張俊敏,劉開(kāi)培,汪 立,陳文娟
?
基于乘法窗函數(shù)的插值FFT的諧波分析方法
張俊敏1,劉開(kāi)培2,汪 立3,陳文娟2
(1.中南民族大學(xué)計(jì)算機(jī)科學(xué)學(xué)院,湖北 武漢 430074;2.武漢大學(xué)電氣工程學(xué)院,湖北 武漢 430072;3.國(guó)網(wǎng)天津市電力公司,天津 300000)
針對(duì)常規(guī)加窗插值算法在使用過(guò)程中會(huì)出現(xiàn)不滿足要求的情況,提出了一種新的乘法窗函數(shù)構(gòu)造方法。以三種常規(guī)窗函數(shù)為例構(gòu)造出九種乘法窗函數(shù),并驗(yàn)證了基于這些乘法窗函數(shù)的三譜線插值FFT的諧波高精度分析方法。分析了新的窗函數(shù)的性能,將新窗函數(shù)應(yīng)用到三插值FFT的諧波分析算法當(dāng)中。仿真實(shí)驗(yàn)表明,構(gòu)造出的窗函數(shù)在10個(gè)周期左右數(shù)據(jù)和5階擬合條件下,相比于常規(guī)窗函數(shù)插值算法有更高的準(zhǔn)確度。在實(shí)際工程中可根據(jù)需要選擇所構(gòu)造的窗函數(shù)。
諧波分析;窗函數(shù);快速傅里葉變換;乘法;頻譜泄露
針對(duì)電力系統(tǒng)諧波問(wèn)題一方面惡化電能質(zhì)量[1],另一方面對(duì)電網(wǎng)的安全穩(wěn)定和經(jīng)濟(jì)運(yùn)行也造成較大影響[1]。因此,對(duì)系統(tǒng)中諧波參數(shù)的高精度測(cè)量將有利于電能質(zhì)量的評(píng)估,同時(shí)對(duì)于減少諧波危害,維護(hù)電網(wǎng)安全穩(wěn)定、高效運(yùn)行也是十分必要的[2]。
加窗傅里葉變換插值分析諧波是目前比較成熟的算法[3-4]。常用窗函數(shù)如漢寧(Hanning)窗[5]、布萊克曼(Blackman)窗[6]、布萊克曼漢斯(Blackman- Harris)窗函數(shù)[7]、納托爾(Nuttall)窗函數(shù)[8]、萊夫文森特(Rife-Vincent)窗函數(shù)[9]以及各種組合窗[10-15]。在插值算法中,D. Agrez 和龐浩等人各自提出了雙譜線的修正算法[4,16],Wu Jing、牛勝鎖和黃冬梅等人提出了三譜線[17-21]修正算法。這些改進(jìn)降低了頻譜泄漏和柵欄效應(yīng)的影響,提高了諧波分析的準(zhǔn)確性。然而在工程實(shí)際使用中,常用窗函數(shù)插值算法仍然不能滿足高精度的諧波分析要求。
本文提出了一種乘法窗的構(gòu)成方法,將三種常規(guī)窗函數(shù)進(jìn)行乘法運(yùn)算構(gòu)成不同種類的乘法窗函數(shù),利用基于這些乘法窗三譜線插值FFT的諧波分析方法進(jìn)行電力系統(tǒng)諧波分析。仿真結(jié)果表明,該構(gòu)造出的窗函數(shù)相對(duì)于常規(guī)窗函數(shù)插值算法,有更高的準(zhǔn)確度,實(shí)現(xiàn)了諧波的高精度測(cè)量。
乘法窗函數(shù)的通用公式是由多個(gè)窗函數(shù)乘積產(chǎn)生的,乘法窗的通用公式為
如表1所示,以Hanning窗,Blackman窗,Blackharris窗為例,給出乘法窗函數(shù)的構(gòu)造模式及其特性參數(shù)。為方便書(shū)寫做以下簡(jiǎn)寫: Hanning→Hn,Blackman→Bm,Blackharris→Bh。同時(shí)考慮到計(jì)算量問(wèn)題,乘法窗函數(shù)的階次不宜過(guò)高,在此限定,那么每種窗函數(shù)的子階次可能的取值為:0、1、2、3。
(300)、(030)、(003)這三種組合窗函數(shù)屬于自乘法窗函數(shù),其他6種屬于互乘法窗函數(shù)。
表1 基于常規(guī)函數(shù)的乘法窗函數(shù)
對(duì)信號(hào)進(jìn)行加窗后,可以得到:
離散傅里葉變換后得到:
(3)
另記:
根據(jù)式(4)和式(5)可以得到:
(6)
信號(hào)幅值,根據(jù)式(4)可知:
(9)
類似式(7)的逼近方法,當(dāng)比較大,窗函數(shù)系數(shù)為實(shí)系數(shù),式(10)可表示為:,為偶函數(shù),逼近多項(xiàng)式不含奇次項(xiàng)。三譜線修正逼近多項(xiàng)式如下:
(11)
根據(jù)式(4)還可以得出信號(hào)的相位:
根據(jù)式(6)、式(7)、式(9)、式(11)、式(12)即可進(jìn)行各次諧波參數(shù)的分析。考慮到其中大量窗函數(shù)的離散傅里葉分析,其表達(dá)式為
(13)
為了驗(yàn)證所提算法的精度,進(jìn)行10次諧波仿真分析。信號(hào)模型為
對(duì)如表2所示的信號(hào)進(jìn)行加窗FFT三插值諧波分析,窗函數(shù)如表1所示。以下研究不同乘法窗函數(shù)對(duì)檢測(cè)精度的影響,修正算法中的擬合多項(xiàng)式次數(shù)均取5次,擬合次數(shù)低,擬合系數(shù)的個(gè)數(shù)比較少。
算法流程圖在文獻(xiàn)中均有詳細(xì)說(shuō)明,此處不予贅述。
由表3~表5的仿真結(jié)果可以看出,本文構(gòu)造的乘法窗函數(shù)插值FFT計(jì)算方法,計(jì)算結(jié)果普遍好于采用普通窗函數(shù)插值算法。所用修正公式階次為5次,階次較低,節(jié)約了計(jì)算量。
表2 諧波信號(hào)參數(shù)
表3 乘法窗頻率測(cè)量相對(duì)誤差
表4 乘法窗幅值測(cè)量相對(duì)誤差
表5 乘法窗相位測(cè)量相對(duì)誤差
利用FFT進(jìn)行諧波分析時(shí),通過(guò)加窗和插值算法可以減少由于非同步采樣或非整周期截?cái)嗨鸬恼`差。本文從常規(guī)窗函數(shù)入手,推導(dǎo)出了一種構(gòu)造的乘法窗函數(shù)插值FFT分析方法。仿真實(shí)驗(yàn)結(jié)果表明本文所提出的基于乘法窗函數(shù)的算法的總體精度比基于常規(guī)窗函數(shù)諧波檢測(cè)的計(jì)算精度更高,具有較高的實(shí)用價(jià)值。在實(shí)際使用中可根據(jù)仿真結(jié)果來(lái)選擇合適的乘法窗函數(shù)。
[1] 姚致清, 趙倩, 劉喜梅. 基于準(zhǔn)同步原理的逆變器并網(wǎng)技術(shù)研究[J]. 電力系統(tǒng)保護(hù)與控制, 2011, 39(24): 123-131.
YAO Zhiqing, ZHAO Qian, LIU Ximei. Research on grid-connected technology of inverter based on quasi synchronous principle[J]. Power System Protection and Control, 2011, 39(24): 123-131.
[2] 劉亞棟, 楊洪耕, 陳麗, 等. 非穩(wěn)態(tài)諧波和間諧波檢測(cè)的新方法[J]. 電網(wǎng)技術(shù), 2012, 36(1): 170-175.
LIU Yadong, YANG Honggeng, CHEN Li, et al. A new method to detect non-stationary harmonics and inter- harmonics[J]. Power System Technology, 2012, 36(1): 170-175.
[3] 曾博, 滕召勝. 納托爾自卷積窗加權(quán)電力諧波分析方法[J]. 電網(wǎng)技術(shù), 2011, 35(8): 134-139.
ZENG Bo, TENG Zhaosheng. A Nuttall self-convolution window-based approach to weighted analysis on power system harmonic[J]. Power System Technology, 2011, 35(8): 134-139.
[4] 龐浩, 李東霞, 俎云霄, 等. 應(yīng)用FFT 進(jìn)行電力系統(tǒng)諧波分析的改進(jìn)算法[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2003, 23(6): 49-54.
PANG Hao, LI Dongxia, ZU Yunxiao, et al. An improved algorithm for harmonic analysis of power system using FFT technique[J]. Proceedings of the CSEE, 2003, 23(6): 49-54.
[5] GRANDKE T. Interpolation algorithms fordiscrete Fourier transform of weighed signals[J]. IEEE Transactions on Instrumentation and Measurement, 1983, 32(2): 350-355.
[6] 周俊, 王小海, 祈才君. 基于Blackman窗函數(shù)的插值FFT在電網(wǎng)諧波信號(hào)分析中的應(yīng)用[J]. 浙江大學(xué)學(xué)報(bào)(理學(xué)版), 2006, 33(6): 650-653.
ZHOU Jun, WANG Xiaohai, QI Caijun. Estimation of electrical harmonic parameters by using the interpolated FFT algorithm based on Blackman window[J]. Journal of Zhejiang University (Science Edition), 2006, 33(6): 650-653.
[7] 許珉, 張鴻博. 基于Blackman-harris窗的加窗FFT插值修正算法[J]. 鄭州大學(xué)學(xué)報(bào)(工學(xué)版), 2005, 26(4): 99-101.
XU Min, ZHANG Hongbo. The correction algorithm based on the Blackman-harris windows and interpolated FFT[J]. Journal of Zhengzhou University (Engineering Science), 2005, 26(4): 99-101.
[8] 卿柏元, 滕召勝, 高云鵬, 等. 基于Nuttall窗雙譜線插值FFT的電力諧波分析方法[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2008, 28(25): 153-158.
QING Baiyuan, TENG Zhaosheng, GAO Yunpeng, et al. An approach for electrical harmonic analysis based on Nuttall window double-spectrum-line interpolation FFT[J]. Proceedings of the CSEE, 2008, 28(25): 153-158.
[9] 曾博, 滕召勝, 溫和, 等. 萊夫-文森特窗插值FFT諧波分析方法[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2009, 29(10): 115-120.
ZENG Bo, TENG Zhaosheng, WEN He, et al. Harmonic analysis based on Rife-Vincent window interpolated FFT[J]. Proceeding of the CSEE, 2009, 29(10): 115-120.
[10]WEN He, TENG Zhaosheng, GUO Siyu. Triangular self-convolution window with desirable side lobe behaviors for harmonic analysis of power system[J]. IEEE Transactions on Instrumentation & Measurement, 2010, 59(3): 543-551.
[11] ZENG Bo. Parameter estimation of power system signals based on cosine self-convolution window with desirable side-lobe behaviors[J]. IEEE Transactions on Power Delivery, 2011, 26(1): 250-257.
[12] WEN He, TENG Zhaosheng, GUO Siyu, et al. Hanning self-convolution window and its application to harmonic analysis[J]. Sci China Ser E, 2009, 52(2): 467-476.
[13] 許珉, 劉瑋. 加8 項(xiàng)余弦窗插值FFT算法[J]. 電力系統(tǒng)保護(hù)與控制, 2015, 43(11): 27-32.
XU Min, LIU Wei. An interpolation FFT algorithm based on 8-term cosine window[J]. Power System Protection and Control, 2015, 43(11): 27-32.
[14] 王玲, 徐柏榆, 盛超, 等. 一種新的余弦組合窗插值FFT諧波分析算法[J]. 武漢大學(xué)學(xué)報(bào): 工學(xué)版, 2014, 47(2): 250-254.
WANG Ling, XU Baiyu, SHENG Chao, et al. An approach for harmonic analysis based on a new type of cosine combination window interpolation FFT[J]. Engineering Journal of Wuhan University, 2014, 47(2): 250-254.
[15] 王劉旺, 黃建才, 孫建新, 等. 基于加漢寧窗的FFT 高精度諧波檢測(cè)改進(jìn)算法[J]. 電力系統(tǒng)保護(hù)與控制, 2012, 40(24): 28-33.
WANG Liuwang, HUANG Jiancai, SUN Jianxin, et al. An improved precise algorithm for harmonic analysis based on Hanning-windowed FFT[J]. Power System Protection and Control, 2012, 40(24): 28-33.
[16] AGREZ D. Weighted multipoint interpolated DFT to improve amplitude estimation of multi-frequency signal[J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(2): 287-292.
[17] WU J, ZHAO W. A simple interpolationalgorithm for measuring multi-frequency signal based on DFT[J]. Measurement, 2009, 42(2): 332-327.
[18] 牛勝鎖, 梁志瑞, 張建華, 等. 基于三譜線插值FFT的電力諧波分析算法[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2012, 32(16): 130-136.
NIU Shengsuo, LIANG Zhirui, ZHANG Jianhua, et al. An algorithm for electrical harmonic analysis based on triple-spectrum-line interpolation FFT[J]. Proceedings of the CSEE, 2012, 32(16): 130-136.
[19] 牛勝鎖, 梁志瑞, 張建華, 等. 基于四項(xiàng)余弦窗三譜線插值FFT 的諧波檢測(cè)方法[J]. 儀器儀表學(xué)報(bào), 2012, 33(9): 2002-2008.
NIU Shengsuo, LIANG Zhirui, ZHANG Jianhua, et al. Harmonic detection approach based on 4-term cosine window triple-spectrum-line interpolation FFT[J]. Chinese Journal of Scientific Instrument, 2012, 33(9): 2002-2008.
[20] 黃冬梅, 龔仁喜, 焦鳳昌, 等. 萊夫-文森特窗三譜線插值的電力諧波分析[J]. 電力系統(tǒng)保護(hù)與控制, 2014, 42(2): 28-34.
HUANG Dongmei, GONG Renxi, JIAO Fengchang, et al. Power harmonic analysis based on Rife-Vincent window and triple-spectral-line interpolation[J]. Power System Protection and Control, 2014, 42(2): 28-34.
[21] 蔡曉峰, 張鴻博, 魯改鳳. 應(yīng)用三譜線插值FFT分析電力諧波的改進(jìn)算法[J]. 電力系統(tǒng)保護(hù)與控制, 2015, 43(2): 33-39.
CAI Xiaofeng, ZHANG Hongbo, LU Gaifeng. Improvement algorithm for harmonic analysis of power system using triple-spectrum-line interpolation algorithm based on window FFT[J]. Power System Protection and Control, 2015, 43(2): 33-39.
(編輯 姜新麗)
An algorithm for harmonic analysis based on multiplication window function
ZHANG Junmin1, LIU Kaipei2, WANG Li3, CHEN Wenjuan2
(1. College of Computer Science, South-Central University for Nationalities, Wuhan 430074, China; 2. College of Electrical Engineering, Wuhan 430072, China; 3. State Grid Tianjin Electric Power Company, Tianjin 300000, China)
The conventional interpolation windowed FFT algorithms will have a greater error when the number of the truncation is not enough. For this reason, a new construction method of multiplication window functions is presented to analyze electrical harmonics. Based on three conventional window functions, this paper constructs nine kinds of window functions and verifies an algorithm for harmonic high-precision analysis based on three-spectrum-line interpolation FFT. The performance of new window functions is listed, and the new window function is used for the harmonic analysis algorithm of three interpolation FFT. Simulation experiments show that the algorithms using multiplication windows has higher accuracy than using conventional window functions when the sample number length is about 10 periods and the polynomial is 5 order. In the practical engineering, the constructed window functions can be chosen as required. This work is supported by National Natural Science Foundation of China (No. 50677048).
harmonic analysis; window function; FFT;multiplication; spectrum leakage
10.7667/PSPC151347
國(guó)家自然科學(xué)基金項(xiàng)目(50677048)
2015-08-11;
2015-09-30
張俊敏(1977-),女,博士,副教授,主要從事電力系統(tǒng)諧波分析;E-mail: 173902815@qq.com 劉開(kāi)培(1962-),男,博士,教授,博士生導(dǎo)師,主要從事電能質(zhì)量相關(guān)分析處理;E-mail: kpliu@whu.edu.cn 汪 立(1990-),男,碩士,研究方向?yàn)榇昂瘮?shù)插值算法。E-mail: 417197078@qq.com