韩一区二区三区在线 | 五月天丁香电影| 99久久精品国产国产毛片| 国产精品99久久久久久久久| 国产一区二区三区av在线| 一本久久精品| 精品亚洲成国产av| 免费高清在线观看视频在线观看| 美女国产视频在线观看| 日韩一区二区三区影片| 中文资源天堂在线| 日本猛色少妇xxxxx猛交久久| 国产精品国产三级国产专区5o| 亚洲av成人精品一区久久| 精品久久久久久久久亚洲| 久久国内精品自在自线图片| videos熟女内射| 国产精品成人在线| 成人漫画全彩无遮挡| 国产 一区 欧美 日韩| 午夜福利高清视频| 成人特级av手机在线观看| 亚洲国产精品国产精品| 99视频精品全部免费 在线| 精品久久国产蜜桃| 简卡轻食公司| av在线app专区| 精品人妻视频免费看| 男女边吃奶边做爰视频| 色婷婷久久久亚洲欧美| 伦理电影大哥的女人| 日本wwww免费看| 黄色怎么调成土黄色| 国产精品久久久久久精品古装| 中文天堂在线官网| 中文精品一卡2卡3卡4更新| 日本一二三区视频观看| 免费大片黄手机在线观看| 爱豆传媒免费全集在线观看| 成年免费大片在线观看| 伦理电影大哥的女人| 精品一区二区免费观看| 啦啦啦啦在线视频资源| 国产成人一区二区在线| 久久人人爽人人爽人人片va| 男人爽女人下面视频在线观看| 国产成人午夜福利电影在线观看| 亚洲欧美日韩无卡精品| 噜噜噜噜噜久久久久久91| 国产色婷婷99| 国产极品天堂在线| 久久久久久久精品精品| 人人妻人人看人人澡| 成人国产麻豆网| 成人二区视频| 久久久久久久久久成人| 日本色播在线视频| 熟女人妻精品中文字幕| 久久久久久久久久成人| 国产亚洲最大av| 国产淫片久久久久久久久| 欧美老熟妇乱子伦牲交| 2018国产大陆天天弄谢| 18禁在线无遮挡免费观看视频| 久久精品久久久久久久性| 91久久精品电影网| 欧美一区二区亚洲| videos熟女内射| 亚洲一区二区三区欧美精品| 日本av手机在线免费观看| 一个人免费看片子| 这个男人来自地球电影免费观看 | 观看免费一级毛片| 久久久久久久久久成人| 免费播放大片免费观看视频在线观看| 欧美精品亚洲一区二区| 欧美97在线视频| 成人黄色视频免费在线看| 亚洲精品国产av成人精品| 日韩视频在线欧美| 观看av在线不卡| 99久久精品国产国产毛片| 精品视频人人做人人爽| 在线观看av片永久免费下载| 综合色丁香网| 乱码一卡2卡4卡精品| 永久免费av网站大全| 国产黄片视频在线免费观看| 国产免费又黄又爽又色| 免费人妻精品一区二区三区视频| 啦啦啦中文免费视频观看日本| 久久久久久人妻| 欧美三级亚洲精品| 久久97久久精品| 国产大屁股一区二区在线视频| 成人毛片a级毛片在线播放| 超碰av人人做人人爽久久| 最近最新中文字幕大全电影3| 日韩av不卡免费在线播放| 久久韩国三级中文字幕| 少妇精品久久久久久久| 亚洲中文av在线| 亚洲精品,欧美精品| av卡一久久| 另类亚洲欧美激情| 亚洲欧美成人综合另类久久久| 能在线免费看毛片的网站| 亚洲精华国产精华液的使用体验| 一区二区av电影网| 在线免费观看不下载黄p国产| 色综合色国产| 国精品久久久久久国模美| 精品一品国产午夜福利视频| 久久久久精品久久久久真实原创| 干丝袜人妻中文字幕| 制服丝袜香蕉在线| 久久国产亚洲av麻豆专区| 亚洲久久久国产精品| 国产精品免费大片| av线在线观看网站| 一区二区av电影网| a级毛色黄片| 国产乱人视频| 插阴视频在线观看视频| 亚洲精华国产精华液的使用体验| 激情五月婷婷亚洲| 直男gayav资源| 欧美日韩视频精品一区| 婷婷色av中文字幕| 中文天堂在线官网| 男人爽女人下面视频在线观看| 国产白丝娇喘喷水9色精品| 国产视频首页在线观看| 亚洲av中文字字幕乱码综合| 国产成人91sexporn| 性色av一级| 亚洲av欧美aⅴ国产| 在线 av 中文字幕| 黄色日韩在线| 大片电影免费在线观看免费| 国产久久久一区二区三区| 亚洲精品亚洲一区二区| 午夜激情福利司机影院| 全区人妻精品视频| 欧美少妇被猛烈插入视频| 国产日韩欧美亚洲二区|