刁萬英,劉 剛,司炳成
?
土壤水力特性異質(zhì)性對土壤排水影響的瞬態(tài)隨機分析
刁萬英1,劉 剛1※,司炳成2
(1. 中國農(nóng)業(yè)大學土壤與水科學系,北京 100193; 2. 西北農(nóng)林科技大學水利與建筑工程學院,楊凌 712100)
土壤剖面水分入滲及再分布對生態(tài)和水文建模十分重要,而土壤異質(zhì)性導致垂向的導水率值差異非常大。因此,該文假設在單位梯度下,用微擾法和運動波模型并結(jié)合隨機分析研究一維瞬態(tài)土壤剖面排水的問題。采用Brooks-Corey模型,設飽和導水率和模型參數(shù)為隨機變量。結(jié)果表明:1)飽和導水率方差增大對排水過程具有減緩的作用,有效飽和導水率較?。?)土壤導水率異質(zhì)性越大,土壤蓄水能力越強;3)比較模型參數(shù)的波動與飽和導水率方差和模型參數(shù)的協(xié)方差,飽和導水率方差對排水影響更大;4)田間排水試驗的結(jié)論與模型預測相一致。研究可為以長期自我維持的生態(tài)系統(tǒng)和高田間持水量為目標的土壤復墾提供依據(jù)。
異質(zhì)性;排水;導水率;運動波;Brooks-Corey模型;粒徑分布;土壤
土壤飽和導水率是土壤水力學重要參數(shù)之一,反映土壤入滲和排水的性質(zhì)[1],也是了解非飽和土壤中水分和物質(zhì)運移的必要參數(shù)[2]。通??山柚寥懒椒植紒砉浪阃寥缹蔥3-4],并進一步獲得土壤含水量[5-6]。土地利用類型、土壤性質(zhì)和生物過程等因素都會導致土壤導水率的空間變異性增大[7-11],進而影響土壤剖面的水分入滲及再分布[12]。土壤剖面排水是治理環(huán)境問題中需要重點考慮的因素之一,對建立生態(tài)[13-15]和水文模型也至關重要。
土壤剖面排水過程可用Richards方程進行描述,研究表明,土壤剖面排水的最初始階段以重力作用占優(yōu)的自由排水為主,它呈現(xiàn)單位梯度變化趨勢[16]。在非飽和多孔介質(zhì)中,Richards方程的非線性特性使其求解,特別是在涉及隨機流時,其處理過程變得更加復雜[17-18]。可通過一階偏微分方程簡化Richards方程,使其具有簡單且精度高的優(yōu)點[19]。隨機分析法已廣泛應用于深層土壤異質(zhì)水力參數(shù)對溶質(zhì)運移的研究[17,20]。前人研究了2種土壤在水力特性相同而初始飽和含水量不同情況下土壤含水量在水平方向的重新分布[4],也分析了質(zhì)地對土壤水分入滲和再分布的顯著作用[6]。關于土壤導水率的異質(zhì)性對土壤含水量以及其剖面排水影響的研究較少。因此,本研究采用一種隨機模型[17,20-21],結(jié)合運動波[22]和微擾展開逼近法[21,23]研究單位梯度的排水過程,并用瞬態(tài)隨機量化分析土壤導水率和Brooks-Corey模型參數(shù)[24]的不確定性對排水的影響,以期為土壤復墾提供指導依據(jù)。
1.1 均質(zhì)土壤剖面含水量分布模型
在非飽和土壤中,當重力作用優(yōu)于毛管作用時,一維Richards方程可寫為[19]
式中為體積含水量,cm3/cm3;為時間,h;為土壤剖面深度,cm;為土壤導水率,cm/d。
當土壤剖面為0<<0(0代表飽和含水層和非飽和含水層的分界面位置),初始狀態(tài)為飽和時,式(1)對應的初始條件為
式中θ和θ分別表示飽和含水量和殘余含水量,cm3/cm3;為土壤剖面深度,cm。
式(1)和(2)中初始值稱特征值,在數(shù)學和工程領域也有大量研究[22]。一般通過常微分方程的解獲得式(2)的特征值[20,22]。
通過以下步驟獲得式(3)的解[19]:首先對()進行微分,得到d/d;其次把d/d設為/獲得一個等式;最后對第2步進行求解,確定(,),獲得(,)表達式的具體步驟見文獻[20]。為獲到(,)的解,須已知()。一般用van Genuchten模型[25]、Brooks-Core模型[24]和Gardner-Russo模型[26-27]描述()與的函數(shù)關系。van Genuchten模型和Brooks-Core模型優(yōu)于簡化的Gardner-Russo模型,Brooks-Core模型比van Genuchten模型更易于分析。在某些情況下van Genuchten模型和Brooks-Core模型的參數(shù)可以相互轉(zhuǎn)化[28],因此,本文采用Brooks-Core模型。
(4)
式中K表示飽和導水率,cm/d;表示模型參數(shù)。
Brooks-Core模型中參數(shù)與常用參數(shù)(描述土壤孔徑分布的土壤特性參數(shù))的關系[27]為
根據(jù)上述3步算法,獲得土壤含水量的分布。
(6)
1.2 異質(zhì)土壤剖面含水量分布模型
本文只研究垂向分層明顯的土壤水力學特性的變化[29]。利用式(6)討論土壤水力學特性的空間變異性,需應用1種方法分析土壤分層對排水的影響。若、θ和θ為常數(shù),那么θ和θ的變異性小于[12]。試驗中參數(shù)K和服從對數(shù)正態(tài)分布[23,30],因此,令=ln()和=ln(K)??紤]到其空間變異性和估算的不準確性,和為隨機變量,由期望值和隨機函數(shù)組成,分別為
假設和的變異性較小[12],則
式中2和2為和的方差。
將式(7)代入式(6),獲得
假設和變化很小,用泰勒展開法展開式(9)右邊分母項,可得
將式(10)代入(9),得到
(11)
定義1、2、3和4分別為
那么,式(11)可以改寫為
(13)
用指數(shù)函數(shù)(e≈1++2/2+…)的泰勒展開對式(9)進行整體平均,式(11)可進一步寫成
式(9)進行整體平均最終得到
(15)
式中σ是與的協(xié)方差。
此公式能估算土壤含水量,通過體積含水量與深度函數(shù)的積分,獲得某一深度瞬態(tài)土壤蓄水量(,)。
將*()=(,)/(,=0)定義為土壤相對蓄水量。
1.3 基于土壤粒徑分布估算土壤導水率
準確獲得導水率與含水量的函數(shù)關系十分必要;而直接測量水力學特性的方法費時[31]、成本高、結(jié)果差異大且適用范圍小[32]。通過土壤粒徑分布(particle size distribution,PSD)可以估算大范圍()~關系,是估算()的一種有效方法[32]。本文采用日本堀場激光散射粒度分布分析儀(LA-950, Horiba Instruments Inc., 2008)測定PSD,其測量范圍1.1×10-5~3.0 mm,分成93個粒級。將PSD分為部分,第級粒徑質(zhì)量分數(shù)用累計百分比與相應的連續(xù)粒徑大小的差值除以100來表示?;赑SD的樣品導水率(θ)與對應含水量θ間的關系[2]為
式中為試驗粒徑分布數(shù)據(jù)所獲得的經(jīng)驗參數(shù);為有效孔隙度,滿足=S·[1–(ρ/ρ)],為飽和含水量與總孔隙度的比),ρ為樣品的顆粒密度,g/cm3;ρ為樣品容重,g/cm3;R為第級粒徑的平均半徑;為指數(shù),與直徑為4的均勻圓管相等;為自然狀態(tài)下土壤的孔隙比;n為分式中的等效球粒子數(shù),α是Arya等[2]定義的標度系數(shù)。
(18)
式中N是假想球形顆粒半徑R的標度系數(shù)。由式(18)計算(),通過Brooks-Corey模型獲得參數(shù)和K及其變量。用瞬態(tài)隨機量化分析導水率不確定性的影響,比較理論與田間排水試驗結(jié)果。
為驗證隨機分析結(jié)果和式(15)的解,在加拿大艾伯塔省麥克默里堡北邊設置2個試驗點,進行田間水分入滲和排水試驗,試驗點分別為試驗點A(57°05'57''N、111°38'54'' W)和試驗點B(56°56'36''N、111°31'57'' W)。研究區(qū)域位于艾伯塔北方混交林生態(tài)區(qū)內(nèi),為濕潤大陸性氣候區(qū)的邊緣,冬季寒冷且持續(xù)時間長;夏天溫暖且持續(xù)時間短。試驗點A的生物量明顯低于試驗點B。
于2006年9月用土鉆進行取樣,試驗點A和試驗點B的垂直采樣間隔分別為2和5 cm,取樣深度1 m。風干,除去植物根系和其他碎片,過篩(2 mm),進行土壤粒徑分析。土壤顆粒粒徑分級標準采用美國制:粉粒(0.002 mm<≤0.05 mm),極細砂粒(0.05 mm<≤0.1 mm),細砂粒(0.1 mm<≤0.25 mm),中砂粒(0.25 mm<≤0.5 mm),粗砂粒(0.5 mm<≤2 mm)(為土壤顆粒的直徑)。如圖1所示,隨深度變化土壤粒徑分布發(fā)生變化。又根據(jù)前人研究[32-33],試驗點A為均質(zhì)土壤,試驗點B為異質(zhì)土壤,2個試驗點的土壤質(zhì)地都比較粗,養(yǎng)分低。采用雙環(huán)入滲儀[34](由2個金屬環(huán)組成,內(nèi)徑60 cm,外徑120 cm)監(jiān)測2個試驗點的入滲和排水,并用土壤水分傳感器(EnviroSCAN, Sentek Pty Ltd., South Australia)測定,測量深度為0.1~1.5 m。
3.1 土壤導水率異質(zhì)性對排水的影響
取樣行為易使土體結(jié)構(gòu)受到破壞,導致土壤水力學參數(shù)的測量精度降低。因此,本文中的飽和導水率與飽和含水量均無實測值。以一維為例,用運動波和微擾展開法說明異質(zhì)性的影響。假設初始為飽和狀態(tài),A和B點θ相等,即θA=θB=θ=0.05 cm3/cm3。無蒸發(fā)的情況下,用沙子均勻地填充高為100 cm的土柱,能夠自由排水。通過試驗點的粒徑分布數(shù)據(jù)獲取Brooks-Corey模型中土壤水力學特性參數(shù),A和B試驗點θ分別為0.483和0.415 cm3/cm3,<>分別為3和4.09;K分別為937和3 049 cm/d。
考慮一維異質(zhì)土壤試驗點B的垂直排水,用2描述導水率異質(zhì)性對排水的影響。圖2描述2個不同時段(12 min和1 d)水分隨土壤深度(即距土表距離)的變化(其中空心圓為均質(zhì)土壤)。當2趨近于0時,可用式(15)計算,也可單獨用式(6)計算;當曲線2=0.001與曲線2=0重合,即2接近于0時,式(15)復雜解可簡化為式(6)。在某特定土壤深度下,2值越大,越大,即土壤異質(zhì)性對排水過程有減緩作用。
在實際應用中,隨著時間的變化,一定深度的土壤含水量對植物根系生長十分重要。植物生長發(fā)育好才能維持生態(tài)系統(tǒng)的可持續(xù)性發(fā)展。圖3表示在2種異質(zhì)性(2)導水率的情況下,相對蓄水量隨排水時間的變化;當2/<>為0~0.5時,排水過程減緩,表明土壤水力學特征的空間異質(zhì)性較大,其蓄水能力增強。此外,異質(zhì)土壤(s=3 049 cm/d和2/<>=0.5)與均質(zhì)土壤(s=1 691.56 cm/d和2/<>=0)的蓄水量相等。假設和相關性為0,即σ= 0,變量的方差增加對減緩排水過程影響很大。
3.2 Brooks-Core模型參數(shù)不確定對排水的影響
設σ=0和2為定值,檢驗(用2描述即ln不確定性)對排水的影響。圖4表明當2不同時,土壤相對蓄水量隨時間的變化(實線代表均質(zhì)土壤2=0)。2值越大,則水分移動速度越慢,相對蓄水量越大。比較均質(zhì)條件與其他5種異質(zhì)條件(圖2和圖3)得出以下結(jié)論:與2相比較,的波動對排水影響小,尤其是一開始就排水的情況;隨著時間的變化,均質(zhì)土壤水力傳導參數(shù)的曲線之間的差異增加;當≈4.8 h,差異減少,隨后又增加;當>9.6 h,異質(zhì)性曲線之間的差異明顯(圖4);2/<>比值越大,土壤蓄水能力越強,在較長一段時間內(nèi)這種趨勢都會受到限制。
3.3和的協(xié)方差對排水的影響
當2和2為常數(shù)時,考慮協(xié)方差(σ)對土壤蓄水量的影響。分析4組異質(zhì)土壤水力學傳導參數(shù)與均質(zhì)之間的差異(圖5)。4種異質(zhì)土壤的蓄水量的曲線差異比較小,表明在排水過程中,σ的影響小于2或2的影響。隨著時間變化,異質(zhì)土壤水力學傳導參數(shù)對應的曲線之間的差異增加,當≈2.4 h時差異變小,隨后這種差異又隨時間的增加而增加。在很長一段時間內(nèi),σ值越大,土壤蓄水能力也就越強。
3.4 土壤有效導水率seff和2之間的相關性
圖3表明異質(zhì)土壤(K=3 049 cm/d和2=0.5)的蓄水量與均質(zhì)土壤(K=1 691.56 cm/d和σ=0)的相同。土壤有效導水率Keff與異質(zhì)性之間的關系值得深入研究。通過式(15)和式(6)對排水強度與時間的曲線進行擬合,獲得Keff。同時,用軟件Mathematica非線性擬合得到Keff。與σ2相比較,2和σ對排水的影響較小,圖6中2和σ均設為0,結(jié)果表明,土壤導水率的異質(zhì)性越大,則Keff越小,和圖3的結(jié)果一致,即異質(zhì)性對排水具有減緩的作用,導致土壤的蓄水能力增加。
3.5 驗 證
為證明重力占優(yōu)的入滲理論和微擾展開法的適用性與準確性,在2個試驗點進行排水試驗,比較實測值與理論預測值。從圖7a可看出,若Brooks-Corey模型的參數(shù)s和為非隨機,當>12 h,試驗點A和試驗點B的蓄水能力基本一致??紤]異質(zhì)性,當>4.8 h,試驗點B的蓄水能力大于試驗點A(圖7b)。圖8為試驗點A和試驗點B土壤粒徑分布平均值,可以看出試驗點A的土壤粒徑分布范圍比試驗點B小,說明試驗點B的孔隙度結(jié)構(gòu)異質(zhì)性更為顯著,土壤粒徑分布決定隨機變量s和的平均值和方差,試驗點A和試驗點B的2/<>分別是0.11和0.58。試驗點B的2/<>較大,排水能力差,土壤的蓄水能力增加,與之前的理論預測相一致(圖3)。通過田間排水試驗也可證明試驗點B的排水能力小于試驗點A(圖7c)。通過增加土壤結(jié)構(gòu)或土壤粒徑分布的異質(zhì)性,能提高土壤的蓄水能力,對維護穩(wěn)定生態(tài)系統(tǒng)的土壤復墾十分有用。
假設在一個單位梯度下,基于入滲理論和微擾展開法,本文采用Brooks-Corey模型及飽和導水率(K)和的隨機波動研究在一維情況下,異質(zhì)性土壤瞬態(tài)排水的過程。研究表明變量ln(K)的方差增大對排水過程具有減緩作用,且有較小的有效導水率Keff;異質(zhì)土壤(K= 3 049 cm/d和2=0.5)與均質(zhì)土壤(K=1 691.56 cm/d和2=0)的蓄水量相等,假設2個變量(和)之間的相關性為0,導水率的方差增加對減緩排水過程影響很大。土壤導水率的異質(zhì)性越大,土壤蓄水能力越強。參數(shù)()和導水率的協(xié)方差變化對排水影響不大。理論分析結(jié)果與試驗觀測一致,研究結(jié)果表明土壤的異質(zhì)性能提高蓄水能力。
本研究中涉及的公式和算法較復雜且驗證的土壤樣品的數(shù)量較少。因此,公式和算法的簡化或改進,該模型的普適性驗證是下一步的研究內(nèi)容。
[1] 鄭紀勇,邵明安,張興昌.黃土區(qū)坡面表層土壤容重和飽和導水率空間變異特征[J]. 水土保持學報,2004,18(3):53-56.
Zheng Jiyong, Shao Ming’an, Zhang Xingchang. Spatial variation of surface soil’s bulk density and saturated hydraulic conductivity on slope in Loess Region[J]. Journal of Soil and Water Conservation, 2004, 18(3): 53-56. (in Chinese with English abstract)
[2] Arya L M, Leij F J, Shouse P J, et al. Relationship between the hydraulic conductivity function and the particle-size distribution [J]. Soil Sci Soc Am J, 1999, 63(5): 1063-1070.
[3] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Sci Soc Am J, 1980, 44(5):892-898.
[4] Zhuang L, Hassanizadeh S M, van Genuchten M T, et al. Modeling of horizontal water redistribution in an unsaturated soil[J/OL]. Vadose Zone Journal, 2016, 15(3):1-11. doi:10.2136/vzj2015.08.0109
[5] Mohammadi M H, Meskini-Vishkaee F. Predicting soil moisture characteristic curves from continuous particle-size distribution data[J]. Pedosphere, 2013, 23(1): 70-80.
[6] 肖慶禮,黃明斌,邵明安,等. 黑河中游綠洲不同質(zhì)地土壤水分的入滲與再分布[J]. 農(nóng)業(yè)工程學報,2014,30(2):124-131.
Xiao Qingli, Huang Mingbin, Shao Ming’an, et al. Infiltration and drainage processes of different textural soil moisture in middle reaches of Heihe River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 124-131. (in Chinese with English abstract)
[7] 郭麗俊,李毅,李敏,等. 壤土土壤水力特性空間變異的多重分形分析[J]. 農(nóng)業(yè)機械學報,2011,42(9):50-58.
Guo Lijun, Li Yi, Li Min, et al. Ultifractal study on spatial variability of soil hydraulic properties of lou soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(9): 50-58. (in Chinese with English abstract)
[8] Wang Yunqiang, Shao Ming’an, Liu Zhipeng, et al. Regional-scale variation and distribution patterns of soil saturated hydraulic conductivities in surface and subsurface layers in the loessial soils of China[J]. Journal of Hydrology, 2013, 487(22): 13-23.
[9] 姚淑霞,趙傳成,張銅會. 科爾沁不同沙地土壤飽和導水率比較研究[J]. 土壤學報,2013,50(3):45-53.
Yao Shuxia, Zhao Chuancheng, Zhang Tonghui. A comparison of soil saturated hydraulic conductivity in different Horqin sand land[J]. Acta Pedologica Sinica, 2013, 50(3): 45-53. (in Chinese with English abstract)
[10] Jirku V, Kodesova R, Nikodem A, et al. Temporal variability of structure and hydraulic properties of topsoil of three soil types[J]. Geoderma, 2013, 204(4): 43-58.
[11] 付同剛,陳洪松,王克林.喀斯特小流域土壤飽和導水率垂直分布特征[J]. 土壤學報,2015,52(3):538-546.
Fu Tonggang, Chen Hongsong, Wang Kelin. Vertical distribution of soil saturated hydraulic conductivity in a small Karst catchment[J]. Acta Pedologica Sinica, 2015, 52(3): 538-546. (in Chinese with English abstract)
[12] 劉春利,胡偉,賈宏福,等. 黃土高原水蝕風蝕交錯區(qū)坡地土壤剖面飽和導水率空間異質(zhì)性[J]. 生態(tài)學報,2012,32(4):1211-1219.
Liu Chunli, Hu Wei, Jia Hongfu, et al. Spatial heterogeneity of soil saturated hydraulic conductivity on a slope of the wind-water erosion crisscross region on the Loess Plateau[J]. Acta Ecologica Sinica, 2012, 32(4): 1211-1219. (in Chinese with English abstract)
[13] Seyfried M S, Schwinning S, Walvoord M A, et al. Ecohydrological control of deep drainage in arid and semiarid regions[J]. Ecology, 2005, 86(2): 277-287.
[14] Sponseller R A, Fisher S G. The influence of drainage networks on patterns of soil respiration in a desert catchment[J]. Ecology, 2008, 89(4): 1089-1100.
[15] Galagedara L W, Parkin G W, Redman J D, et al. Field studies of the GPR ground wave method for estimating soil water content during irrigation and drainage[J]. J Hydro, 2005, 301(Suppl 1): 182-197.
[16] Warrick A W. Soil Water Dynamics[M]. Oxford: Oxford University Press, 2003.
[17] Zhang Dongxiao. Nonstationary stochastic analysis of transient unsaturated flow in randomly heterogeneous media[J]. Water Resour Res, 1999, 35(4): 1127-1141.
[18] Tartakovsky A M, Garcianaranjo L, Tartakovsky D M.Transient flow in a heterogeneous vadose zone with uncertain parameters[J]. Vadose Zone Journal, 2004, 3(3): 154-163.
[19] Sisson J B, Ferguson A H, van Genuchten M Th. Simple method for predicting drainage from field plots[J]. Soil Sci Soc Am J, 1980, 44(6): 1147-1152.
[20] Rubin Y, Or D. Stochastic modeling of unsaturated flow in heterogeneous soils with water uptake by plant roots: The parallel columns model[J]. Water Resour Res, 1993, 29(3): 619-631.
[21] Dagan G. Solute transport in heterogeneous porous formations[J]. J Fluid Mech, 1984, 145: 151-177.
[22] Aris R, Amundson N R. Mathematical methods in chemical engineering[M]//First-Order Partial Differential Equations with Applications. Englewood, USA: Englewood Cliffs Prentice-Hall Inc, 1973.
[23] Russo D. Stochastic modeling of macrodispersion for solute transport in a heterogeneous unsaturated porous formation[J]. Water Resour Res, 1993, 29(2): 383-397.
[24] Brooks R H, Corey A T. Hydraulic properties of porous media[M]//Hydrol Papers 3. Colorado Fort Collins: Colorado State University, 1964.
[25] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Sci Soc Am J, 1980, 44(5): 892-898.
[26] Gardner W R. Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table[J]. Soil Sci, 1958, 85(4): 228-232.
[27] Russo D. Determining soil hydraulic properties by parameter estimation: On the selection of a model for the hydraulic properties[J]. Water Resour Res, 1988, 24(3): 453-459.
[28] Morel Seytoux H J, Meyer P D, Nachabe M, et al. Parameter equivalence for the Brooks-Corey and van Genuchten soil characteristics preserving the effective capillary drive[J]. Water Resour Res, 1996, 32(5): 1251-1258.
[29] Yeh T C J. One-dimensional steady state infiltration in heterogeneous soils[J]. Water Resour Res, 1989, 25(10): 2149-2158.
[30] Kosugi K. Three-parameter lognormal distribution model for soil water retention[J]. Water Resour Res,1994, 30(4): 891-901.
[31] 徐紹輝,劉建立. 土壤水力性質(zhì)確定方法研究進展[J]. 水科學進展,2003,14(4):494-501.
Xu Shaohui, Liu Jianli. Advance in approaches for determining unsaturated soil hydraulic properties[J]. Advances in Water Science, 2003, 14(4): 494-501. (in Chinese with English abstract)
[32] 李曉鵬,劉建立,張佳寶,等. 華北沖積平原壤質(zhì)潮土的土壤粒徑分形空間尺度分析[J]. 農(nóng)業(yè)工程學報,2014,30(4):118-124.
Li Xiaopeng, Liu Jianli, Zhang Jiabao, et al. Analysis of fractal magnitude of soil particles in loamy Chao soils in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(4): 118-124. (in Chinese with English abstract)
[33] 王金滿,張萌,白中科,等. 黃土區(qū)露天煤礦排土場重構(gòu)土壤顆粒組成的多重分形特征[J]. 農(nóng)業(yè)工程學報, 2014, 30(4): 230-238.
Wang Jinman, Zhang Meng, Bai Zhongke, et al. Multi-fractal characteristics of reconstructed soil particle in opencast coal mine dump in loess area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(4): 230-238. (in Chinese with English abstract)
[34] 雷廷武,張婧,王偉,等. 土壤環(huán)式入滲儀測量效果分析[J]. 農(nóng)業(yè)機械學報,2013,44(12):99-104.
Lei Tingwu, Zhang Jing, Wang Wei, et al. Assessment on soil infiltration rates measured by ring infiltrometer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 99-104. (in Chinese with English abstract)
[35] Wolfram S. The Mathematica Book[M]//3rd ed. Champaign: Wolfram Media, 1996.
Transient stochastic analysis on influence ofhydraulic heterogeneity ondrainage in soils
Diao Wanying1, Liu Gang1※, Si Bingcheng2
(1.100193; 2.712100)
Water draining and redistribution from soil profiles is important for both ecologicaland hydrological modeling. In reality, the vertical hydraulic conductivity is highly variable because of the heterogeneity of soil. Therefore, the objectives of this study were 1) to conduct the stochastic analysis of a one-dimensional transient drainage problem under a unit gradient assumption; 2) to quantify the influence of uncertainty of the hydraulic conductivity using the perturbation method and kinematic wave model; and 3) to verify the stochastic analysis and the analytical solution. Field experiments were carried out at 2 experimental sites (site A: 57°05'57'' N, 111°38'54'' W and site B: 56°56'36'' N, 111°31'57'' W) in the north of Fort McMurray, northeastern Alberta, Canada. A double-ring infiltrometer consisted of 2 metal rings with the inner ring diameter of 60 cm and the outer ring diameter of 120 cm was used to measure soil infiltration and drainage. In addition, soil water content was determined by EnviroSCAN probe (EnviroSCAN, Sentek Pty Ltd., South Australia). The parameters in Brooks-Corey model for homogeneous soil (site A) and heterogeneous soil (site B) were obtained from the particle size distribution (PSD) data. The results showed that the saturated water content (θ) of site A and site Bwere 0.483and 0.415 cm3/cm3, respectively. The PSD indexexpected value of site A and site Bwere 3 and 4.09, respectively. The saturated hydraulic conductivityof site A and site Bwere937 and 3 049 cm/d, respectively. The water draining process was slowly decreased when the variance of hydraulic conductivity was increased from 0 to 0.5. There was the same relative water storage when the saturated hydraulic conductivity of site A and site Bwere1 691.56 and 3 049 cm/d, respectively; and the variance of hydraulic conductivity were 0 and 0.5, respectively. The relative water storage difference among heterogeneous soil was remarkable when the time was more than 9.6 hours, and the trend was that at long time limit, the larger the soil water storage capacity should be. The draining of water was sensitive to the variance of hydraulic conductivity, but it was less sensitive to the fluctuation of PSD index, as well as to the covariance of hydraulic conductivity and PSD index. The larger the heterogeneity of soil hydraulic conductivity was, the smaller the effective saturated hydraulic conductivity was. The introduction of heterogeneities would slow down the draining and increase the water storage ability. Taking the heterogeneous characteristic into account, the site B had larger water storage capacity than the site A when time was more than 4.8 hours. However, the 2 sites had nearly the same water storage ability after 12 hours, when no stochastic characteristic in parameters of Brooks-Corey model was considered, such as soil hydraulic conductivity and PSD index. Two field experiments were in agreement with the theoretical predictions. The ratio of the variance and the expected value operator of hydraulic conductivity were 0.11 and 0.58 for site A and site B, respectively. The heterogeneous site B would hinder the draining of water and increase the water storage ability, which was also coincident with the theoretical prediction. The variance of hydraulic conductivity would cause the slowing down of the drainage process and thus result in a smaller effective saturated hydraulic conductivityIn conclusion, we could improve the water storage ability of soil by introducing heterogeneity in soil structure or particle size distribution. The analytical result agreed with the experimental observation, which hinted that making soil heterogeneous would be better for improving the water storage ability. This study is useful for soil reclamation whose objective is to produce a long-term self-sustaining ecosystem with high field capacity.
heterogeneity; drainage; hydraulic conductivity; kinematic wave; Brooks-Corey model; particle size distribution; soils
10.11975/j.issn.1002-6819.2016.24.014
S152.7
A
1002-6819(2016)-24-0107-07
2016-03-09 修訂時間:2016-08-10
國家重點研發(fā)計劃項目資助(2016YFD0800102);國家自然科學基金資助項目(41371231)
刁萬英,女,新疆博樂人,博士生,主要從事土壤含水量測量方法的研究。北京 中國農(nóng)業(yè)大學土壤與水科學系,100193。Email:diaowanying@126.com
劉剛,男,山東威海人,教授,博士生導師,主要從事土壤物理熱特性和土壤含水量測量方法的研究。北京 中國農(nóng)業(yè)大學土壤與水科學系,100193。Email:liug@cau.edu.cn