• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Melaleuca quinquinervia (Cav.) S.T. Blake (Myrtales: Myrtaceae): Natural alternative for mosquito control

    2016-10-20 08:49:00MaureenLeyvaLeidysFrenchPachecoFelipeQuintanaDomingoMontadaMaydaCastexArielHernandezMardelCarmenMarquetti

    Maureen Leyva, Leidys French-Pacheco, Felipe Quintana, Domingo Montada, Mayda Castex, Ariel Hernandez, María del Carmen Marquetti

    1Institute Tropical Medicine ‘Pedro Kouri', Cuba

    2Chemical Research Center, Morelos, Mexico

    3Center for Integration and Social Welfare, Cuba

    ?

    Melaleuca quinquinervia (Cav.) S.T. Blake (Myrtales: Myrtaceae): Natural alternative for mosquito control

    Maureen Leyva1?, Leidys French-Pacheco2, Felipe Quintana3, Domingo Montada1, Mayda Castex1, Ariel Hernandez1, María del Carmen Marquetti1

    1Institute Tropical Medicine ‘Pedro Kouri', Cuba

    2Chemical Research Center, Morelos, Mexico

    3Center for Integration and Social Welfare, Cuba

    ARTICLE INFO

    Article history:

    in revised form 23 June 2016

    Accepted 19 July 2016

    Available online 20 October 2016

    Melaleuca quinquinervia

    Larvicidal activity

    Adulticidal activity

    Essential oils

    Aedes spp.

    Culex quinquefasciatus

    Objective: To evaluate an essential oil with larvicide, adulticide and growth inhibitory activity against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus mosquitoes, of medical importance. Methods: Standardized methodology by WHO was used to determine the levels of susceptibility of mosquito larvae exposed to the essential oil. To evaluate the adulticide activity with the essential oil at different doses, bottles were impregnated according to the methodology CDC. To determine the development inhibitory activity of Melaleuca quinquinervia (M. quinquinervia) oil in three mosquito species, third instar larvae were exposed to the LC50and LC90dose (calculated for each population) of M. quinquinervia oil in glass containers with a capacity of 500 mL. After 24 h exposure, the dead larvae were discarded. The mortality of larvae and pupae were recorded on a daily basis. Results: The calculated LC50indicates an order of effectiveness of preferential oil for Culex quinquefasciatus (LC50=0.002 1%), Aedes aegypti (LC50=0.004 7%) and Aedes albopictus (LC50=0.004 9%). Conclusions: The adulticide activity was achieved with impregnated bottles at 40 and 50 mg/mL with the three mosquitoes species. In larvae, a growth inhibition was detected when exposed to sublethal doses. The results indicate that M. quinquinervia is a plant with promising environmentally sustainable source for vector control.

    Document heading doi: 10.1016/j.apjtm.2016.07.034

    1. Introduction

    Culex quinquefasciatus (Cx. quinquefasciatus), Aedes albopictus(Ae. albopictus) and Aedes aegypti (Ae. aegypti) are within the entomological fauna of mosquitoes, vectors responsible for the maintenance and transmission of viruses such as West Nile[1]Dengue[2], Chikungunya[3] and Zika[4] in America region. Increasing population densities, high levels of unemployment, poverty, and lackof political will, among others, are factors that favor the circulation and maintenance of these endemic diseases in communities of developing countries[5].

    Unfortunately for many of vector-borne diseases, vaccine candidates are not available, being the chemical control the basic measure to reduce mosquito populations and thus the incidence of disease. This reduction is usually transient without a thorough understanding of ecological aspects of the species responsible for transmission: behavior, habitat preferences and susceptibility to insecticides applied, among others[6-8].

    The increased resistance to synthetic insecticides in these vectors of medical importance in Cuba was detected at laboratory level since the late 1990s[7,9]. While it is true that in periods of high infestation, insecticide application is the measure that reduces the incidence of diseases, it is also necessary to study alternativecontrol, with a comprehensive approach to delay or reduce the resistance to synthetic insecticides in field mosquito's population.

    Melaleuca quinquinervia (M. quinquinervia) (Cav.) S.T. Blacke(Myrtales: Myrtaceae) is a plant considered for vector control,because of its proven insecticidal activity, being widely distributed,having complementary utilities such as medicinal or food and be environmentally sustainable. This plant is a tree widely distributed in Asian countries and parts of America[10-12].

    After its introduction in Cuba, this plant has become an invasive specie in the wetlands of the Ciénaga of Zapata, where has caused losses to the botanical biodiversity as a result of its high reproductive potential and its ability to withstand long dry periods[13].

    Despite its adverse effects on the ecosystem, its essential oil and various extracts show a potential as antiprotozoal[14], antimalarial[15],bactericide, fungicide[16] and insect repellent[17].

    Because of the importance that requires the search for natural alternatives for vector control, the objective was to determine the insecticidal activity of essential oil of (M. quinquinervia) on the vector species Ae. albopictus, Cx. quinquefasciatus and Ae. aegypti.

    2. Materials and methods

    2.1. Mosquito populations in the study

    Population Fraga 2012: Ae. albopictus specie collected at larval stage in Reparto Juan de Dios Fraga in the municipality of La Lisa,Havana Cuba in 2012.

    Population Regla 2013: Cx. quinquefasciatus specie collected in larval and pupal stage in the municipality Regla, Havana, Cuba, in 2013.

    Population Rockefeller: Ae. aegypti, laboratory reference strain susceptible to insecticides, supplied by the Center for Disease Control and Prevention (CDC), San Juan, Puerto Rico, 1996.

    Population Marianao 2013: Ae. aegypti specie strain collected in larval and pupal stages in 2013, during an intensive phase of vector control in the municipality of Marianao, Havana, Cuba.

    The mosquito colonies were stabilized in the department insectarium Vector Control Institute of Tropical Medicine ‘Pedro Kouri' Cuba, following the methodology of the Manual Technical Indications Insectarium[18] available on http://blue/bvs1/monografias/ manual.pdf.

    2.2. Bioassays to determine larvicidal activity of essential oils

    Standardized methodology by WHO was used to determine the levels of susceptibility of mosquito larvae exposed to the essential oil[19].

    The stock solutions were prepared in absolute ethanol. One ml of each concentration was added in a volume of 99 mL of water. A total of 125 larvae instar third or early fourth instar of Ae. aegypti, Ae. albopictus and Cx. quinquefasciatus, for each concentration were added. Each concentration had a control. Four replicates were done. Mortality was determined after 24 h and lethal concentrations (LC50and LC90) were calculated using the Probit test implemented in SPSS(version 11 for Windows).

    2.3. Bioassays to determine the development inhibitory activities

    Third instar larvae of three mosquito species were exposed to the LC50and LC90dose (calculated for each population) of M. quinquinervia oil in glass containers with a capacity of 500 mL. For each species, 150 larvae in 500 mL of water were used as control. After 24 h of exposure, the dead larvae were discarded and the survivors were added fishmeal as food. They remained in the water exposure until they reached the pupa state.

    The mortality of larvae and pupae were recorded on a daily basis. The surviving pupae were separated by sex in separate vials until adult emergence. For the analysis of data normality the Kolmogorov-Smirnov tests and Shapiro-Wilk were used. Multifactor ANOVA was applied to the analysis of daily mortality of each state for all species(Statistica 7). Tukey post hoc test was used to identify differences between dose and immature stages.

    2.4. Bioassays to determine adulticidal activity by impregnating bottles at different concentrations

    To evaluate the adulticide activity with the essential oil at different doses, bottles were impregnated according to the methodology proposed[20]. Glass bottles of 250 mL capacity with frosted glass cover were used. The bottles were impregnated with 1 mL of each concentration of the oil, rotating them in every way until the acetone used as a solvent was evaporated. The bottles were covered with aluminum foil and kept uncovered overnight. Subsequently, they were capped until used. For each evaluated concentration, one control and four replicates were used. Fifteen females aged three days without blood feeding of each species were exposed. Every 5 min for 1 h mosquitoes knocked down were recorded.

    Data of the doses that produced mosquito knockdown were analyzed with Probit test implemented in SPSS (version 11 for Windows).

    3. Results

    The M. quinquinervia essential oil showed larvicidal activity at the concentrations evaluated in three mosquito species (Table 1). The oil was more effective in Cx. quinquefascitus followed by Ae. aegypti and Ae. albopictus according to the LC50values calculated.

    In assessing the adulticide activity, in the Rockefeller population a 100% knockdown after 30 min was obtained when using the dose of40 mg/mL. In populations of Marianao 2013, Regla 2013 and Fraga 2012, an increase in dose to 50 mg/mL was required to achieve the knockdown of 100% of the population in 30 minutes. The response of the three field populations was homogeneous in front of this oil despite the slight increase in the dose to achieve its toxic effect(Figure1).

    Table 1Larvicidal activity of M. quinquinervia in populations of Ae. aegypti, Ae. albopictus and Cx. quinquefasciatus used in the study.

    Table 2Knockdown times obtained in populations of Ae. aegypti, Ae. albopictus and Cx. quinquefasciatus used in the study, by impregnating bottles with M. quinquinervia oil.

    Figure 1. Knockdown percentage obtained during one hour of exposure to different concentrations of M. quinquinervia oil in Ae. aegypti, Cx. quinquefasciatus and Ae. albopictus.

    In Table 2 are shown knockdown time (TKN) calculated doses of 40 mg/mL for Rockefeller and 50 mg/mL in the rest of the evaluated populations. The times obtained (TKN50) suggest that the oil acts relatively quickly after exposure in any of the three species tested.

    With respect to the inhibitory activity of development, significant difference between individuals exposed to each lethal concentration and the control (F=4.829 7, P=0.008 03) was found, which makes evident the toxic effect of M. quinquinervia oil in mosquito larvae of the three species studied.

    The analysis of mortality among immature stages showed significant difference between larvae and pupae, and between pupae and adults in all the mosquito species (F=6.853 0, P=0.000 02). The greatest lethal effect occurred in Ae. albopictus, followed by Cx. quinquefasciatus and Ae. aegypti (Figure 2). Only 4% of the surviving pupae of three mosquito species reached the adult stage. Male mosquitoes emerged exceeded 3 times the number of females. Total N of individuals emerged was insufficient to study the effect of oil M. quinquinervia on fertility.

    Figure 2. Mortality obtained by immature stages of mosquitoes Ae. albopictus, Cx. quinquefasciatus and Ae. aegypti species CL50and CL90exposed to doses M. quinquinervia oil.

    Graphic obtained by a Multifactor Anova (F=2.089 3, P=0.0795 4). Error bars represent confidence intervals.

    4. Discussion

    It is understood as environmental sustainability: the exploitation of a biological system below its limit renewal without affecting adjacent diversity and ecosystem productivity[21]. A plant can be regarded as candidate for vector control, if in addition to its proven insecticidal activity, presents environmentally sustainable qualities. M. quinquinervia stands out among the 100 most harmful to the ecosystem and of greatest concern to botanical species in Cuba. It invades about 40 000 hectares in the swamps of Ciénaga of Zapata and Ciénaga of Majaguillar both in the province of Matanzas[22]. A form of exploitation of this renewable resource is to obtain its essential oil, which decrease the damage generated by their excessivegrowth[13].

    The intensive search for alternative methods of vector controlling,and in this case, of plants with insecticidal activity have been focused mostly in plants where the essential oils and extracts have medicinal bioactivity or condiments utility[23-25]. The pesticide bioactivity depends largely on the botanical specie, extraction method, insects used and their susceptibility to synthetic insecticides[26,27].

    WHO has not established diagnostic dose for the determination of the larvicidal activity of natural products. Authors like Komalamisra et al., 2005 suggest that a natural product with CL50≤50 mg/ L is active and if the LC50is between 50 mg/L and 100 mg/L is moderately active[28]. Moreover Ravi-Kiran et al., 2006[29] suggest that compounds with a CL50≤100 mg/L present a significant larvicidal activity. In all our studies we have LC50values below 50 mg/L, so the M. quinquinervia oil is active and has significant larvicidal activity for the species Culex and Aedes spp.

    In numerous studies, insecticide action of plants is supported besides the bioassays, by enzymatic studies in the insects and chromatographic analysis that supporting the majority compound of the oils[30-33]. Authors recommended that because the mechanisms of action of secondary metabolites in many plants are different(inhibition of acetylcholinesterase, interrupting channels Na and K, blocking octopamine receptors) and similar to those used by synthetic insecticides in insects[34,35].

    M. quinquenervia produces different chemotypes, mainly based on the proportion of monoterpenes and sesquiterpenes 1.8 cineol and viridiflorol[10-12]. In the chemical characterization of the essential oil used in our studies, it was determined monoterpenes containing 1.8 cineol, α-pinene, β-pinene, α-terpineol, limonene and hydroxylated sesquiterpenoid viridiflorol, as majority compounds, all in a superior composition to 1%[36]. Several authors attribute this presence of metabolites in the essential oil of M. quinquinervia, to the insecticide action found in oils from other plants[23,37].

    There is no consensus on whether to attribute the insecticidal activity to the major components of oil, or one in particular. Certain metabolites isolated, produce an agonist effect when evaluated on their own, while others show a synergistic effect when combined with other components of oil[37,38].

    In studies by Giatropoulus et al. 2012[39] with a strain of Ae. albopictus, the α and β- pinene were higher when they were CL50calculated for isolates and compared with CL50three citrus oils which were isolated. This result demonstrated the synergistic role of components within an essence. Kim et al,. 2008[40] found significant larvicide and adulticide activity of 1.8 cineol, compared with Culex pipiens, and Zahram et al 2011 at doses of 500 mg/mL detected larvicidal activity against this species and had not yet elapsed effective adulticide activity after 48 h of exposure[41]. Noleto-Diaz et al.(2015) although it doesn't evaluate isolated metabolites, of the five plants used in their study, Eugenia piauhiensis presents the lower CL50value and the monoterpenes 1.8 cineol, α-pinene, β -pinene, α-terpineol and viridiflorol were the majority compounds in its essence[42].

    In any case, due to the criteria variability of specialists in the field,complementary studies with isolated metabolites should be made. However, the results obtained show the insecticidal activity of metabolites present in the oil.

    Bio-responses to phytochemicals may differ between larvae and adults because the adult insect is physiologically stronger, what could justify the increase in adults CL50evaluated. There are papers in which the method of the impregnated bottles (CDC methodology)is used to evaluate the adulticide activity of plant oils. Articles that evaluate this type of activity are made by impregnating papers with solutions of essential oils or isolated metabolites but most without a standardized methodology[43,44]. The methodology of the bottles is a cheap, simple and easily applicable method under laboratory conditions and terrain.

    In terms of adulticide activity of essential oils against mosquitoes,there are very few articles that allow comparison of results. In the Rockefeller population, with a dose of 40 mg/mL, the 100% knockdown of exposed females was obtained. The dose used in our work for the rest of the population (50 mg/mL =5%) is in the range of those used in other studies, e.g. experiments conducted with aereosoles of Melaleuca cajeputi[45]. The slight dose increase may be related to the fact that three of the populations studied were collected in a period of high pesticide application and were resistant to some groups of insecticides[46]. Therefore, they are likely to have increased levels of detoxifying enzymes and antioxidant mechanisms, which could influence the increase in dose. This phenomenon of crossed response has been already described in many papers[47]. The possible implication of the mechanisms of metabolic action on those made up with the essential oil of M. quinquinervia should be studied with more detail, given the possibility of using this promising candidate for vector control. A variety of formulations with this oil could be used for controlling of field populations who do not show any specific type of enzyme activity, as other authors suggest[47].

    With respect to the inhibitory activity of development, oil M. quinquinervia has a toxic effect on larvae exposed to cumulative sublethal doses, as reflected in the high mortality found in this immature stage, in dead or deformed pupae observed and inhibition of emergence of male were adhered to exuvias.

    These results may be due to the disruption of the hormonal balance caused by some secondary metabolites in insects exposed to sublethal doses[48,49].

    Molecular studies should be performed on possible sites of action and target organs. Most of the plants, which are inferred to have insecticidal activity against mosquitoes, have at least larvicidal activity, but few studies cover a wide bioactivity (larvicide,adulticide, inhibiting development and repellent) on the same plant. Our results allow recommending the use of M. quinquinervia oil for vector mosquito control. In this way it manages to give utility to aninvasive plant of wetlands in the western part of our country and propose an alternative to control mosquito populations, contributing to an environmentally sustainable pest management.

    Conflict of interest statement

    The authors declare that they have no conflict interest.

    Acknowledgments

    This study was supported by program ‘Determinants health risks and disease prevention in vulnerable groups' of Ministry of Science,Technology and Environment. Proyect 1601078 ‘Insecticidal activity of essential oils as a natural alternative for mosquito control' of the Institute of Tropical Medicine ‘Pedro Kouri'.

    Reference

    [1] Diaz LA, Qualia A, Flores FS, Contiagiani MS. Virus West Nile en Argentina: un agente infeccioso emergente que plantea nuevos desafíos. Hornero 2011; 26(1): 5-28.

    [2] Shepard DS, Coudeville L, Halasa YA, Zambrano B, Dayan GH. Economic impact of dengue illness in the Americas. Am J Trop Med Hyg 2011; 84: 200-207.

    [3] Corrales E, Troyo A, Calderón O. Chikunguya: un virus que nos acecha. Act Méd Costarricense 2015; 57(1): 7-15.

    [4] Fauci AS, Morens DM. Zika virus in the Americas-yet another arbovirus threat. N Eng J Med 2016; 37(4): 601-604

    [5] Kourí G, Pelegrino JL, Munster BM, Guzmán GM. Sociedad, economía,inequidades y dengue. Rev Cubana Med Trop 2007; 59(3). Aviliable from: http://scielo.sld.cu/pdf/mtr/v59n3/mtr01307.pdf.

    [6] Marquetti MC, Leyva M, Bisset JA, García A. Recipientes asociados a la infestación por Aedes aegypti en el municipio La Lisa. Rev Cubana Med Trop 2009; 61(3): 232-238.

    [7] Bisset JA, Rodríguez MM, Moya M, Ricardo Y, Montada D, Gato R, et al. Efectividad de formulaciones de insecticidas para el control de adultos de Aedes aegypti en La Habana, Cuba. Rev Cubana Med Trop 2011; 63(2): 166-170.

    [8] Bisset JA, Rodríguez MM, Hernández H, Valdéz V, Fuentes I, Hurtado D. Resistencia a insecticidas y sus mecanismos bioquímicos en Aedes aegypti del municipio Boyeros en los a?os 2010 y 2012. Rev Cubana Med Trop 2016; 68(1). Aviliable from: http://www.revmedtropical.sld.cu/index.php/ medtropical/article/view/129/113

    [9] Rodríguez MM, Bisset JA, Ricardo Y, Pérez O, Montada D, Figueredo D et al. Resistencia a insecticidas organofosforados en Aedes aegypti(Diptera: Culicidae) de Santiago de Cuba, 1997-2009. Rev Cubana Med Trop 2010; 62(3): 217-223.

    [10] Trilles BL, Bombarda I, Bouraima-Madjebi S, Raharivelomanana P,Bianchi JP, Gaydou EM. Ocurrence of various chemotypes in naiouli(Melaleuca quinquinervia (Cav) S.T. Blake) essential oil from New Caledonia. Flav Frag J 2006; 21: 677-682.

    [11] Wheeler GS, Pratt PD, Giblin-Davis RM, Ordung KM. Intraespecific variation of Melaleuca quinquinervia leaf oils in its naturalized range in Florida, the Caribbean and Hawaii. Biochem Systc Ecology 2007; 35: 489-500.

    [12] Silva CJ. Morfoanatomia foliar e composi??o química dos oleos essências de sete espécies de Melaleuca L. (Myrtacea) cultivadas em Brasil. [master's thesis]. Universidad Federal de Vi?osa, Brasil; 2007.

    [13] Quintana F, Navarro P, Gonzáles I. Melaleuca quinquinervia Cav(cayeput): Utilización económica y control. Manual técnico informativo. Grupo Agricultura y Naturaleza de la Organización e Integración para el Bienestar Social. 2014; Available from: www.oibs.cu.

    [14] Rodríguez-Pérez M, Martínez JM, Rivero LR, álvarez HMH, Valdez AFC, Rodríguez DA, et al. Evaluación de la actividad antimalárica de algunas plantas utilizadas en la medicina tradicional cubana. Rev Cienc Farm Básica Aplic 2006; 27(3): 197-205.

    [15] Fernández-Calienes A, Mendiola J, Scull R, Vermeersch M, Cos P,Maes L. In vitro anti-microbial activity of the Cuban medicinal plants Simarouba glauca DC, Melaleuca leucadendron L. and Artemisia absinthium L. Mem Inst Oswaldo Cruz 2008; 103(6): 615-618.

    [16] Guevara- Pérez E, Cabrera- Dorta T, Pe?a- Ruiz T, Fernández- Rodríguez CJ, Quintana-Guevara I, Fernández-Rodríguez E. Efecto antimicrobiano de hojas de Melaleuca leucadendron L, que crece en la Ciénaga de Zapata. Rev Méd Elect 2010; 32(4). Aviliable from: http://scielo.sld.cu/ pdf/rme/v32n4/spu04410.pdf

    [17] Leyva M, Castex M, Montada D, Quintana D, Lezcano D, Marquetti MC, et al. Actividad repelente de formulaciones del aceite esencial de Melaleuca quinquenervia (Cav.) S.T. Blake (Myrtales: Myrtaceae) en mosquitos. Anales de Biología 2012; 34: 47-56.

    [18] Pérez O, Bisset JA, Leyva M, Rodríguez J, Fuentes O, García I, et al. Manual de Indicaciones Técnicas para Insectarios. La Habana: Editorial Ciencias Médicas; 2004, p. 16-53.

    [19] WHO. Instructions for determining the susceptibility or resistance of mosquito larvae Aedes to insecticides. Geneva: WHO/VBC/81.807; 1981. p. 1-6.

    [20] CDC. Guideline for evaluating insecticide resistance in vectors using the CDC bottle bioassay. 1st edition. Centers for Disease Control and Prevention; 2010. Aviliable from: http://www.cdc.gov/malaria.

    [21] Brundtland Report. 20 March 1987. ONU. Aviliable from: http://www. cfr.org/economic-development/report-world-commission-environmentdevelopment-our-common-future-brundtland-report/p26349.

    [22] Oviedo R, Gonzalez L. Lista nacional de las plantas Invasoras y potencialmente invasoras en la República de Cuba. Bissea 2015; 9(2): 90

    [23] Noleto Diaz C, Fernandez D. Essential oils and their compounds as Aedes aegypti L. (Díptera Culicidae) larvicides: review. Parasitol Res 2013. doi. 10.1007/s00436-013-3687-6.

    [24] George D, Finn R, Graham K, Sparango O. Present and future potentialof plant-derived products to control arthropods of veterinary and medical significance. Parasit Vectors 2014; 7: 28

    [25] Granados-Echegoyen C, Pérez-Pacheco R, Alonso-Hernández N,Vásquez-López A, Lagunez-Rivera L, Rojas-Olivos A. Chemical characterization and mosquito larvicidal activity of essential oil from leaves of Persea americana Mill (Lauraceae) against Culex quinquefasciatus (Say). Asian Pac J Trop Dis 2015; 5(6): 463-467.

    [26] Innocent E, Hassanali ,Kisinza W, Mutalemwa P, Magesa S, Kayombo. E Anti-mosquito plants as an alternative or incremental method for malaria vector control among rural communities of Bagamoyo District, Tanzania. J Ethnob Ethnom 2014; 10: 56.

    [27] Perumalsamy H, Jin JM, Kim J, Kadarkarai M, Young-Joon A. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasit Vectors 2015; 8: 237.

    [28] Komalamisra N, Trongtokit Y, Rongsriyam Y, Apiwathnarson C. Screening for larvicidal activity in some Thai plants against four mosquitoes vector species. S Asian J Trop Med Public Health 2005;36(2): 1412-1422.

    [29] Ravi-Kiran S, Bhavani P, Sita -Devi BR, Rajeswara R, Janardahan K. Composition and larvicidal activity of leaves an steam essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensis. Biores Techn 2006; 97(18): 2481-2484.

    [30] Elango G, Rahuman A, Kamaraj C, Bagavan A, Zahir A. Adult emergence inhibition and adulticidal activity of leaf crude extracts against Japanese encephalitis vector, Culex quinquefascitus. J King Saud Univ Sci 2012; 24: 73-80.

    [31] Dua V, Kumar A, Pandey A, Kumar S. Insecticidal and genotoxic activity of Psoralea corylifolia Linn (Fabaceae) against Culex quinquefasciatus say 1823. Parasit Vectors 2013; 6: 30.

    [32] Smith S, Zambrano D, Mendez-Sanchez S, Rodriguez-Sanabria F,Stashenko E, Duque JE. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol Res 2014; 113: 2647-2654. doi: 10.10007/s00436-014-3917-6.

    [33] Gemeda N, Mokonnene W, Lemma H, Tadele A, Urga K, Addis G, et al. Insecticidal activity of some traditionally used Ethiopian medicinal plants against sheep ked Melophags ovinus. J Parasitol Res 2014; 2014: 978537. doi: 10.1155/2014/978537.

    [34] Rattan RS. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 2010; 29: 913-920.

    [35] El-Wakeil N. Botanical pesticides and their mode de action. Gesunde Pflanzen 2013; 65: 125-149.

    [36] Morales Rico CL, Marrero-Delange D, González-Canavaciolo VL,Quintana F, Camejo I. Composición química del aceite esencial de las partes aéreas de Melaleuca quinquinervia. Rev CENIC Cienc Quím 2012;43: 1-2.

    [37] Koutsaviti K, Giatropoulus A, Piatrokili D, Paachristos D, Michaelakis A,Tzakou O. Greek Pinus essential oils: larvicidal activity and repellency against Aedes albopictus (Diptera : Culicidae). Parasitol Res 2014; 114(2): 583-592. doi: 10.1007/s00436-014-4220-2

    [38] Pavela R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol Res 2015; 14: 3835-3853.

    [39] Giatropoulus A, Papachristos D, Kimbaris A, Koliopoulus G, Polissiou M, Emmanouel N, et al. Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their componentes enantiomeric distribution. Parasitol Res 2012; 111(6): 2253-2263. doi: 10.1007/s00436-012-3074-8.

    [40] Kim NJ, Byun SG, Cho JE, Chung K, Anh YJ. Larvicidal activity of essential oils extracted from commonly used herbs in Lebanon against the seaside mosquito Ochlerotatus caspius. Bio Technnol 2008; 99: 763-768.

    [41] Zaharan HEDM, Abdelgaleil S. Insecticidal and development inhibitory properties of monoterpenes on Culex pipiens (Diptera: Culicidae). J Asia Pac Entomol 2011; 14: 46-51.

    [42] Noleto C, Lima LP, da Franca KA, Aranha MC, Dos Santos C, Medocca de Amaral FM, et al. Chemical Composition and larvicidal activity of essential oils extracted from brazilian legal amazon plants against Aedes aegypti L. (Diptera: Culicidae). Evid-Bas Complem Alternative Med 2015;2015: 490765. doi: 10.1155/2015/490765.

    [43] Da Silva AC, Lagos K, Maia FC, Vilmar L, Tadei W, Pohlit AM. Adulticidal activity of dillapiol and semisynthetic derivatives of dillapiol against Aedes aegypti (L). J Mosquito Res 2012; 2(1): 1-7.

    [44] Cárdenas E, Riveros I, Lugo L. Efecto insecticida de cuatro aceites esenciales sobre adultos de Aedes aegypti y Anopheles albimanus en condiciones experimentales. Entomotrópica 2013; 28(1): 1-10.

    [45] Bakar A , Sulaiman S , Mat Ali Omar. Evaluation of Melaleuca cajuputi(Family: Myrtaceae) essential oil in aerosol spray cans against dengue vectors in low cost Housing Flats. J Arthropod Borne Dis 2012; 6(1): 28-35.

    [46] Leyva M, French L, Marquetti MC, Montada D, Santos D, Hernandez A, et al. Insecticidal activity of modified turpentine oil in Culex quinquefasciatus and Aedes albopictus (Diptera: Culicidae). Rev Cubana Med Trop 2015; 67(3). Available from: http://scielo.sld.cu/scielo. php?script=sci_arttext&pid=S0375-07602015000300004&lng=en&nrm =iso&tlng=es.

    [47] Cordeiro A, Napole?o T , Viana E, de Lima N , Andrade L, Fontes de Oliveira CM, et al. Effect of Moringa oleifera lectins on survival and enzyme activities of Aedes aegypti larvae susceptible and resistant to organophosphate. Parasitol Res 2013; 113(1): 175-184. doi 10.1007/ s00436-013-3640-8.

    [48] Salazar J, Torres P, Serrato B, Dominguez M, Alarcón J, Céspedes C. Insect Growth Regulator (IGR) effects of Eucalyptus citriodora Hook(Myrtaceae). Bol Lat Caribe Plant Med Arom 2015; 14(5): 403-422.

    [49] Céspedes C, Molina SC, Mu?oz E, Lamilla C, Alarcon J, Palacios SM,et al. The insecticidal, molting disruption and insect growth inhibitory activity of extracts from Condalia microphylla Cav. (Rhamnaceae). Ind Crops and Prod 2013; 42: 78-86.

    22 May 2016

    ?First and corresponding author: Maureen Leyva, Institute Tropical Medicine ‘Pedro Kouri' Autopista Novia del Mediodía km 6 1/2, La Lisa PO Box 601, Marianao 13,La Habana 11400, Cuba.

    Tel: (53)72553626

    Fax: 53-7-2046051; 53-7-2020633

    E-mail: maureen@ipk.sld.cu

    日本午夜av视频| 日日干狠狠操夜夜爽| 欧美日韩视频高清一区二区三区二| 99久久精品国产国产毛片| 97精品久久久久久久久久精品| 高清毛片免费看| 欧美变态另类bdsm刘玥| 肉色欧美久久久久久久蜜桃 | 日韩av不卡免费在线播放| 五月伊人婷婷丁香| 噜噜噜噜噜久久久久久91| 精品久久久精品久久久| 女的被弄到高潮叫床怎么办| 赤兔流量卡办理| 色网站视频免费| 国产三级在线视频| 狂野欧美激情性xxxx在线观看| 91精品伊人久久大香线蕉| 久久精品国产亚洲网站| 美女被艹到高潮喷水动态| 亚洲av二区三区四区| 久久99精品国语久久久| 国产亚洲最大av| 国产亚洲av嫩草精品影院| 欧美成人精品欧美一级黄| 可以在线观看毛片的网站| 欧美最新免费一区二区三区| 九九久久精品国产亚洲av麻豆| 欧美性感艳星| 成年免费大片在线观看| 国产精品不卡视频一区二区| 亚洲精品aⅴ在线观看| 看十八女毛片水多多多| 一边亲一边摸免费视频| www.av在线官网国产| 嫩草影院精品99| 蜜臀久久99精品久久宅男| 免费人成在线观看视频色| 久久精品国产亚洲网站| 免费看日本二区| 国产精品.久久久| 亚洲美女搞黄在线观看| 免费看av在线观看网站| 午夜爱爱视频在线播放| 久久久久网色| 久久国内精品自在自线图片| 国产精品久久久久久精品电影小说 | 国产av码专区亚洲av| 日本-黄色视频高清免费观看| 精品国产露脸久久av麻豆 | 亚洲国产av新网站| 亚洲国产精品专区欧美| 免费av毛片视频| 亚洲精品色激情综合| 亚洲国产av新网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲无线观看免费| 国产伦理片在线播放av一区| 女人被狂操c到高潮| 在线免费十八禁| 免费观看无遮挡的男女| 免费电影在线观看免费观看| 国产69精品久久久久777片| 成人性生交大片免费视频hd| 欧美xxxx黑人xx丫x性爽| 亚洲精品日本国产第一区| 精品久久久久久久末码| 国精品久久久久久国模美| 一级毛片我不卡| 亚洲成人一二三区av| 在线观看人妻少妇| 中文字幕av在线有码专区| av专区在线播放| 国产伦理片在线播放av一区| 亚洲av二区三区四区| 熟女电影av网| 国产免费一级a男人的天堂| 欧美最新免费一区二区三区| 国产免费一级a男人的天堂| 熟女电影av网| 色网站视频免费| 搞女人的毛片| 免费少妇av软件| 亚洲国产成人一精品久久久| 亚洲精品国产av成人精品| 麻豆国产97在线/欧美| 久久精品久久久久久噜噜老黄| 只有这里有精品99| 我的老师免费观看完整版| 天堂中文最新版在线下载 | 有码 亚洲区| 最近最新中文字幕免费大全7| 自拍偷自拍亚洲精品老妇| 国产高清不卡午夜福利| 日韩成人伦理影院| 午夜免费观看性视频| 久久久久久久国产电影| 亚洲成人久久爱视频| 好男人视频免费观看在线| av一本久久久久| 日日撸夜夜添| 亚洲怡红院男人天堂| 免费高清在线观看视频在线观看| 午夜福利在线在线| 亚洲18禁久久av| 亚洲av成人av| 国产精品人妻久久久影院| 亚洲成色77777| 国产成人精品一,二区| 亚洲人成网站在线观看播放| 麻豆成人av视频| 欧美最新免费一区二区三区| 欧美不卡视频在线免费观看| 欧美激情久久久久久爽电影| 国产老妇女一区| 欧美日韩一区二区视频在线观看视频在线 | av国产免费在线观看| av免费观看日本| 亚洲av男天堂| 亚洲精品色激情综合| 一区二区三区乱码不卡18| 午夜福利网站1000一区二区三区| 国产色爽女视频免费观看| 成人鲁丝片一二三区免费| 国产一级毛片在线| 免费看日本二区| 亚洲国产欧美在线一区| 亚洲国产欧美在线一区| 精品一区在线观看国产| 一边亲一边摸免费视频| 亚洲自偷自拍三级| 亚洲精品成人久久久久久| 久久国产乱子免费精品| 国产伦精品一区二区三区视频9| 国产精品人妻久久久久久| 国产又色又爽无遮挡免| 免费黄频网站在线观看国产| 亚洲精品色激情综合| 国产av码专区亚洲av| 久久久久精品性色| 午夜激情欧美在线| 久热久热在线精品观看| 久久久久久久国产电影| 久久久久久久亚洲中文字幕| 久久精品国产亚洲av涩爱| 日本-黄色视频高清免费观看| 久久国产乱子免费精品| 国产亚洲91精品色在线| 成人午夜高清在线视频| 熟女人妻精品中文字幕| 男人爽女人下面视频在线观看| 国产精品美女特级片免费视频播放器| 水蜜桃什么品种好| 成人av在线播放网站| 久久精品久久久久久久性| 嘟嘟电影网在线观看| 丝袜喷水一区| 久久久精品免费免费高清| 午夜视频国产福利| 国产成人一区二区在线| 中文字幕av在线有码专区| 国产精品一区二区三区四区免费观看| 特级一级黄色大片| 伦精品一区二区三区| 岛国毛片在线播放| 老司机影院毛片| 国产一级毛片七仙女欲春2| 成人毛片a级毛片在线播放| 久久99精品国语久久久| 亚洲乱码一区二区免费版| 国产一区二区三区av在线| 久久精品国产自在天天线| 亚洲伊人久久精品综合| 久久久精品94久久精品| 亚洲va在线va天堂va国产| 97热精品久久久久久| 丰满少妇做爰视频| 国产精品蜜桃在线观看| 国产又色又爽无遮挡免| 国产永久视频网站| 国产精品一区二区三区四区久久| 啦啦啦中文免费视频观看日本| 国产中年淑女户外野战色| 亚洲三级黄色毛片| 波野结衣二区三区在线| 久久国产乱子免费精品| 久久久精品欧美日韩精品| 99热6这里只有精品| 啦啦啦韩国在线观看视频| 成年女人看的毛片在线观看| 免费电影在线观看免费观看| 日本av手机在线免费观看| 国产精品美女特级片免费视频播放器| 国产乱人偷精品视频| 人妻一区二区av| 寂寞人妻少妇视频99o| 少妇丰满av| 高清av免费在线| 国产在视频线精品| 久久草成人影院| 亚洲av中文字字幕乱码综合| 国产熟女欧美一区二区| 免费观看a级毛片全部| 美女黄网站色视频| 日日干狠狠操夜夜爽| 免费看日本二区| 久久久欧美国产精品| 91久久精品电影网| 在线免费观看不下载黄p国产| 51国产日韩欧美| 精品人妻一区二区三区麻豆| 中文字幕av在线有码专区| 国产精品99久久久久久久久| 欧美三级亚洲精品| 国产黄色免费在线视频| 中文字幕av成人在线电影| 久久99精品国语久久久| 亚洲av成人精品一二三区| 超碰av人人做人人爽久久| 2021少妇久久久久久久久久久| 国产v大片淫在线免费观看| 人妻一区二区av| 只有这里有精品99| 高清av免费在线| 久久久久九九精品影院| 精品久久久久久久人妻蜜臀av| 看黄色毛片网站| 内射极品少妇av片p| 国产精品久久久久久久电影| 2022亚洲国产成人精品| 黑人高潮一二区| 国产精品嫩草影院av在线观看| 久久久久久久亚洲中文字幕| 免费观看av网站的网址| 免费不卡的大黄色大毛片视频在线观看 | 亚洲熟妇中文字幕五十中出| 69av精品久久久久久| 成人亚洲精品av一区二区| 大香蕉久久网| 国内精品一区二区在线观看| 日本三级黄在线观看| 99热这里只有是精品在线观看| 伊人久久国产一区二区| av在线老鸭窝| 看黄色毛片网站| 免费大片18禁| 五月玫瑰六月丁香| 最近视频中文字幕2019在线8| 床上黄色一级片| 免费看美女性在线毛片视频| 在线天堂最新版资源| 精品人妻偷拍中文字幕| 色综合亚洲欧美另类图片| 搞女人的毛片| 欧美激情国产日韩精品一区| 日韩欧美国产在线观看| 日韩成人伦理影院| 日韩一本色道免费dvd| 精品久久国产蜜桃| 性插视频无遮挡在线免费观看| 国产亚洲av片在线观看秒播厂 | 午夜福利高清视频| 日韩欧美三级三区| 五月天丁香电影| 久久久欧美国产精品| 久久国产乱子免费精品| 亚洲国产最新在线播放| 免费黄频网站在线观看国产| 中文字幕av在线有码专区| 国产亚洲5aaaaa淫片| 2021天堂中文幕一二区在线观| 国产高清三级在线| kizo精华| 三级男女做爰猛烈吃奶摸视频| 搡女人真爽免费视频火全软件| 观看美女的网站| 精品一区二区三区视频在线| 成人一区二区视频在线观看| 成人毛片a级毛片在线播放| 亚州av有码| 亚洲av免费高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 精品国产一区二区三区久久久樱花 | 国产中年淑女户外野战色| 亚洲精品国产av蜜桃| 麻豆成人av视频| 国产在视频线精品| 国产精品国产三级国产专区5o| 别揉我奶头 嗯啊视频| 九草在线视频观看| 永久免费av网站大全| 国产一区二区在线观看日韩| 观看美女的网站| 国产极品天堂在线| av又黄又爽大尺度在线免费看| 国产综合精华液| 日本欧美国产在线视频| 成人亚洲精品av一区二区| 国产成人一区二区在线| 久久国产乱子免费精品| 舔av片在线| 女人被狂操c到高潮| 久久亚洲国产成人精品v| av免费观看日本| 男女国产视频网站| 又黄又爽又刺激的免费视频.| 国产精品国产三级专区第一集| 国产精品熟女久久久久浪| 小蜜桃在线观看免费完整版高清| 777米奇影视久久| 成年av动漫网址| 亚洲av日韩在线播放| 一个人观看的视频www高清免费观看| 中文字幕久久专区| 爱豆传媒免费全集在线观看| 欧美 日韩 精品 国产| 午夜福利高清视频| 国产av国产精品国产| 午夜视频国产福利| 亚洲国产精品专区欧美| 午夜精品国产一区二区电影 | 亚洲av中文字字幕乱码综合| 免费电影在线观看免费观看| 免费看日本二区| 婷婷色麻豆天堂久久| 欧美精品国产亚洲| 日本黄色片子视频| 亚洲av中文字字幕乱码综合| 国产老妇女一区| 看非洲黑人一级黄片| 毛片女人毛片| 成人亚洲精品av一区二区| www.av在线官网国产| 日韩中字成人| 男人和女人高潮做爰伦理| 亚洲三级黄色毛片| 人妻夜夜爽99麻豆av| 国产亚洲午夜精品一区二区久久 | 亚洲精品乱久久久久久| 亚洲av电影不卡..在线观看| 人人妻人人看人人澡| av在线观看视频网站免费| 精品久久久久久久久av| 韩国高清视频一区二区三区| 18+在线观看网站| 国产毛片a区久久久久| 久久久a久久爽久久v久久| 免费看不卡的av| 男人舔奶头视频| 搡老乐熟女国产| 晚上一个人看的免费电影| 国产精品99久久久久久久久| 欧美精品一区二区大全| 免费大片18禁| 久久久久性生活片| 啦啦啦韩国在线观看视频| 亚洲电影在线观看av| 中文欧美无线码| 我要看日韩黄色一级片| 少妇猛男粗大的猛烈进出视频 | 汤姆久久久久久久影院中文字幕 | 国产亚洲最大av| 亚洲国产最新在线播放| 国产乱来视频区| 又黄又爽又刺激的免费视频.| 内射极品少妇av片p| 久久久久国产网址| 日韩不卡一区二区三区视频在线| 69人妻影院| 国产美女午夜福利| 久久精品国产亚洲av天美| 亚洲无线观看免费| freevideosex欧美| 色哟哟·www| 最近2019中文字幕mv第一页| 秋霞伦理黄片| 国产女主播在线喷水免费视频网站 | 97超视频在线观看视频| 18禁在线无遮挡免费观看视频| 十八禁国产超污无遮挡网站| 国产极品天堂在线| 91精品伊人久久大香线蕉| 午夜免费观看性视频| av免费观看日本| 亚洲四区av| 免费看不卡的av| 亚洲精品自拍成人| 国产成人福利小说| 国产一级毛片在线| 欧美三级亚洲精品| 成人国产麻豆网| 国内精品美女久久久久久| 免费电影在线观看免费观看| 一二三四中文在线观看免费高清| av免费在线看不卡| 能在线免费看毛片的网站| 久久精品国产亚洲av天美| 纵有疾风起免费观看全集完整版 | 中文字幕制服av| 99久久精品国产国产毛片| 婷婷色av中文字幕| 国产色婷婷99| 欧美日韩综合久久久久久| 你懂的网址亚洲精品在线观看| 国产探花极品一区二区| 亚洲国产成人一精品久久久| 精品一区二区三卡| 黄色日韩在线| 亚洲怡红院男人天堂| 肉色欧美久久久久久久蜜桃 | 日日干狠狠操夜夜爽| 久久久久网色| 国产精品日韩av在线免费观看| 插阴视频在线观看视频| 又黄又爽又刺激的免费视频.| 麻豆久久精品国产亚洲av| xxx大片免费视频| 乱系列少妇在线播放| 中文资源天堂在线| 国产一区二区在线观看日韩| 午夜福利视频精品| 晚上一个人看的免费电影| 日本熟妇午夜| 精品久久久久久久久亚洲| 淫秽高清视频在线观看| 精品久久久久久久末码| 欧美 日韩 精品 国产| 特级一级黄色大片| 最新中文字幕久久久久| 美女内射精品一级片tv| 免费观看精品视频网站| 亚洲精品日韩在线中文字幕| or卡值多少钱| 99久国产av精品| 成年版毛片免费区| 久久久久久久久久黄片| 国产精品嫩草影院av在线观看| 国产午夜精品一二区理论片| 亚洲欧美日韩无卡精品| 91在线精品国自产拍蜜月| 免费看日本二区| 欧美一级a爱片免费观看看| 亚洲第一区二区三区不卡| 91久久精品国产一区二区三区| 久久久久网色| 成人欧美大片| 久久精品久久久久久噜噜老黄| 美女cb高潮喷水在线观看| 国产色爽女视频免费观看| 欧美xxⅹ黑人| 精品一区二区免费观看| 精品久久久精品久久久| 欧美高清成人免费视频www| 2021天堂中文幕一二区在线观| 一级毛片我不卡| 欧美变态另类bdsm刘玥| av在线亚洲专区| 人人妻人人澡欧美一区二区| 日日干狠狠操夜夜爽| 国产 一区 欧美 日韩| 国产黄频视频在线观看| 毛片一级片免费看久久久久| 中文字幕av在线有码专区| 久久久久久久久大av| 干丝袜人妻中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品国产亚洲网站| 国产大屁股一区二区在线视频| 在线观看av片永久免费下载| 日韩av在线大香蕉| 观看免费一级毛片| 日韩av在线免费看完整版不卡| 国产亚洲最大av| 中文字幕亚洲精品专区| 91狼人影院| 亚洲国产欧美人成| 中文字幕制服av| 婷婷色综合www| 联通29元200g的流量卡| 亚洲欧美精品自产自拍| 我要看日韩黄色一级片| 免费看av在线观看网站| 九草在线视频观看| av又黄又爽大尺度在线免费看| 99久久人妻综合| 国产一区有黄有色的免费视频 | kizo精华| 国产成人免费观看mmmm| 久久99热6这里只有精品| 国产免费一级a男人的天堂| 久久久亚洲精品成人影院| 视频中文字幕在线观看| 久久久欧美国产精品| 99热网站在线观看| 男人狂女人下面高潮的视频| 寂寞人妻少妇视频99o| 亚洲精品国产成人久久av| 国产综合懂色| 看非洲黑人一级黄片| 日日啪夜夜撸| 18禁在线播放成人免费| 国产亚洲av片在线观看秒播厂 | 91午夜精品亚洲一区二区三区| 亚洲国产欧美人成| 亚洲三级黄色毛片| 国产精品人妻久久久影院| 91精品国产九色| 国产黄色免费在线视频| 国产美女午夜福利| av网站免费在线观看视频 | 亚洲在线自拍视频| 国产精品一及| 久久久久久久久久久丰满| 免费观看a级毛片全部| 欧美丝袜亚洲另类| 精品一区二区三区人妻视频| 国产精品久久久久久av不卡| 欧美激情国产日韩精品一区| 狂野欧美激情性xxxx在线观看| 人人妻人人看人人澡| 噜噜噜噜噜久久久久久91| 中文字幕av在线有码专区| 亚洲精品国产成人久久av| 18+在线观看网站| 国产精品精品国产色婷婷| 欧美+日韩+精品| 69人妻影院| 免费大片黄手机在线观看| 一区二区三区四区激情视频| 搞女人的毛片| 美女xxoo啪啪120秒动态图| 亚洲精华国产精华液的使用体验| 国产高清国产精品国产三级 | 色播亚洲综合网| 免费av不卡在线播放| 国模一区二区三区四区视频| 在线天堂最新版资源| 男人和女人高潮做爰伦理| 老司机影院毛片| videossex国产| 亚洲欧美精品自产自拍| 在线 av 中文字幕| 91久久精品电影网| 午夜爱爱视频在线播放| 两个人的视频大全免费| 亚洲精品日本国产第一区| 午夜福利网站1000一区二区三区| 精品人妻熟女av久视频| 亚洲激情五月婷婷啪啪| 99热全是精品| av播播在线观看一区| 国产精品久久久久久久久免| 欧美日韩精品成人综合77777| 蜜桃亚洲精品一区二区三区| 午夜福利高清视频| 亚洲精品成人av观看孕妇| 日产精品乱码卡一卡2卡三| 免费在线观看成人毛片| 两个人的视频大全免费| 国产亚洲精品久久久com| 波野结衣二区三区在线| 国产精品久久久久久av不卡| 国产高清不卡午夜福利| 日韩欧美精品免费久久| 高清午夜精品一区二区三区| 久久久久九九精品影院| 夜夜看夜夜爽夜夜摸| 中文乱码字字幕精品一区二区三区 | 精品人妻视频免费看| 午夜福利成人在线免费观看| 草草在线视频免费看| 成人欧美大片| 性插视频无遮挡在线免费观看| 亚洲激情五月婷婷啪啪| 高清在线视频一区二区三区| 青春草亚洲视频在线观看| 高清午夜精品一区二区三区| a级毛色黄片| 男人舔女人下体高潮全视频| 亚洲精品一区蜜桃| 爱豆传媒免费全集在线观看| 欧美潮喷喷水| 亚洲av日韩在线播放| av又黄又爽大尺度在线免费看| 国产成人精品一,二区| 国产成人免费观看mmmm| 精品久久久久久久久久久久久| 免费av毛片视频| 久久精品国产鲁丝片午夜精品| 男女下面进入的视频免费午夜| 久久久久久久大尺度免费视频| 黄片wwwwww| 国产在视频线精品| 日本-黄色视频高清免费观看| 午夜福利在线观看吧| 久久久久久久久久人人人人人人| 天天躁日日操中文字幕| 成人亚洲精品一区在线观看 | 永久免费av网站大全| 亚洲国产精品成人综合色| 久久久久免费精品人妻一区二区| 青青草视频在线视频观看| 国产伦理片在线播放av一区| 国产视频首页在线观看| 国产精品99久久久久久久久| 免费观看性生交大片5| 国产高清不卡午夜福利| 日本欧美国产在线视频| 日韩一本色道免费dvd| 超碰97精品在线观看| 久久精品夜夜夜夜夜久久蜜豆| 丝袜喷水一区| 色综合站精品国产| 国产伦在线观看视频一区|