• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assembly and marker analysis of mitochondrial genomes provide insights into origin,evolution and spread of Brassica juncea (L.)Czern.et Coss.

    2022-06-30 03:06:18LingYouLiuYngFngyingLiuLeiKngHoChenBinYngQinYngZhongsongLiu
    The Crop Journal 2022年3期

    Ling You,Liu Yng,Fngying Liu,Lei Kng,Ho Chen,Bin Yng,b,Qin Yng,Zhongsong Liu,*

    a College of Agronomy,Hunan Agricultural University,Changsha 410128,Hunan,China

    b Guizhou Institute of Oil Crops,Guizhou Academy of Agricultural Sciences,Guiyang 550000,Guizhou,China

    Keywords:Brassica juncea Mitochondrial genome Mitotypes Molecular markers Migration routes

    ABSTRACT The release of mitochondrial genome sequences provides the basis for characterizing interspecific and intraspecific variation in Brassica mitochondrial genomes.However,few B.juncea (mustard) mitochondrial genomes have been published.We assembled the mitochondrial genomes of three B.juncea subspecies and compared them with previously published genomes.The genomes were phylogenetically classified into A,B,C,and Bna clades.Two variant sites,a transversion (C →A) at nt 79,573 and a 31-bp copy-number variation between nts 65,564 and 65,596,were identified.Based on these variant sites,mitotype-specific sequence markers were developed to characterize the variation among worldwide 558 B.juncea accessions.Three mitochondrial genome types(mitotypes MT1–MT3)were identified.In terms of geographical distribution,MT1 and MT2 accessions were distributed mainly to the north and MT3 to the south of 34°N.Root mustards carried only MT1,leaf and stem mustards carried mainly MT3,and seed mustards carried all three mitotypes,implying that the mitotypes underwent selection during B.juncea domestication.A new form of oil mustard evolved by hybridization between two gene pools in southwest China.

    1.Introduction

    Mustard (Brassica juncea (L.) Czern.et Coss.) is grown as an oilseed,vegetable,and condiment crop worldwide,and is taxonomically classified into four subspecies:napiformis(root),juncea(seed),integrifolia (leaf) and tsatsai (stem) [1,2].B.juncea (2n=4x=36,AABB)is an allotetraploid that originated from natural hybridization between B.rapa (2n=20,AA) as a maternal parent and B.nigra(2n=16,BB).Mustard was grown 6000–7000 years ago in China[3],and Indian mustard was used by the Indus Valley civilization in the form of oil mustard as early as 2300 to 1750 BCE[4].

    Because the cytoplasm is inherited from the maternal parent in Brassica juncea and all others,variation in the cytoplasmic genome can be used to investigate species origin and domestication.The release of organellar genome sequences has provided new insights into the genetic relationships of Brassica crop species [5–13].Comparison showed that B.juncea and B.rapa carry identical mitochondrial (mt) genomes,in agreement with the fact that B.rapa is the cytoplasmic donor of B.juncea [6,9,13].Likewise,mt genome sequencing confirmed that B.nigra is the maternal parent of B.carinata [8].

    Intraspecific variation in the mt genome has been frequently observed in Brassica species.There was variation in size and structure of mt genomes between B.oleracea accessions [6,7].An InDel variation was detected between B.nigra mt genomes [8].A SNP variation,C to A,was identified between two B.rapa varieties,Chinese cabbage and Mizuna.This variation also appears in B.juncea[10].Based on 42 mt genes,B.napus accessions were clustered into two clades:B.rapa and B.oleracea clades [14],which were proposed to correspond to pol (Polima) and nap (Napus) cytoplasm,respectively [13].In mustard,mt genome sequences of three subspecies:leaf [6],stem [9] and seed mustards (GenBank ID:MT675103) have been released.The mt genome sequence of root mustard has not been reported.

    Mitotype-specific sequence (MSS) markers have been developed to classify mt genomes and permit identification of cytoplasmic types,phylogenetic analysis,and breeding of cytoplasmic male sterility (CMS) lines in Brassica species [15,16].In B.napus,the cytoplasmic types nap,cam(Campestris),pol,and ogu(Ogura)have been distinguished.For accurate and rapid identification of these different cytoplasms,corresponding MSS markers have been developed,and provide a reliable method for the identification of CMS rapeseed hybrids[15].Recently[16],MSS markers were developed from B.napus mitotype-specific sequences and used to identify breeding lines.

    With the rapid development of sequencing technologies,mt genome sequences can be assembled using long-read thirdgeneration technologies [17–20].The aim of the present study was to assemble the mt genomes of root,seed,and leaf mustards using PacBio sequencing and to develop MSS markers to characterize B.juncea accessions and mitotypes and to investigate the diversification and spread of B.juncea mitotypes.

    2.Materials and methods

    2.1.Plant materials

    Three Brassica juncea accessions:Datoucai (ssp.napiformis),Sichuan Yellow (SY,ssp.juncea),and CR 2493 (ssp.integrifolia)were used for genome sequencing.A panel of 558 B.juncea accessions from 38 countries or regions were used for mitotyping.Their geographic origins are presented in Table S1.The other accessions,including 51 B.napus accessions,5 B.rapa accessions,4 B.oleracea accessions,and 1 accession each of B.nigra and B.carinata(Table S2) were used to investigate mt genome variation.F1and F2progenies from reciprocal crosses between SY and Huayejie and their pooled seed samples(Table S3)were used to test the reliability and accuracy of MSS markers.

    2.2.DNA extraction and species identification of Brassica accessions

    Total DNA was isolated from 2-week-old leaves or mature seeds by the CTAB method [21].Species identification of Brassica accessions was performed by multiplex PCR using genome-specific primers [22].

    2.3.Assembly and sequence analysis of mt genomes

    The genomes of Datoucai,Sichuan Yellow,and CR 2493 were sequenced using the PacBio Sequel platform [23] (Table S4).The error correction module in Falcon (github.com/PacificBiosciences/falcon) was used to correct reads.The error-corrected reads were aligned with default parameters against the B.juncea mt genome sequence(JF920288)using blat software(v.3.2.1) [24].Reads with over 80-fold coverage,length >30 kb,and identity of 90%or more were taken as candidate reads from the mt genome.For de novo assembly of the mt genomes of these accessions,the candidate reads were assembled into contigs with Celera Assembler 8.3rc2[25],using default parameters.The longest contigs were aligned(blast.ncbi.nlm.nih.gov/Blast.cgi) against JF920288 to identify the start position of the mt genome.The circular genome was constructed after the overlap at the start and end of the sequence was verified.Finally,SNPs and InDels between the new and the reference (JF920288) mt sequences were identified by Basic Local Alignment Search Tool (BLAST,blast.ncbi.nlm.nih.gov/Blast.cgi)alignment and validated by sequencing of PCR products.

    The mt genomes were annotated by BLAST searches against nr/nt (blast.ncbi.nlm.nih.gov/Blast.cgi) to identify known mt protein genes,rRNA genes,and repetitive sequences.To identify tRNA genes,tRNAscan-SE (lowelab.ucsc.edu/tRNAscan-SE/) was used.OGDraw 1.3.1 [26] was used to draw circular mt genome maps.

    2.4.Phylogenetic analysis of mt genomes of Brassicaceae

    Twenty-one Brassica mt genome sequences were retrieved from NCBI (www.ncbi.nlm.nih.gov/) and used for clustering with the three sequences assembled above.Each mt genome sequence was simulated by the ART software [27] into 30-fold paired-end sequences (Illumina,San Diego,CA,USA) with an library of 200 bp and reads length of 150 bp.BWA 0.7.16[28]was then used to align the simulated reads against JF920288.SNPs and InDels between the sequences were identified by GATK [29].The identified variant sites were extracted,concatenated,and aligned with ClustalW in MEGA 7.0 [30],The maximum likelihood method was used to construct the phylogenetic tree,with 1000 bootstraps.The phylogenetic tree was drawn with EvolView(www.evolgenius.info/evolview).

    2.5.PCR validation of mt genome variants in B.Juncea

    To validate mt genome variants,the primers sequences of MSS markers MT.CNV and MT.SNP were redesigned as described previously [23] (Table S5).The PCR reactions contained 10 μL 2× Fast LongTaq PCR PreMix (Innovagene,Changsha,China),100 ng DNA template,and 0.4 μL forward and reverse primers (10 μmol L-1),and were made to 20 μL with sterilized water.The PCR protocol was as follows:94°C for 3 min;34 cycles of 94°C for 30 s,annealing for 30 s with the annealing temperature shown in Table S5,72°C for 30 s;and a final extension at 72°C for 5 min.For detecting MT.SNP markers,PCR amplicon could be digested by the endonuclease EarI when the nucleotide is C at position no.79,573 according to JF920288,whereas it could not be digested when the nucleotide C had undergone transversion to A.All PCR products,whether or not digested,were separated by electrophoresis on 2.0% agarose gels.

    3.Results

    3.1.The mt genomes of Brassica juncea

    The read N50s for the three assembled accessions Datoucai,Sichuan Yellow,and CR 2493 were 16.2,13.6,and 16.0 kb,respectively (Table S4).Their final assembled mt genomes were respectively 219,775 (GenBank ID:MZ671991),219,806 (MZ671990),and 219,775 bp(MZ671992)in length(Table 1).Like the reference(JF920288)[6],these genomes all harbored 55 genes,including 34 protein-coding genes,3 rRNA genes,and 18 tRNA genes.The mt genome of B.juncea Datoucai is shown in Fig.S1.

    Table 1 Size of mt genomes in Brassica juncea.

    3.2.Phylogenetics of the mt genomes in Brassicaceae

    A total of 2710 SNPs and 1371 InDels were detected in 24 Brassica mt genome sequences.These variant sites were used to construct a phylogenetic tree with Arabidopsis thaliana as an outgroup.The mt genomes of Brassicaceae were divided into clades A,B,C,and Bna.All the mt genomes of B.rapa and B.juncea and three mt genomes of pol-like B.napus were clustered in clade A,while clade B included the mt genomes of B.nigra,B.carinata,and Sinapis arvensis.Four B.oleracea mt genomes constituted clade C.Two nap-like B.napus mt genomes formed clade Bna (Fig.1).These results showed that there is divergence among the mt genomes of six Brassica species,and indicate that pol-like B.napus and nap-like B.napus have different cytoplasmic origins.

    Fig.1.Phylogenetic tree of Brassicaceae mt genomes.The purple circle size represents the number of 31-bp repeat sequences.The red square indicates that the nucleotide is A,whereas the green and blue squares represent C and T,respectively.The species and serial numbers of the mt genomes used for phylogenetic analysis are Arabidopsis thaliana (NC_001284), Sinapis arvensis(KM851044), Brassica rapa (JF920285,AP017996,AP017997), B.nigra (AP012989,KP030753), B.oleracea (AP012988,KU831325,JF920286,KJ820683), B.juncea(MT675103,KF736093,MZ671990,MZ671991,MZ671992,JF920288,KJ461445),B.napus (FR715249,KM454975,KM454974,AP006444,KP161618),and B.carinata(JF920287)).

    3.3.Variation in Brassica juncea mt genomes

    One copy-number variation (CNV),four SNPs,and ten InDels were identified among the three new mt genome sequences and the reference JF920288 in B.juncea (Fig.2a;Table S6).All these variant sites were validated by PCR amplification.However,only four variant sites were found among the three new B.juncea mt genome sequences.Compared to Datoucai,SY had a transversion(T →G) at nt 40,702 and two 31-bp repeat sequences between nts 65,564 and 65,596,while CR 2493 had two transversions,G/T at nt 43,641 and C/A at nt 79,573.Sequencing of the PCR amplicons from 30 B.juncea accessions showed that the polymorphic nucleotide G at nt 40,702 kept together with the 31-bp repeats between nts 65,564 and 65,596 (Fig.2b;Table S7),but the variable nucleotide T at nt 43,641 was found only in CR 2493.Accordingly,only MT.CNV (nts 65,564–65,596) and MT.SNP (nt 79,573) were used to develop MSS markers.

    A total of 620 Brassica accessions(Tables S1,S2)were identified by genomic-specific markers [22].Among them,558 accessions belong to the species B.juncea.Three types of mt genomes (mitotypes,MT) in these B.juncea accessions were distinguished with the MSS markers MT.CNV and MT.SNP (Table S5):MT1 (one 31-bp repeat,nucleotide C),MT2 (two 31-bp repeats,nucleotide C),and MT3 (one 31-bp repeat,nucleotide A) (Fig.2b).MT1,MT2,and MT3 accounted for 16.3% (91/558),39.6% (221/558),and 44.1% (246/558) (Table S1),respectively.Among the remaining 62 accessions,51 B.napus and 5 B.rapa accessions were distinguished by these MSS markers (Table S2),as shown by the differences in the mt genome sequences of these species (Fig.1).

    3.4.Distribution of mitotypes among subspecies of Brassica juncea

    All 29 root mustards carried only MT1,whereas all 13 stem mustards and 96% (102/106) of leaf mustards carried MT3.Four hundred ten seed mustards carried all three mitotypes,with the three mitotypes accounting for 14.1%,53.9%,and 31.9%,respectively (Fig.3).Seed mustards from different geographic regions carried different mitotypes.Seed mustards from northwest China carried MT2,while those from South Asia carried MT3.The latitude 34°N appeared to be a geographical dividing line distinguishing the mitotypes of 492 B.juncea accessions with known geographical origins (Fig.4;Table S1).MT1 and MT2 occurred more frequently in the north,while MT3 predominated in the south.

    3.5.Utility of MSS markers for breeding and seed production of Brassica juncea

    The F1and F2progenies from the reciprocal crosses between Sichuan Yellow (MT2) and Huayejie (MT3) displayed the same mitotype as their female parent (Fig.5a).When 13 mixed seed samples of both parents were mitotyped to detect the sensitivity of the MSS markers,the markers MT.CNV and MT.SNP detected at least 5% of seed contamination and could detect contamination in a wide dynamic range of mixed proportion (5%–95%) (Fig.5b).

    4.Discussion

    4.1.MT1 is the primitive mitotype of Brassica juncea

    The clustering of the mt genomes of all B.juncea subspecies with those of B.rapa confirmed that the cytoplasm of B.juncea was directly inherited from the diploid progenitor species B.rapa.We confirmed that B.rapa and B.juncea showed intraspecific divergence in mt genomes[10]and found that MT3,though common to many B.juncea accessions (Tables S1,S2;Fig.1),was present in B.rapa only in the subspecies Nipposinica Mizuna,a unique vegetable cultivated in Kyoto since the 18th and early 19th centuries [32].Like potherb mustard (B.juncea var.multiceps),which dates back to the 16th century [33],Mizuna has deeply lobed,narrow leaves,high tillering ability,and small seeds.Contrary to Hatono et al.[10],we propose that the mt genome of Mizuna was introgressed from mustard.MT1 of B.rapa is phylogenetically the closest to that of B.juncea and thus can be considered the primitive mitotype of B.juncea.

    4.2.Brassica juncea spread via three routes

    Fig.2.Variation in Brassica juncea mt genomes.(a)The positions of fifteen variants identified among three new mt genome sequences and the reference JF920288 of B.juncea.The orange and blue dotted lines represent the variant sites used for genotyping and not used for genotyping,respectively.(b)The variation and genotype of four mt genomes.Red and green lettering indicate respectively the CNV between nts 65,564 and 65,596 and the single-nucleotide variation at nt 79,573.MT1,mitotype 1;MT2,mitotype 2;MT3,mitotype 3.

    Fig.3.Proportions of mitotypes in various subspecies of Brassica juncea. N,root mustard;J,seed mustard;I,leaf mustard;T,stem mustard;MT1,mitotype 1;MT2,mitotype 2;MT3,mitotype 3.

    The mt genome evolved from MT1 to MT2 and MT3 via respectively a repeat insertion and a base transversion in B.juncea.B.juncea accessions from northern China,Central Asia,and Europe carried mainly MT1 and MT2,while those from Southern China and South Asia carried MT3 (Fig.4).We propose that B.juncea spread via several routes(Fig.6).The B.juncea accessions carrying MT1 spread eastward into East Asia.Those carrying MT2 spread into Central Asia and northwest China along the northern route suggested by Chen et al.[34].This route partially overlaps with the migration route of MT1.Accessions carrying MT3 spread into South Asia and further southwestern China along the southern route.MT1 and MT2 from northern China and MT3 from southwest China were introduced into the Yangtze River basin,where all three mitotypes of B.juncea are located and new forms of B.juncea evolved.

    4.3.A new form of oil mustard evolved from the hybridization between two gene pools

    Fig.4.Geographical distribution of Brassica juncea mitotypes.The green circle,orange circle,and red triangle represent MT1,MT2,and MT3,respectively.**,significant difference at P <0.01 between MT1,MT2 and MT3.MT1,mitotype 1;MT2,mitotype 2;MT3,mitotype 3.The world map was downloaded at the website http://bzdt.ch.mnr.gov.cn,and the map content approval number is GS(2016)1666.

    Fig.5.Electrophoregrams of PCR products amplified from mitotype-specific sequence markers in Brassica juncea.(a) Identification of cytoplasmic donor parents of hybrid offspring.(b)Identification of seed mixtures.M,DNA molecular weight ladder;D,a direct cross;R,the reciprocal cross.Lanes 1–2,P1(Sichuan Yellow);Lanes 3–4,F1(P1×P2);Lanes 5–6,F2(P1×P2);Lanes 7–8,P2(Huayejie);Lanes 9–10,F1(P2×P1);Lanes 11–12,F2(P2×P1);Lanes 13–25,100%,99%,95%,90%,80%,70%,50%,30%,20%,10%,5%,1%,and 0% of Sichuan Yellow seed,respectively.

    Fig.6.Evolution and migration of Brassica juncea mt genomes.

    Taxonomic[35],biochemical[36],and DNA marker[34]studies have shown that the seed mustards fall into two groups:the India-Pakistan and the China-Eastern Europe group.The India-Pakistan group typically has brown seed,is long day-insensitive,and carries the MT3 mitotype,while the China-Eastern Europe group is characterized by both yellow and brown seed,long-day sensitivity,and the MT2 mitotype.Oilseed mustard in southwest China carries all three mitotypes,with MT2 prevalent (Fig.4;Table S1),and shares the yellow-seed characteristic of oilseed mustard in northern China and the early-maturity character of India-Pakistan oilseed mustard.We speculate that a new form of oilseed mustard evolved in southwest China from hybridization between China-Eastern and India-Pakistan gene pools.

    4.4.The Brassica juncea MSS markers have potential for practical application

    Based on the distribution of mitotypes among subspecies,the MSS markers developed in this study may be applied to subspecies identification of B.juncea varieties or accessions;identification of the cytoplasmic donors of hybrid progenies of B.juncea,and determination of seed purity in B.juncea.Besides,the MT.CNV marker distinguished the pol-like from the nap-like mt genome in B.napus(Table S2),indicating that this MSS marker can be used for mitotyping not only in B.juncea but in other Brassica species.

    5.Conclusions

    The mt genome of root mustard was assembled.Based on CNV and SNP variation in mt genomes,two MSS markers were developed and three mitotypes identified in B.juncea.Analysis of the geographical and subspecies distributions of these mitotypes showed that B.juncea spread via three routes and that a new form of early maturing yellow-seeded oil mustard evolved in southwestern China by inter-gene-pool hybridization.

    CRediT authorship contribution statement

    Liang You:Methodology,Validation,Investigation,Data curation,Software,Visualization,Writing– original draft.Liu Yang:Investigation,Data curation,Writing– original draft.Fangying Liu:Software.Lei Kang:Methodology,Resources.Hao Chen:Software.Bin Yang:Resources.Qian Yang:Software.Zhongsong Liu:Conceptualization,Data curation,Formal analysis,Resources,Supervision,Writing– review &editing,Funding acquisition.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by China Agriculture Research System(CARS-12) and National Natural Science Foundation of China(U20A2029).

    Appendix A.Supplementary data

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2021.10.004.

    纵有疾风起免费观看全集完整版| 久久人妻熟女aⅴ| 欧美亚洲日本最大视频资源| 日韩 亚洲 欧美在线| 热re99久久精品国产66热6| 人人妻人人澡人人爽人人夜夜| 十八禁高潮呻吟视频| 一级黄片播放器| 插阴视频在线观看视频| av卡一久久| 成人漫画全彩无遮挡| 曰老女人黄片| 国产在视频线精品| 曰老女人黄片| 亚洲精品日本国产第一区| 婷婷色av中文字幕| 久久久久国产精品人妻一区二区| 女的被弄到高潮叫床怎么办| 91精品国产九色| 久久精品夜色国产| 麻豆精品久久久久久蜜桃| 春色校园在线视频观看| 精品一区二区三区视频在线| 精品一区二区三区视频在线| 中文乱码字字幕精品一区二区三区| 色视频在线一区二区三区| 日韩人妻高清精品专区| 天堂中文最新版在线下载| 伊人久久精品亚洲午夜| 高清在线视频一区二区三区| 纯流量卡能插随身wifi吗| 久久精品国产亚洲网站| a级毛片黄视频| 亚洲,一卡二卡三卡| 777米奇影视久久| 国产亚洲av片在线观看秒播厂| 亚洲精品中文字幕在线视频| 啦啦啦啦在线视频资源| 少妇 在线观看| a 毛片基地| 欧美 亚洲 国产 日韩一| 91精品国产国语对白视频| 久久精品国产自在天天线| 国产熟女午夜一区二区三区 | 一级黄片播放器| 九色亚洲精品在线播放| 日日摸夜夜添夜夜爱| 18禁裸乳无遮挡动漫免费视频| 少妇被粗大猛烈的视频| 精品国产一区二区久久| 蜜臀久久99精品久久宅男| 交换朋友夫妻互换小说| 亚洲av欧美aⅴ国产| 高清黄色对白视频在线免费看| 不卡视频在线观看欧美| 久久毛片免费看一区二区三区| 亚洲精品久久成人aⅴ小说 | 熟妇人妻不卡中文字幕| 三上悠亚av全集在线观看| 丰满少妇做爰视频| 国产片内射在线| 最新中文字幕久久久久| 大陆偷拍与自拍| 午夜福利视频精品| 欧美日韩在线观看h| 看十八女毛片水多多多| 成人免费观看视频高清| 久久婷婷青草| 欧美一级a爱片免费观看看| 亚洲精品国产av蜜桃| 免费黄色在线免费观看| 久久99热这里只频精品6学生| 亚洲精品色激情综合| 男人操女人黄网站| 欧美精品人与动牲交sv欧美| 中国美白少妇内射xxxbb| 如何舔出高潮| 欧美亚洲日本最大视频资源| 国产69精品久久久久777片| 在现免费观看毛片| 亚洲国产精品一区三区| 我的女老师完整版在线观看| 欧美精品人与动牲交sv欧美| 亚洲成色77777| 看免费成人av毛片| 乱人伦中国视频| 视频中文字幕在线观看| 一级,二级,三级黄色视频| 国产成人精品一,二区| 18禁在线播放成人免费| 亚洲欧洲日产国产| 欧美三级亚洲精品| 国产日韩欧美亚洲二区| 人妻系列 视频| 高清欧美精品videossex| 精品国产乱码久久久久久小说| 超碰97精品在线观看| 老司机影院成人| 国产av国产精品国产| 精品国产一区二区久久| 亚洲中文av在线| 91精品国产九色| 一本—道久久a久久精品蜜桃钙片| 国产白丝娇喘喷水9色精品| 亚洲欧美色中文字幕在线| 免费日韩欧美在线观看| 国产成人免费观看mmmm| 国产成人精品久久久久久| 日本欧美视频一区| 热re99久久国产66热| 午夜福利在线观看免费完整高清在| 九九爱精品视频在线观看| 国产高清有码在线观看视频| 九九久久精品国产亚洲av麻豆| 婷婷色麻豆天堂久久| 国产欧美亚洲国产| 丰满饥渴人妻一区二区三| 欧美国产精品一级二级三级| 日韩av不卡免费在线播放| 高清在线视频一区二区三区| 春色校园在线视频观看| 精品久久久精品久久久| 视频区图区小说| 国产欧美亚洲国产| 另类亚洲欧美激情| 免费黄网站久久成人精品| 一边摸一边做爽爽视频免费| 少妇猛男粗大的猛烈进出视频| 亚洲伊人久久精品综合| 如日韩欧美国产精品一区二区三区 | 国产精品一区二区在线不卡| 亚洲一级一片aⅴ在线观看| 久久久久久伊人网av| 欧美人与性动交α欧美精品济南到 | 91久久精品国产一区二区成人| 国产成人精品福利久久| 亚洲人成网站在线播| 欧美成人精品欧美一级黄| 国产69精品久久久久777片| 久久久久精品性色| 中文字幕精品免费在线观看视频 | 2022亚洲国产成人精品| 欧美三级亚洲精品| 国产淫语在线视频| 亚洲精品一区蜜桃| 丰满饥渴人妻一区二区三| 水蜜桃什么品种好| 99久久精品国产国产毛片| 一区二区三区四区激情视频| 亚洲精品乱码久久久v下载方式| 我要看黄色一级片免费的| 精品少妇内射三级| 在线观看国产h片| 人人妻人人澡人人看| 大陆偷拍与自拍| 精品人妻熟女毛片av久久网站| 99热全是精品| 日本av手机在线免费观看| 欧美精品国产亚洲| 国产精品国产三级专区第一集| 久久狼人影院| 九九爱精品视频在线观看| av不卡在线播放| 一区二区三区四区激情视频| 亚洲av二区三区四区| 亚洲精品乱码久久久v下载方式| 久久久久视频综合| 人妻制服诱惑在线中文字幕| 大香蕉97超碰在线| 亚洲精品aⅴ在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 色5月婷婷丁香| 国产精品国产av在线观看| 国产一区二区三区综合在线观看 | av免费在线看不卡| 国产成人精品在线电影| 人人妻人人爽人人添夜夜欢视频| 精品一品国产午夜福利视频| 亚洲国产精品国产精品| 丝瓜视频免费看黄片| 久久久久久久大尺度免费视频| 欧美3d第一页| 秋霞在线观看毛片| 亚洲精品第二区| 久久久久精品性色| 久久精品夜色国产| 国产片特级美女逼逼视频| 最后的刺客免费高清国语| av卡一久久| 精品少妇久久久久久888优播| 精品久久国产蜜桃| 少妇人妻久久综合中文| 草草在线视频免费看| 日韩不卡一区二区三区视频在线| 观看av在线不卡| 国产成人精品无人区| 天堂中文最新版在线下载| 精品熟女少妇av免费看| 日韩熟女老妇一区二区性免费视频| 国产伦理片在线播放av一区| 人妻制服诱惑在线中文字幕| 人人妻人人爽人人添夜夜欢视频| 国产成人一区二区在线| .国产精品久久| 高清黄色对白视频在线免费看| 久久久亚洲精品成人影院| 在线观看免费日韩欧美大片 | 超色免费av| 自拍欧美九色日韩亚洲蝌蚪91| 美女主播在线视频| 国产精品无大码| 婷婷色麻豆天堂久久| 亚洲av欧美aⅴ国产| 免费观看在线日韩| 狠狠婷婷综合久久久久久88av| 国产白丝娇喘喷水9色精品| 午夜免费男女啪啪视频观看| 一级爰片在线观看| 成年av动漫网址| 国产精品一二三区在线看| 亚洲国产色片| 国产在视频线精品| 视频中文字幕在线观看| av国产精品久久久久影院| 久久综合国产亚洲精品| av视频免费观看在线观看| 欧美人与善性xxx| 熟女人妻精品中文字幕| 国产精品久久久久成人av| 美女内射精品一级片tv| 啦啦啦中文免费视频观看日本| 观看美女的网站| av卡一久久| 一本久久精品| 日韩免费高清中文字幕av| 国产片特级美女逼逼视频| 亚洲欧美一区二区三区国产| 在线观看www视频免费| 在线观看www视频免费| 纯流量卡能插随身wifi吗| 新久久久久国产一级毛片| 另类亚洲欧美激情| 老司机影院毛片| 日本-黄色视频高清免费观看| 婷婷色麻豆天堂久久| 永久网站在线| 日韩av在线免费看完整版不卡| 久久免费观看电影| 亚洲天堂av无毛| 3wmmmm亚洲av在线观看| 色婷婷av一区二区三区视频| 中国三级夫妇交换| 国产精品欧美亚洲77777| av在线播放精品| 免费观看的影片在线观看| 国产无遮挡羞羞视频在线观看| 久久99热6这里只有精品| 午夜影院在线不卡| 黄色一级大片看看| 夜夜看夜夜爽夜夜摸| 国产免费一级a男人的天堂| 男女啪啪激烈高潮av片| 亚洲欧洲国产日韩| 一本色道久久久久久精品综合| 免费av中文字幕在线| 91久久精品国产一区二区成人| 插阴视频在线观看视频| 婷婷色av中文字幕| 18禁观看日本| 国产免费又黄又爽又色| 另类亚洲欧美激情| 国产在线免费精品| 亚洲激情五月婷婷啪啪| 亚洲av.av天堂| 啦啦啦中文免费视频观看日本| 亚洲欧美日韩另类电影网站| 伊人久久国产一区二区| 国产伦理片在线播放av一区| 边亲边吃奶的免费视频| 最新中文字幕久久久久| 9色porny在线观看| 丝袜美足系列| 99九九在线精品视频| 九色亚洲精品在线播放| 久久精品国产亚洲av天美| 午夜视频国产福利| 成人免费观看视频高清| 成年美女黄网站色视频大全免费 | xxxhd国产人妻xxx| 精品一区二区三区视频在线| 99久久人妻综合| 在线观看人妻少妇| 自线自在国产av| 久久久久久久久久成人| 日韩熟女老妇一区二区性免费视频| 国产av精品麻豆| 亚洲精品日韩在线中文字幕| 蜜臀久久99精品久久宅男| 亚洲欧洲日产国产| 久久韩国三级中文字幕| 在线免费观看不下载黄p国产| 午夜影院在线不卡| 美女脱内裤让男人舔精品视频| 制服诱惑二区| 啦啦啦在线观看免费高清www| 在线观看美女被高潮喷水网站| 国产视频内射| 人妻 亚洲 视频| 肉色欧美久久久久久久蜜桃| 亚洲欧洲国产日韩| 亚洲婷婷狠狠爱综合网| 狠狠精品人妻久久久久久综合| 日日摸夜夜添夜夜添av毛片| 91久久精品电影网| 亚洲精品乱久久久久久| 久久午夜福利片| 中文字幕制服av| 少妇被粗大的猛进出69影院 | 免费黄色在线免费观看| 99热这里只有精品一区| 一区二区日韩欧美中文字幕 | 啦啦啦啦在线视频资源| 久久狼人影院| videosex国产| 国产有黄有色有爽视频| av播播在线观看一区| 激情五月婷婷亚洲| 毛片一级片免费看久久久久| 国产精品久久久久久精品电影小说| 午夜精品国产一区二区电影| 99久久精品一区二区三区| 黄色配什么色好看| 国产黄频视频在线观看| av免费在线看不卡| 美女福利国产在线| 久久人人爽人人片av| 日韩电影二区| 老司机影院毛片| 极品人妻少妇av视频| 丝袜美足系列| 中文字幕制服av| 五月开心婷婷网| 极品人妻少妇av视频| 啦啦啦视频在线资源免费观看| 麻豆乱淫一区二区| 99久久精品一区二区三区| 日本黄大片高清| 又粗又硬又长又爽又黄的视频| 99九九在线精品视频| 国产日韩欧美视频二区| 中国美白少妇内射xxxbb| 纵有疾风起免费观看全集完整版| 日韩制服骚丝袜av| 亚洲综合精品二区| 少妇精品久久久久久久| 成年美女黄网站色视频大全免费 | 国语对白做爰xxxⅹ性视频网站| 亚洲av不卡在线观看| 大香蕉久久网| 欧美日韩成人在线一区二区| 欧美性感艳星| 欧美 亚洲 国产 日韩一| 女的被弄到高潮叫床怎么办| 国产精品不卡视频一区二区| 日本与韩国留学比较| 成人漫画全彩无遮挡| 熟女人妻精品中文字幕| 80岁老熟妇乱子伦牲交| 两个人的视频大全免费| 五月玫瑰六月丁香| 免费观看的影片在线观看| 久久精品熟女亚洲av麻豆精品| 波野结衣二区三区在线| 视频区图区小说| 青青草视频在线视频观看| 蜜桃国产av成人99| 国产一区二区三区综合在线观看 | 大陆偷拍与自拍| 天天躁夜夜躁狠狠久久av| 最近最新中文字幕免费大全7| 日韩免费高清中文字幕av| 高清毛片免费看| 久久国产精品大桥未久av| av免费在线看不卡| 九色亚洲精品在线播放| 在线精品无人区一区二区三| 最黄视频免费看| 美女xxoo啪啪120秒动态图| 成年人午夜在线观看视频| 午夜影院在线不卡| 91久久精品电影网| 亚洲综合色网址| 人妻少妇偷人精品九色| 日韩一区二区视频免费看| 久久久亚洲精品成人影院| 国产成人精品婷婷| 三上悠亚av全集在线观看| 在线看a的网站| 久久人人爽av亚洲精品天堂| 自线自在国产av| 波野结衣二区三区在线| 在线观看三级黄色| 18禁动态无遮挡网站| 蜜臀久久99精品久久宅男| 最近手机中文字幕大全| 欧美日本中文国产一区发布| 五月玫瑰六月丁香| 91精品国产九色| 亚洲第一av免费看| 国产极品天堂在线| 日韩 亚洲 欧美在线| 亚洲av二区三区四区| 夫妻午夜视频| videos熟女内射| 亚洲欧洲国产日韩| 性色av一级| .国产精品久久| 免费av中文字幕在线| 一级爰片在线观看| 大香蕉久久成人网| 日韩亚洲欧美综合| 大陆偷拍与自拍| 日日爽夜夜爽网站| 91成人精品电影| 一区在线观看完整版| 欧美日韩av久久| 精品酒店卫生间| 色哟哟·www| 18禁动态无遮挡网站| 午夜福利在线观看免费完整高清在| 伦理电影免费视频| 国产在线一区二区三区精| 人妻夜夜爽99麻豆av| 黄色怎么调成土黄色| 国产一区有黄有色的免费视频| 18在线观看网站| 丰满少妇做爰视频| h视频一区二区三区| av福利片在线| 久久久久网色| 久久鲁丝午夜福利片| 日韩大片免费观看网站| a 毛片基地| 国产探花极品一区二区| 高清av免费在线| 欧美 日韩 精品 国产| 熟女电影av网| 一级二级三级毛片免费看| 纯流量卡能插随身wifi吗| 七月丁香在线播放| 91精品国产国语对白视频| 天天影视国产精品| 国产欧美日韩综合在线一区二区| av电影中文网址| 国产av一区二区精品久久| 亚洲精品日韩av片在线观看| 国产精品久久久久成人av| 亚洲,欧美,日韩| 少妇人妻久久综合中文| 男人爽女人下面视频在线观看| 欧美激情国产日韩精品一区| 国产精品一区www在线观看| 内地一区二区视频在线| 交换朋友夫妻互换小说| 亚洲精品av麻豆狂野| 午夜免费男女啪啪视频观看| 99热网站在线观看| 少妇人妻精品综合一区二区| 国产精品一区二区三区四区免费观看| 中国三级夫妇交换| 欧美丝袜亚洲另类| 免费观看在线日韩| 久久人人爽av亚洲精品天堂| 免费黄频网站在线观看国产| 久久久午夜欧美精品| 最后的刺客免费高清国语| 考比视频在线观看| 欧美bdsm另类| 中文乱码字字幕精品一区二区三区| 亚洲,欧美,日韩| 亚洲内射少妇av| 欧美日韩亚洲高清精品| 亚洲精品亚洲一区二区| 国产亚洲精品久久久com| 欧美人与善性xxx| 在线观看三级黄色| 18禁动态无遮挡网站| 亚洲av中文av极速乱| 精品久久久精品久久久| 亚洲性久久影院| 午夜激情久久久久久久| 欧美日韩亚洲高清精品| 国产免费一级a男人的天堂| 91在线精品国自产拍蜜月| 一级毛片aaaaaa免费看小| 久久精品国产自在天天线| 久久久久网色| 欧美激情极品国产一区二区三区 | 男女啪啪激烈高潮av片| av卡一久久| 国产精品99久久久久久久久| 日韩中文字幕视频在线看片| 另类精品久久| 制服丝袜香蕉在线| 热re99久久国产66热| 午夜福利,免费看| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久人妻| 18在线观看网站| a 毛片基地| 夜夜看夜夜爽夜夜摸| 亚洲色图综合在线观看| 免费看不卡的av| 大片电影免费在线观看免费| 中文字幕人妻熟人妻熟丝袜美| 国产精品一国产av| 午夜激情av网站| 亚洲第一区二区三区不卡| 黄色毛片三级朝国网站| 色5月婷婷丁香| 国产男女内射视频| av线在线观看网站| 一区在线观看完整版| 一边摸一边做爽爽视频免费| 国产精品一区二区在线观看99| 欧美日韩视频高清一区二区三区二| 热99久久久久精品小说推荐| 亚洲国产欧美在线一区| 嘟嘟电影网在线观看| 亚洲色图 男人天堂 中文字幕 | av免费在线看不卡| 亚洲少妇的诱惑av| 国产精品秋霞免费鲁丝片| 成年av动漫网址| 国产一区二区在线观看日韩| 丰满饥渴人妻一区二区三| 亚洲激情五月婷婷啪啪| 国产 精品1| 日本黄大片高清| 高清欧美精品videossex| 老司机影院毛片| 午夜福利视频精品| av有码第一页| 久久精品久久精品一区二区三区| 另类亚洲欧美激情| 色哟哟·www| 精品人妻在线不人妻| 久久人人爽人人爽人人片va| 久久久a久久爽久久v久久| 亚洲伊人久久精品综合| 高清毛片免费看| 亚洲怡红院男人天堂| 久久精品国产亚洲av天美| 日韩制服骚丝袜av| 日日啪夜夜爽| 日韩制服骚丝袜av| 九九爱精品视频在线观看| 观看av在线不卡| 欧美日韩亚洲高清精品| 国产精品一国产av| 建设人人有责人人尽责人人享有的| 日韩一本色道免费dvd| av女优亚洲男人天堂| 欧美精品一区二区大全| av不卡在线播放| 亚洲欧美精品自产自拍| 一本久久精品| 大陆偷拍与自拍| 亚洲精品国产av成人精品| 日本-黄色视频高清免费观看| 久久国内精品自在自线图片| 在线天堂最新版资源| 亚洲精品久久午夜乱码| 国产探花极品一区二区| 最近中文字幕高清免费大全6| 看免费成人av毛片| 久久青草综合色| 久久久久国产网址| 亚洲情色 制服丝袜| 一个人看视频在线观看www免费| 日韩强制内射视频| 一级爰片在线观看| xxx大片免费视频| 精品一品国产午夜福利视频| 国产男人的电影天堂91| 一级爰片在线观看| 日本wwww免费看| av线在线观看网站| 日日撸夜夜添| 国产高清三级在线| 99热网站在线观看| 久久午夜福利片| 天堂中文最新版在线下载| 亚洲综合精品二区| 免费观看av网站的网址| 在现免费观看毛片| 寂寞人妻少妇视频99o| 性色avwww在线观看| 伦精品一区二区三区| 校园人妻丝袜中文字幕| 久久久久国产网址| 少妇猛男粗大的猛烈进出视频| videosex国产| 夜夜骑夜夜射夜夜干| 国产熟女欧美一区二区| 欧美 亚洲 国产 日韩一| 满18在线观看网站| 国产精品嫩草影院av在线观看| 22中文网久久字幕| 99热全是精品| 亚洲精品,欧美精品| 久久99热6这里只有精品| 欧美精品一区二区免费开放| 熟妇人妻不卡中文字幕| 亚洲色图 男人天堂 中文字幕 |