• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Classification of full-polarization ALOS-PALSAR imagery using SVM in arid area of Dunhuang

    2016-10-15 08:30:15JunZhanWangJianJunQuWeiMinZhangKeCunZhang
    Sciences in Cold and Arid Regions 2016年3期

    JunZhan Wang, JianJun Qu, WeiMin Zhang, KeCun Zhang

    Dunhuang Gobi and Desert Ecology and Environment Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China

    ?

    Classification of full-polarization ALOS-PALSAR imagery using SVM in arid area of Dunhuang

    JunZhan Wang*, JianJun Qu, WeiMin Zhang, KeCun Zhang

    Dunhuang Gobi and Desert Ecology and Environment Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China

    ABSTRACT

    Classification is an important process in interpretation of synthetic aperture radar (SAR) imagery. As an advanced instrument for remote sensing, the polarimetric SAR has been applied widely in many fields. The main aim of this paper is to explore the ability of the full-polarization SAR data in classification. The study area is a part of Dunhuang, Gansu Province,China. An L-band full-polarization image of Dunhuang which includes quad-polarization modes was acquired by the ALOS-PALSAR (Advanced Land Observing Satellite-the Phased Array type L-band Synthetic Aperture Radar). Firstly,new characteristic information was extracted by the difference operation, ratio operation, and principal component transform based on the full-polarization (HH, HV or VH, VV) modes SAR data. Then the single-, dual-, full-polarization SAR data and new SAR characteristic information were used to analyze quantitatively the classification accuracy based on the Support Vector Machines (SVM). The results show that classification overall accuracy of single-polarization SAR data is poor, and the highest is 56.53% of VV polarization. The classification overall accuracy of dual-polarization SAR is much better than single-polarization, the highest is 74.77% of HV & VV polarization data. The classification overall accuracy of full-polarization SAR is 80.21%, adding the difference characteristic information, ratio characteristic information and the first principal component (PC1) respectively, the overall accuracy increased by 3.09%, 3.38%, 4.14% respectively. When the full-polarization SAR data in combination with the all characteristic information, the classification overall accuracy reached to 91.01%. The full-polarization SAR data in combination with the band math characteristic information or the PC1 can greatly improve classification accuracy.

    full-polarization; PALSAR; classification; the Support Vector Machines (SVM)

    1 Introduction

    Remote-sensing technology has been an important method for studying land use/land cover and land use/land cover change (LUCC), and classification is always a focus of field research. Classification for optical imagery has achieved tremendous success(Bastin, 1997; Giorgio et al., 2000; Melgani and Bruzzone, 2004; Emerson et al., 2005), with higher accuracy achieved because of optical imagery with rich spectrum and texture information. The application of optical imagery has some limitations due to cloud,rain, fog or other inclement weather conditions. The development of microwave remote sensing is an improvement to optical remote sensing, in particular,active microwave remote sensing provides unique advantages from new data sources for extracting land use/land cover information (Ferro Famil et al.,2001; Macr?` Pellizzeri, 2003; Wen et al., 2009;Triloki et al., 2010). In recent years, radar remotesensing has made great progress with successful launches such as ENVISAT-ASAR, ALOS-PALSAR,and RADARSAT-2. Also, the synthetic aperture radar(SAR) data mode has developed from the single-polarization and single-angle to multi-polarization and multi-angle. As an advanced instrument for remote sensing, polarimetric SAR has been applied widely in many fields, such as ecology, environmental monitoring, geological exploration, and vegetation investigation. Lee et al. (2001) compared classification results amongst single polarization, the standard(HH, VH) and (VV, HV) dual-pol modes, and quad-pol SAR imagery for P-, L-, and C-band frequencies. Their results show that various applications allows for optimally selecting the frequency and the combination of polarization. Ainsworth et al. (2009) compared classification results amongst standard dual-pol modes,compact polarimetric modes, and pseudo-quad-pol data imagery. The overall classification accuracy of the pseudo-quad-pol data is essential the same as the classification accuracy obtained directly employing the underlying dual-pol imagery. Recently, some theorems about polarimetric decomposition have been introduced (Cloude and Pottier, 1996; Dong et al.,1998), which aim at establishing a correspondence between physical characteristics of the considered areas and the observed scattering mechanisms, where the results of the decomposition agree with the general understanding of radar backscatter. Moreover, classification techniques for agricultural areas have been developed, based on the decomposition results(Cloude and Pottier, 1997). Compared with single-polarization and dual-polarization SAR data, the full-polarization SAR data includes four polarization bands, where new characteristic information can be extracted based on the full-polarization SAR data. The purpose of this paper is to explore the ability of the full-polarization SAR data and the new characteristic information in classification.

    Support vector machine (SVM) based on statistical learning theory, proposed by Cortes and Vapnik (1995)and Vapnik (1995), is an effective supervised classifier. It is used widely in face recognition, hand writing identification, and automatic target recognition, which can achieved good classification performance with small training data sets. SVM has been a new focus in the field of machine learning. Several researchers have tried to use SVM for classifying SAR images, and obtained promising results (Georgios, 2009; Wen et al.,2009). In this paper, the radial basis function (RBF)kernel was used for constructing the SVM classifier.

    Compared with single- and dual-polarization SAR data, to what extent full-polarization SAR data can improve in classification is important. New characteristic information can be extracted by the difference operation, ratio operation, and principal component transform based on the full-polarization(HH, HV (or VH), VV) modes SAR data. It is necessary to explore the new characteristic information in improving classification accuracy. In this paper,full polarization L band PALSAR data was obtained,and classification performance of full-polarization and new characteristic information versus full-, dual-,single- polarization is compared qualitatively and quantitatively with SVM taken as the classifier.

    2 Study area and data processing

    The study area is part of Dunhuang city, western Gansu corridor, northwest China (Figure 1). Dunhuang city falls within an arid climatic zone with an annual average rainfall of 39.9 mm, but the annual mean amount of evaporation reaches to 2,486 mm. ALOS(Advanced Land Observing Satellite) was successfully launched by the Japan Aerospace Exploration Agency's(JAXA) on January 24, 2006. ALOS carries three sensors: (1) the Panchromatic Remote-Sensing Instrument for Stereo Mapping (PRISM) for digital elevation mapping, (2) the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) for land cover characterization, and (3) the Phased Array type L-band Synthetic Aperture Radar (PALSAR) for day-and-night and all-weather observation. PALSAR can operate at four primary modes with diverse polarizations and offnadir angles: (a) high-resolution single-polarization (FBS)mode, (b) high-resolution, dual-polarization (FBD)mode, (c) fully-polarimetric (PLR) mode, and (d)ScanSAR mode. The center frequency of PALSAR is 1,270 MHz, resulting in a wavelength of 23.62 cm. In this study, the fully-polarimetric mode data was obtained in 2007-05-13, this mode data has four polarization bands, which are HH, HV, VH and VV polarization,and the incidence angle is 8°-30°.

    The PALSAR data is level 1.1 data, with the data pre-processing process presented in Figure 2. Finally,the backscattering coefficients imagery was obtained,and the resolution of the imagery is about 24 m. Figure 1b presents the combination of HH, HV and VV polarization.

    Generally, because the mono station radar satisfies the reciprocity theorem, the backscattering coefficients of VH polarization are equal to HV polarization. The statistical characteristics of the backscattering coefficients of VH and HV polarization are presented in Table 1, and the three bands used for classification are HH, HV (or VH) and VV polarization. New characteristic information was extracted based on HH, HV (or VH) and VV backscattering data. Three new features were extracted by difference operations which are expressed as HH-HV, HH-VV,HV-VV. Three new features were extracted by ratio operation, which are expressed as HH/HV, HH/VV,HV/VV. Also, one new feature was extracted by principal component transform, where the first principal component (PC1) included the most information, thus PC1 was selected as another feature for classification. Next, the single-, dual-, full-polarization SAR data and new SAR characteristic information will be used to analyze quantitatively the classification accuracy based on SVM.

    Figure 1 Location of the study area (a) and the PALSAR data (HH, HV and VV polarization) (b)

    Figure 2 Flow chart of the data preprocessing

    Table 1 Statistical characteristics of the backscattering coefficients of VH and HV

    3 Classification results

    In this paper, the study area includes six classes as follow: farm land, building, water, Gobi, orchard and unused land. The same sample points of each class were used for each classification. The classification results were evaluated using overall accuracy and Kappa coefficient, for each class, the number of sample points as input in the SVM classification is presented in Table 2. The sample points are distributed in the study area as uniformly as possible, are manually extracted by visual interpretation, and used to calculate the overall accuracy. The RBF kernel used of SVM classifier in the ENVI software has two important parameters that need to be set, which are the kernel parameter γ and penalty parameter C. In thispaper, in order to compare the classification results each other, γ was set at 0.1 and C was set at 100.

    3.1Classification for single-polarization PALSAR data

    The imagery was classified based on the three kinds of PALSAR polarization data, which are HH,HV (or VH) and VV polarization, using SVM classifier. The sample points were used for accuracy evaluation. Results are presented in Table 3. This shows that VV-polarization data has better accuracy than HH and HV data.

    3.2Classification for dual-polarization PALSAR data

    Based on the HH, HV (or VH) and VV polarization data, three group dual-polarization data are generated,which are HH & HV, HH & VV and HV & VV. Using the same sample points, dual-polarization data was classified using SVM. Results are presented in Table 4. This shows that dual-polarization data has a much better accuracy than single-polarization, because it contains more backscatter information and texture information. The HV & VV data has the highest accuracy, the overall accuracy reached to 74.77%, kappa coefficient is 0.69.

    3.3Classification for full-polarization and its new features information data

    Based on the HH, HV (or VH) and VV polarization data, three new features were extracted by difference operations, which are HH-HV, HH-VV,HV-VV. Three new features were extracted by ratio operation, which are HH/HV, HH/VV, HV/VV, and one new feature was extracted by principal component transform, which is PC1. Then, the full-polarization, full-polarization combination of new characteristic information was classified using SVM. Results are presented in Table 5. Compared with the classification results of single-, dual-polarization data,full-polarization PALSAR data and full-polarization PALSAR combination of the new features data can greatly improve classification accuracy. Compared with the classification result of full-polarization PALSAR data, new features can improve classification accuracy. The full-polarization PALSAR data combination of all the new features has the highest accuracy, the overall accuracy reached to 90.01%, kappa coefficient is 0.89. Thus, it is helpful for the classification of SAR data with rich polarization information or new information by bands math.

    Table 2 Number of sample points for each class

    Table 3 Classification results of the single-polarization SAR

    Table 5 Classification results of the full-polarization PALSAR and the full-polarization PALSAR combination of new characteristic information

    4 Conclusion and discussion

    In this paper, classification performance of full-polarization and new characteristic information versus full-, dual-, single- polarization is compared qualitatively and quantitatively with SVM taken as the classifier. It is shown that single- polarization SAR data is poor in land use/cover classification because of the limited backscatter and texture information. Though VV polarization data has the highest accuracy, compared with dual- polarization (HV/VV)data, it is less than 18.24% in overall accuracy. Therefore, the dual- polarization data of HV & VV is the suitable choice for classification without full- polarization SAR data. Full- polarization PALSAR data has a better classification result, especially when adding new features by bands math or PCA.

    Acknowledgments:

    This work was supported by the National Natural Science Foundation of China (41401408, 41371027). The authors would like to thank all the experts and editors.

    Ainsworth TL, Kelly JP, Lee JS, 2009. Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 64(5): 464-471. DOI: 10.1016/j.isprsjprs.2008.12.008.

    Bastin L, 1997. Comparison of fuzzy c-means classification, linear mixture modeling and MLC probabilities as tools for unmixing coarse pixels. International Journal of Remote Sensing, 18(17):3629-3648. DOI: 10.1080/014311697216847.

    Cloude SR, Pottier E, 1996. A review of target decomposition theorems in radar polarimetry. IEEE Transactions on Geoscience and Remote Sensing,34(2):498-518. DOI: 10.1109/36.485127.

    Cloude SR, Pottier E, 1997. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 35(1): 68-78. DOI: 10.1109/36.551935.

    Cortes C, Vapnik VN, 1995. Support vector networks. Machine Learning, 20(3): 273-297.

    Dong Y, Forster B, Ticehurst C, 1998. A new decomposition of radar polarization signatures. IEEE Transactions on Geoscience and Remote Sensing,36(3):933-939.DOI:10.1109/36.673684.

    Emerson CW, Lam NS, Quattrochi DA, 2005. A comparison of local variance, fractal dimension, and Moran's I as aids to multispectral image classification. Int. J. Remote Sens., 26(8):1575-1588.

    Ferro-Famil L, Pottier E, Lee JS, 2001. Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier. IEEE Transactions on Geoscience and Remote Sensing, 39(11): 2332-2342. DOI:10.1109/36.964969.

    Georgios CA, 2009. SVM-based target recognition from synthetic aperture radar images using target region outline descriptors. Nonlinear Analysis, 71(12): e2934-e2939.

    Giacinto G, Roli F, Bruzzone L, 2000. Combination of neural and statistical algorithms for supervised classification of remote-sensing images. Pattern Recognition Letters, 21(5):385-397.

    Lee JS, Grunes MR, Pottier E, 2001. Quantitative comparison of classification capability: Fully polarimetric versus dual-and single-polarization SAR. IEEE Transactions on Geoscience and Remote Sensing, 39(11): 2343-2351. DOI: 10.1109/36.964970.

    Macr?` Pellizzeri T, 2003. Classification of polarimetric SAR images of suburban areas using joint annealed segmentation and "H/A/a" polarimetric decomposition". ISPRS Journal of Photogrammetry & Remote Sensing, 58(1-2): 55-70. DOI:10.1016/S0924-2716(03)00017-0.

    Melgani F, Bruzzone L, 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8):1778-1790. DOI: 10.1109/TGRS.2004.831865.

    Triloki P, Dharmendra S, Tanuja S, 2010. Advanced fractal approach for unsupervised classification of SAR images. Advances in Space Research, 45(1): 1338-1349.

    Vapnik VN, 1995. The Nature of Statistical Learning Theory,Springer Verlag. New York, pp. 1-50.

    Wen X, Zhang H, Zhang J, et al., 2009. Multi-scale modeling for classification of SAR imagery using hybrid EM algorithm and genetic algorithm. Progress in Natural Science, 19(8):1033-1036. DOI: 10.1016/j.pnsc.2009.01.003.

    Wang JZ, Qu JJ, Zhang WM, et al., 2016. Classification of full-polarization ALOS-PALSAR imagery using SVM in arid area of Dunhuang. Sciences in Cold and Arid Regions, 8(3): 0263-0267.

    10.3724/SP.J.1226.2016.00263.

    *Correspondence to: Mr. JunZhan Wang, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. No.320, West Donggang Road, Lanzhou, Gansu 730000, China. E-mail: cani04@163.com

    February 12, 2016Accepted: April 22, 2016

    国产一区二区亚洲精品在线观看| 中文字幕av在线有码专区| 狠狠狠狠99中文字幕| 色综合亚洲欧美另类图片| 女同久久另类99精品国产91| 天堂网av新在线| 非洲黑人性xxxx精品又粗又长| 日韩欧美一区二区三区在线观看| 三级经典国产精品| 十八禁国产超污无遮挡网站| 国产精品日韩av在线免费观看| 成年av动漫网址| 偷拍熟女少妇极品色| 国产成人91sexporn| 欧美xxxx黑人xx丫x性爽| 日本五十路高清| 免费人成在线观看视频色| 赤兔流量卡办理| 亚洲高清免费不卡视频| 男女做爰动态图高潮gif福利片| 黄色一级大片看看| 十八禁国产超污无遮挡网站| 成人二区视频| 日韩亚洲欧美综合| 国产av不卡久久| 久久99精品国语久久久| 亚洲欧美日韩东京热| 国内久久婷婷六月综合欲色啪| 日韩高清综合在线| 我要看日韩黄色一级片| 久久99热这里只有精品18| av在线蜜桃| 国产精品.久久久| 久久这里有精品视频免费| 日本黄色片子视频| 一本久久精品| 激情 狠狠 欧美| 久久中文看片网| 精品人妻视频免费看| 国产精品.久久久| 亚洲精华国产精华液的使用体验 | 亚洲av第一区精品v没综合| 精品人妻偷拍中文字幕| 免费人成在线观看视频色| 国产日本99.免费观看| 高清毛片免费观看视频网站| 色综合站精品国产| 婷婷色综合大香蕉| 国产亚洲精品久久久久久毛片| av在线老鸭窝| 麻豆乱淫一区二区| 欧美成人一区二区免费高清观看| 高清日韩中文字幕在线| 免费电影在线观看免费观看| 美女大奶头视频| 成人三级黄色视频| 国产亚洲精品久久久久久毛片| 婷婷亚洲欧美| 99精品在免费线老司机午夜| 成人综合一区亚洲| 国产乱人偷精品视频| 久久精品国产亚洲网站| 免费看美女性在线毛片视频| 校园人妻丝袜中文字幕| 国内揄拍国产精品人妻在线| 欧美又色又爽又黄视频| 国产熟女欧美一区二区| 国内精品一区二区在线观看| 联通29元200g的流量卡| 中文字幕免费在线视频6| 少妇熟女欧美另类| 美女内射精品一级片tv| 国产成人精品婷婷| 亚洲精品久久久久久婷婷小说 | 欧美精品国产亚洲| 爱豆传媒免费全集在线观看| 中文精品一卡2卡3卡4更新| 国产一区二区激情短视频| 国产精品爽爽va在线观看网站| 国产成人福利小说| 搡老妇女老女人老熟妇| 亚洲五月天丁香| 高清毛片免费观看视频网站| 老司机影院成人| 熟女人妻精品中文字幕| 热99re8久久精品国产| 国产日本99.免费观看| 亚洲av电影不卡..在线观看| 亚洲久久久久久中文字幕| 日本-黄色视频高清免费观看| 网址你懂的国产日韩在线| 少妇人妻一区二区三区视频| 国产精华一区二区三区| av在线蜜桃| 国产精品电影一区二区三区| 青春草国产在线视频 | 最近的中文字幕免费完整| 青青草视频在线视频观看| 久久99热这里只有精品18| 熟女电影av网| 欧美+日韩+精品| 国产av麻豆久久久久久久| 欧美成人免费av一区二区三区| 日韩成人av中文字幕在线观看| 亚洲国产精品sss在线观看| 少妇高潮的动态图| av专区在线播放| 亚洲人成网站在线播| 亚洲欧美日韩高清专用| 欧美在线一区亚洲| 精品久久久久久久久av| 日韩精品有码人妻一区| 亚洲欧美精品自产自拍| 不卡视频在线观看欧美| 老师上课跳d突然被开到最大视频| 51国产日韩欧美| 久久九九热精品免费| 亚洲婷婷狠狠爱综合网| 久久久精品欧美日韩精品| 亚洲av.av天堂| 日本免费一区二区三区高清不卡| 亚洲欧美成人精品一区二区| 国产又黄又爽又无遮挡在线| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久av不卡| 国产视频首页在线观看| 国产成人91sexporn| 五月伊人婷婷丁香| 夜夜看夜夜爽夜夜摸| 午夜视频国产福利| 免费人成在线观看视频色| 成年av动漫网址| 欧美成人免费av一区二区三区| 亚洲精品久久国产高清桃花| a级毛片免费高清观看在线播放| 欧美日韩在线观看h| 看免费成人av毛片| 黄色欧美视频在线观看| 久久久国产成人精品二区| 91精品国产九色| 国产美女午夜福利| 免费人成视频x8x8入口观看| 国产一区二区三区av在线 | 久久精品国产亚洲av天美| 能在线免费观看的黄片| 插阴视频在线观看视频| 欧美一区二区亚洲| 国内揄拍国产精品人妻在线| 欧美+亚洲+日韩+国产| av在线亚洲专区| 亚洲欧美成人综合另类久久久 | 男女边吃奶边做爰视频| 欧美日本亚洲视频在线播放| www.av在线官网国产| 欧美另类亚洲清纯唯美| 中文字幕精品亚洲无线码一区| 亚洲va在线va天堂va国产| 插阴视频在线观看视频| 在现免费观看毛片| 岛国在线免费视频观看| 国产av不卡久久| 免费看a级黄色片| 亚洲经典国产精华液单| 国产色婷婷99| 日日干狠狠操夜夜爽| www日本黄色视频网| 寂寞人妻少妇视频99o| 在线国产一区二区在线| 国产色爽女视频免费观看| 天天躁日日操中文字幕| 一边亲一边摸免费视频| 精品久久久久久久久亚洲| 日本-黄色视频高清免费观看| 成年免费大片在线观看| 最后的刺客免费高清国语| 一级毛片久久久久久久久女| 国产成人91sexporn| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久久电影| 少妇熟女aⅴ在线视频| 99热精品在线国产| 日本三级黄在线观看| 在线免费观看不下载黄p国产| a级毛片免费高清观看在线播放| 2022亚洲国产成人精品| 精品不卡国产一区二区三区| 啦啦啦观看免费观看视频高清| 日韩欧美精品免费久久| a级毛片a级免费在线| 搡女人真爽免费视频火全软件| 成人特级黄色片久久久久久久| 久久久久久久亚洲中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 女人被狂操c到高潮| 好男人在线观看高清免费视频| 亚洲内射少妇av| 国产蜜桃级精品一区二区三区| 亚洲av二区三区四区| 欧美潮喷喷水| 国产av一区在线观看免费| 女人被狂操c到高潮| 国产精品嫩草影院av在线观看| 淫秽高清视频在线观看| 欧美日本亚洲视频在线播放| 免费无遮挡裸体视频| 人人妻人人看人人澡| 天堂影院成人在线观看| 老司机福利观看| 人妻系列 视频| 免费观看的影片在线观看| 久久午夜福利片| 欧美zozozo另类| 亚洲欧美日韩卡通动漫| 国产精品精品国产色婷婷| 久久精品国产清高在天天线| 国产三级在线视频| 22中文网久久字幕| 国产乱人视频| 男的添女的下面高潮视频| 男女啪啪激烈高潮av片| 在线观看av片永久免费下载| 亚洲第一区二区三区不卡| 精品一区二区三区人妻视频| 身体一侧抽搐| 美女脱内裤让男人舔精品视频 | 亚洲综合色惰| 日韩欧美 国产精品| 只有这里有精品99| 亚洲av中文av极速乱| 国产极品天堂在线| 只有这里有精品99| 村上凉子中文字幕在线| ponron亚洲| 尾随美女入室| 国产成人午夜福利电影在线观看| 国产高清三级在线| 中出人妻视频一区二区| 国产精品蜜桃在线观看 | 久久久精品欧美日韩精品| 麻豆国产97在线/欧美| 国产一区二区三区在线臀色熟女| 又粗又硬又长又爽又黄的视频 | 亚洲中文字幕一区二区三区有码在线看| 日韩国内少妇激情av| 18+在线观看网站| 日本三级黄在线观看| 国产高清三级在线| 中文字幕久久专区| 欧美最黄视频在线播放免费| 可以在线观看毛片的网站| 日韩一区二区视频免费看| 久久久精品大字幕| 国产高清三级在线| 十八禁国产超污无遮挡网站| 亚洲av成人精品一区久久| 亚洲在线观看片| 久久这里有精品视频免费| 不卡视频在线观看欧美| av天堂中文字幕网| 99视频精品全部免费 在线| 夜夜看夜夜爽夜夜摸| 边亲边吃奶的免费视频| 午夜福利在线在线| 国产精品av视频在线免费观看| 国产极品天堂在线| 国产亚洲5aaaaa淫片| avwww免费| 亚洲精品日韩av片在线观看| 亚洲精品乱码久久久久久按摩| 精品熟女少妇av免费看| 国产免费一级a男人的天堂| ponron亚洲| 日本色播在线视频| 国内揄拍国产精品人妻在线| 亚州av有码| 日韩三级伦理在线观看| 91久久精品国产一区二区三区| 亚洲自偷自拍三级| 综合色av麻豆| 久久久久久大精品| 欧美性猛交黑人性爽| 日本av手机在线免费观看| 嫩草影院新地址| 国产亚洲精品久久久com| 人妻少妇偷人精品九色| 精品人妻熟女av久视频| 中出人妻视频一区二区| 国产在视频线在精品| 国产91av在线免费观看| 亚洲av电影不卡..在线观看| 久久精品久久久久久久性| 亚洲第一电影网av| 欧美3d第一页| 国产精品伦人一区二区| 级片在线观看| 日本三级黄在线观看| 亚洲欧美日韩高清在线视频| 在线国产一区二区在线| 亚洲经典国产精华液单| 91久久精品电影网| 精品人妻视频免费看| 色吧在线观看| 成人特级av手机在线观看| 一级毛片久久久久久久久女| 黄色视频,在线免费观看| 亚洲自偷自拍三级| 伦精品一区二区三区| 久久久久久大精品| 色综合色国产| 亚洲av男天堂| 久久久精品大字幕| 女的被弄到高潮叫床怎么办| 国产视频内射| 一级av片app| 免费黄网站久久成人精品| 欧美成人精品欧美一级黄| 欧美色视频一区免费| 嘟嘟电影网在线观看| 国产成人a区在线观看| 日韩在线高清观看一区二区三区| 日韩欧美国产在线观看| 久久久久久久亚洲中文字幕| 乱码一卡2卡4卡精品| 久久这里有精品视频免费| 亚洲欧美日韩东京热| 麻豆久久精品国产亚洲av| av在线蜜桃| 欧美+亚洲+日韩+国产| 久久99热这里只有精品18| 看非洲黑人一级黄片| 国产男人的电影天堂91| 国产一区二区亚洲精品在线观看| 亚洲国产欧美在线一区| 国产一区二区亚洲精品在线观看| 成人特级av手机在线观看| 亚洲精品影视一区二区三区av| 一级毛片我不卡| 一级黄片播放器| 别揉我奶头 嗯啊视频| 日韩一区二区视频免费看| 亚洲经典国产精华液单| 天天躁夜夜躁狠狠久久av| 婷婷色综合大香蕉| 国产精品三级大全| 床上黄色一级片| 国产成人a∨麻豆精品| 亚洲精品国产av成人精品| 欧美3d第一页| 黄色欧美视频在线观看| 网址你懂的国产日韩在线| 国内少妇人妻偷人精品xxx网站| 国产高潮美女av| eeuss影院久久| АⅤ资源中文在线天堂| 女人十人毛片免费观看3o分钟| 插阴视频在线观看视频| 麻豆乱淫一区二区| 亚洲国产精品国产精品| 免费人成在线观看视频色| 亚洲成人av在线免费| 少妇被粗大猛烈的视频| 中文精品一卡2卡3卡4更新| 国产精品精品国产色婷婷| 嫩草影院精品99| 高清毛片免费观看视频网站| 亚洲一区高清亚洲精品| 可以在线观看毛片的网站| 黄色日韩在线| 日韩国内少妇激情av| 国产爱豆传媒在线观看| 在线观看66精品国产| 亚洲电影在线观看av| 国产 一区精品| АⅤ资源中文在线天堂| 欧美zozozo另类| 亚洲成a人片在线一区二区| 国内精品久久久久精免费| 老熟妇乱子伦视频在线观看| 2022亚洲国产成人精品| 高清日韩中文字幕在线| 六月丁香七月| 九九爱精品视频在线观看| 国产成人一区二区在线| 12—13女人毛片做爰片一| 亚洲成人精品中文字幕电影| 99热网站在线观看| 校园人妻丝袜中文字幕| 韩国av在线不卡| 久久久精品大字幕| 2021天堂中文幕一二区在线观| 亚洲内射少妇av| 91精品国产九色| 国产极品精品免费视频能看的| 精品午夜福利在线看| 性欧美人与动物交配| 变态另类成人亚洲欧美熟女| 亚洲精品国产成人久久av| 午夜福利成人在线免费观看| 寂寞人妻少妇视频99o| 亚洲av第一区精品v没综合| 一本精品99久久精品77| 亚洲激情五月婷婷啪啪| 日日摸夜夜添夜夜爱| 精品久久久久久久久久免费视频| 午夜福利在线观看免费完整高清在 | 最后的刺客免费高清国语| 亚洲欧美成人精品一区二区| 女的被弄到高潮叫床怎么办| 舔av片在线| 美女国产视频在线观看| 在线国产一区二区在线| 国产又黄又爽又无遮挡在线| 内地一区二区视频在线| 男人狂女人下面高潮的视频| 亚洲欧美日韩高清专用| 超碰av人人做人人爽久久| 精品久久久久久久久久免费视频| 午夜精品在线福利| 国产精品一及| 亚洲av男天堂| 又粗又硬又长又爽又黄的视频 | 六月丁香七月| 日本一二三区视频观看| av女优亚洲男人天堂| 美女cb高潮喷水在线观看| 少妇猛男粗大的猛烈进出视频 | 免费人成视频x8x8入口观看| 国产成人a区在线观看| 久久鲁丝午夜福利片| 久久人人爽人人爽人人片va| 国产91av在线免费观看| 色哟哟哟哟哟哟| 校园人妻丝袜中文字幕| 午夜精品国产一区二区电影 | 黄色欧美视频在线观看| 亚洲欧美日韩无卡精品| 国产精华一区二区三区| 免费无遮挡裸体视频| 激情 狠狠 欧美| 尤物成人国产欧美一区二区三区| 91午夜精品亚洲一区二区三区| 两个人视频免费观看高清| 十八禁国产超污无遮挡网站| 午夜a级毛片| 美女高潮的动态| 国产成人精品久久久久久| 久久6这里有精品| 小蜜桃在线观看免费完整版高清| 久久久久久九九精品二区国产| 少妇裸体淫交视频免费看高清| 亚洲图色成人| 在线a可以看的网站| 亚洲熟妇中文字幕五十中出| 国产av一区在线观看免费| 高清午夜精品一区二区三区 | 日韩欧美精品免费久久| 久久精品国产亚洲av涩爱 | av女优亚洲男人天堂| 在线a可以看的网站| 亚洲aⅴ乱码一区二区在线播放| 极品教师在线视频| 日韩一本色道免费dvd| 麻豆精品久久久久久蜜桃| 尾随美女入室| 99在线人妻在线中文字幕| 久久精品久久久久久久性| 欧美日韩在线观看h| 亚洲国产色片| 永久网站在线| 国产精品美女特级片免费视频播放器| 国内精品一区二区在线观看| 久久婷婷人人爽人人干人人爱| 精品久久久久久成人av| 日本五十路高清| 午夜福利成人在线免费观看| 人人妻人人澡欧美一区二区| 成人av在线播放网站| 自拍偷自拍亚洲精品老妇| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区av在线 | 一进一出抽搐gif免费好疼| 成人av在线播放网站| 日本与韩国留学比较| 禁无遮挡网站| 在线a可以看的网站| 亚洲欧美中文字幕日韩二区| 黄片无遮挡物在线观看| 秋霞在线观看毛片| eeuss影院久久| 一本精品99久久精品77| 91午夜精品亚洲一区二区三区| 久久精品夜色国产| 国产一级毛片七仙女欲春2| 最近的中文字幕免费完整| 一进一出抽搐gif免费好疼| 99riav亚洲国产免费| 国产精品综合久久久久久久免费| 91久久精品国产一区二区成人| 看十八女毛片水多多多| 最近中文字幕高清免费大全6| 免费看光身美女| 久久综合国产亚洲精品| 色5月婷婷丁香| 国产精品久久久久久av不卡| www.av在线官网国产| 国产精华一区二区三区| 九九在线视频观看精品| 麻豆成人午夜福利视频| 国产极品精品免费视频能看的| 日韩成人av中文字幕在线观看| 国内精品一区二区在线观看| 日本爱情动作片www.在线观看| 伦理电影大哥的女人| 日本av手机在线免费观看| 变态另类成人亚洲欧美熟女| 99国产精品一区二区蜜桃av| 成人高潮视频无遮挡免费网站| 少妇猛男粗大的猛烈进出视频 | 1000部很黄的大片| 久久精品夜色国产| 国产一级毛片七仙女欲春2| 一级毛片我不卡| 22中文网久久字幕| 狂野欧美白嫩少妇大欣赏| 久久精品久久久久久噜噜老黄 | 日韩三级伦理在线观看| 九九爱精品视频在线观看| 日韩精品有码人妻一区| 欧美最黄视频在线播放免费| 国产精品一区二区三区四区久久| 日韩一区二区视频免费看| 天堂√8在线中文| av在线亚洲专区| 亚洲欧美日韩卡通动漫| 亚洲国产高清在线一区二区三| 日本一二三区视频观看| 亚洲自拍偷在线| 国产亚洲av片在线观看秒播厂 | 男人和女人高潮做爰伦理| 亚洲激情五月婷婷啪啪| 亚洲人与动物交配视频| 日韩精品有码人妻一区| 别揉我奶头 嗯啊视频| 亚洲欧洲日产国产| 国产又黄又爽又无遮挡在线| 中国国产av一级| 久久久久久久久中文| 亚洲国产精品成人综合色| 黄色一级大片看看| 午夜免费激情av| 日本黄大片高清| 久久久久性生活片| 黄片无遮挡物在线观看| 麻豆乱淫一区二区| 久久精品国产亚洲av香蕉五月| 国产真实乱freesex| 久久精品国产自在天天线| 亚洲av电影不卡..在线观看| 亚洲成人中文字幕在线播放| 嘟嘟电影网在线观看| 日韩欧美三级三区| 蜜桃久久精品国产亚洲av| 精品午夜福利在线看| 乱码一卡2卡4卡精品| 国产不卡一卡二| 成人一区二区视频在线观看| АⅤ资源中文在线天堂| 伦理电影大哥的女人| 好男人视频免费观看在线| 亚洲精品日韩在线中文字幕 | 亚洲国产高清在线一区二区三| 搡老妇女老女人老熟妇| 欧美+日韩+精品| 一夜夜www| 久久久久国产网址| 日韩av在线大香蕉| 国产精品.久久久| 免费看美女性在线毛片视频| 伦精品一区二区三区| 婷婷色综合大香蕉| 国产黄片视频在线免费观看| 日韩三级伦理在线观看| 成人午夜高清在线视频| 免费看日本二区| 欧美高清成人免费视频www| 九九在线视频观看精品| 国产蜜桃级精品一区二区三区| 床上黄色一级片| 三级毛片av免费| 一个人看视频在线观看www免费| 精品一区二区三区人妻视频| 亚洲一级一片aⅴ在线观看| 能在线免费观看的黄片| 搞女人的毛片| 久久人人精品亚洲av| 麻豆成人午夜福利视频| 欧美高清成人免费视频www| 色综合亚洲欧美另类图片| 亚洲欧美日韩高清专用| 一级毛片aaaaaa免费看小| 国产成人福利小说| 国产伦理片在线播放av一区 | 国产精品一区www在线观看| 午夜a级毛片| 国产单亲对白刺激| 国产精品三级大全| 人体艺术视频欧美日本| 欧美色欧美亚洲另类二区| 欧美bdsm另类| 中文资源天堂在线| 久久久久网色| 2022亚洲国产成人精品| 国产成人精品一,二区 | 国产欧美日韩精品一区二区| 免费电影在线观看免费观看|