• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Expression of HIF-1α and Its Target Genes in the Nanorana parkeri Heart: Implications for High Altitude Adaptation

    2016-09-28 06:55:20QiongZHANGXingzhiHANYinziYERobertKRAUSLiqingFANLeYANGandYiTAO
    Asian Herpetological Research 2016年1期

    Qiong ZHANG, Xingzhi HAN, Yinzi YE, Robert H. S. KRAUS, Liqing FAN, Le YANGand Yi TAO

    1Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences,Beijing 100101, China

    2College of Life Sciences, Harbin Normal University, Harbin 150025, Heilongjiang, China

    3College of Life Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China

    4Department of Biology, University of Konstanz, Konstanz 78457, Germany

    5Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, Radolfzell 78315, Germany

    6College of Agricultural and Animal Husbandry, Tibet University, Tibet 860000, China

    7Tibet Plateau Institute of Biology, Tibet 850001, China

    ?

    Expression of HIF-1α and Its Target Genes in the Nanorana parkeri Heart: Implications for High Altitude Adaptation

    Qiong ZHANG1,*, Xingzhi HAN2, Yinzi YE3, Robert H. S. KRAUS4,5, Liqing FAN6, Le YANG7and Yi TAO1

    1Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences,Beijing 100101, China

    2College of Life Sciences, Harbin Normal University, Harbin 150025, Heilongjiang, China

    3College of Life Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China

    4Department of Biology, University of Konstanz, Konstanz 78457, Germany

    5Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, Radolfzell 78315, Germany

    6College of Agricultural and Animal Husbandry, Tibet University, Tibet 860000, China

    7Tibet Plateau Institute of Biology, Tibet 850001, China

    Hypoxia-inducible factor 1 alpha (HIF-1α) and its target genes vascular endothelial growth factor (VEGF)and transferrins (TF) play an important role in native endothermic animals' adaptation to the high altitude environments. For ectothermic animals - especially frogs - it remains undetermined whether HIF-1α and its target genes (VEGF and TF) play an important role in high altitude adaptation, too. In this study, we compared the gene sequences and expression of HIF-1α and its target genes (VEGF and TF) between three Nanorana parkeri populations from different altitudes (3008 m a.s.l., 3440 m a.s.l. and 4312 m a.s.l.). We observed that the cDNA sequences of HIF-1A exhibited high sequence similarity (99.38%) among the three altitudinally separated populations; but with increasing altitude, the expression of HIF-1A and its target genes (VEGF and TF) increased signifi cantly. These results indicate that HIF-1α plays an important role in N. parkeri adaptation to the high altitude, similar to its role in endothermic animals.

    Hypoxia, cold-temperature, ectothermic animals, Nanorana parkeri, high altitude, vascular endothelial growth factor, transferrins, anura, amphibia

    1. Introduction

    A high mountain range's plateau environment is hostile to life due to the low atmospheric oxygen pressure (up to about 40% lower than at sea level on the Tibetan plateau,for example), cold climate and strong ultraviolet radiation. Hypoxic conditions may compromise cell and organ metabolism; especially for the heart, because the heart is an obligate aerobic organ. Under hypoxic conditions,the heart muscle not only cannot produce enough energyto maintain essential cellular processes, but also may be subjected to cardiac dysfunction, ultimately leading to death (Giordano, 2005). Organisms with long-term adaptations to high altitude environments have evolved a set of specific physiological traits to survive in this harsh environment. The study of the evolutionary basis of adaptive mechanisms to alleviate hypoxia not only has important biological, but also clinical implications. This offers the opportunity to contribute to fundamental human medical research by means of evolutionary studies (Rose,2001).

    Endothermic animals native to high altitude areas,such as the domestic yak (Bos grunniens), plateau pika(Ochotona curzoniae) and the human Tibetan population have developed traits to survive in highly hypoxic environments. Examples for such adaptations are largerlung capacity, lower pulmonary arterial pressure,and higher haemoglobin concentration (Cruz et al.,1980; Moore et al., 2000; Li et al., 2001; Wu and Kayser, 2006). Compared with endothermic animals,ectothermic animals-especially frogs-carry many special characteristics, such as the incomplete development of the respiratory and circulatory system, abundant skin secretion, and also pronounced hypoxia tolerance(Knickerbocker and Lutz, 2001; Stewart et al., 2004). Previous studies showed that they have evolved a highly efficient and well-regulated metabolism to counter the impacts of extreme environmental conditions in the fi eld. For example, Telmatobius coleus, one of the plateau anurans, harbours an increased skin surface area where the cutaneous capillaries penetrate to the outer layer of the skin, and has elevated haemoglobin concentration and haematocrit in comparison with sea-level anurans(Hutchison et al., 1976).

    The molecular mechanisms underlying these phenotypic traits are modulated by several specific genes. For example, vascular endothelial growth factor(VEGF) plays an important role in adaptation to high altitude hypoxia environments for plateau pika (Li et al., 2013) and the Peruvian human population in the Andes (Espinoza et al., 2014). Transferrins (encoded by TF) play an important role in iron transportation during erythropoiesis in Ethiopians (Beall et al., 2002). Expression levels of egl nine homolog 1 (EGLN1)and peroxisome proliferator-activated receptor alpha(PPARA) were signifi cantly associated with the decreased haemoglobin phenotype in Tibetan human populations(Simonson et al., 2010). The ADAM metallopeptidase domain 17 (ADAM17), arginase 2 (ARG2) and matrix metalloproteinase-3(MMP3) genes were detected to be under positive selection in Yak (Qiu et al., 2012), and chemokine (C-C motif) ligand 2 (CCL2) and pyruvate kinase isozymes R/L (PKLR) in Tibetan antelope(Pantholops hodgsonii; Ge et al., 2013).

    All genes mentioned above are parts of the hypoxiainducible factor (HIF) pathway. HIFs are crucially involved in maintaining oxygen homeostasis. They are composed of a labile hypoxia-regulated α subunit, so called HIF-1α, -2α or -3α, and a constitutive β subunit(Wenger and Gassmann, 1997). HIF-1α plays a critical role in transcriptional regulation of the amount and timing of targeted gene production during hypoxia,which mediates many genes involved in erythropoiesis,angiogenesis, autophagy, and energy metabolism (William and Peter, 2008). For example, HIF-1α regulates VEGF(Forsythe et al., 1996), which is a major mediator of vasculogenesis and angiogenesis and protects endothelial cells from undergoing apoptosis (Nor et al., 1999). TF encodes transferrins, which are other proteins modulated by HIF-1α. They mediate cellular iron uptake and deliver iron to cells requiring it (Tacchini et al., 1999). Iron is essential for oxygen delivery, as it is incorporated in the newly synthesized haemoglobin throughout erythropoiesis. Therefore, HIF-1α is a key transcription factor that regulates a variety of cellular and systemic adaptations to hypoxia; VEGF and TF are pivotal target genes of HIF-1α in angiogenesis and erythropoiesis under hypoxia. Although physiological responses to hypoxia have been extensively studied in plateau frogs (e.g. Weber et al., 2002), whether HIF-1α plays an important role in ranid adaptation to high elevation environments, like it does in endothermic animals, is poorly understood.

    The Qinghai-Tibetan plateau (at greater than 4000 m a.s.l.) is the highest plateau in the world, which provides the best opportunity for us to study the adaptation of ectothermic animals to high altitude hypoxic environments in their natural habitat. Nanorana parkeri is an anuran endemic to the southern Tibetan plateau and distributes across a narrow latitudinal (28 to 31°N)but extensive altitudinal range (2850 to 5100 m a.s.l.). Therefore, N. parkeri represents the highest altitude ranid in the world (Hu, 1987). Across the species' altitudinal range, environmental conditions vary large, for example,annual mean temperature ranged from 3.0°C to 8.6°C;air oxygen content ranged from 88 to 114 mg/cm3(Zhang et al., 2012). Although N. parkeri has been a model to study morphology, life history and biological chemistry in high altitude environments (Ma et al., 2009; Ma and Lu, 2009, 2010; Lu et al., 2010; Zhang et al., 2012), the role of HIF-1α in their adaptation to high altitude remains undetermined. In this study, we compared the expression of HIF-1α and its target genes in N. parkeri in heart tissue(VEGF and TF) between populations of three different altitudes (low: 3008 m a.s.l., medium: 3440 m a.s.l., high:4312 m a.s.l.) .

    2. Materials and Methods

    2.1 Sample preparation Healthy adult Nanorana parkeri were captured at various altitudes (3008 m a.s.l.,3440 m a.s.l. and 4312 m a.s.l.) in the Sejila Mountains,in Nyingtri county, Tibet in June 2014 (Table 1). Five individuals for each altitude were used for HIF-1α quantification. Animals were killed by doublepithing technique adopted from Costanzo et al. (1991)immediately upon capture to harvest heart tissue. Half ofthe tissue preserved in RNA holder (TransGen Biotech Co., Ltd., Beijing, China, stored at room temperature),was brought to our laboratory in Beijing and used for RNA extraction. The remaining tissue was frozen at -80°C and transferred to our laboratory for protein extraction. All procedures involved in the handling and care of animals were in accordance with the China Practice for the Care and Use of Laboratory Animals and were approved by China Zoological Society.

    2.2 RNA extraction and primer preparation Total RNA was extracted and purified from N. parkeri heart using TRIZOL reagent (Invitrogen). The concentrations of RNA samples were quantifi ed with a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific Inc., DE)for further analyses.

    We designed HIF-1A, VEGF and TF primers according to the whole-genome sequence of N. parkeri (Sun et al., 2014) and homologous sequences of Human (Homo sapiens), yak (Bos grunniens), common frog (Rana temporaria), rainbow trout (Oncorhynchus mykiss),African clawed frog (Xenopus laevis) and tropicalis frog (Xenopus tropicalis) in GenBank (Table 2). All of the primers were produced by Shanghai Biotechnology Corporation (Shanghai, China).

    2.3 RT-PCR Reverse-transcription polymerase chain reaction (RT-PCR) was performed with the Access RTPCR System (Promega) according to the manual. The total of 0.6 μg RNA isolated from N. parkeri heart for each altitude from each of five individuals were pooled into a total aliquot of three μg and reverse transcribed for 60 min at 42°C and for 10 min at 75°C with M-MLV reverse transcriptase. RT-PCRs were performed by using SYBR green PCR Master Mix (Applied Biosystems) in a 10 μl total volume, including 5 μl premix, 2 μl 1 μM each primer and 1 μl cDNA template to quantify the expression of HIF-1A, VEGF and TF mRNA. The amplification was performed for 40 cycles at the following cycle conditions: 95°C for 10 s (denaturation), 56°C for 10 s(annealing) and 72°C for 20 s (extension). Each reaction was performed in triplicate. To compare among groups,mRNA levels of target genes were measured as relative expression using 2-△△CTvalues and normalized to β-Actin generated from the same sample (Livak and Schmittgen 2001).

    2.4 Sequence alignment The PCR products of HIF-1A of the three altitude groups were sequenced with an automated sequencer by the BGI Tech Solutions Corporation (Shenzhen, China). For each altitude,the PCR products from the cDNA of the pool of fiveindividuals were sequenced together. Multiple sequence alignment was carried out using DNAMAN software package (Lynnon Biosoft).

    Table 1 Samples information.

    Table 2 Primer details for RT-PCR.

    2.5 Western blot Hearts of three samples (together 100 mg) from each altitude were homogenized in 1 ml lysis buffer (1 mM PMSF, 3 mM EDTA, 40 mM Tris (PH 7.5), 5 mM DTT). The tissue was crushed on ice, and centrifuged at 10 000 rpm (Sigma 1-15K,Germany) for 15 min at 4°C. Then the upper layer was transferred into a new 1.5 ml Eppendorf PE tube. Protein concentration was measured directly with a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific Inc.,DE). An aliquot containing 30 μg of protein was diluted in loading buffer (loading buffer:sample = 5:1, v/v,heated to 97°C for 15 min) and was separated by 10% sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE)electrophoresis until the blue dye front was at the end of the gel but not diffused off the gel. Then, the protein was transferred onto a 0.45-μm-pore nitrocellulose fi lter membrane (NC, Immuno-Blot, BioRad, USA) at 9V for 1 h at 4°C. The membranes were blocked at room temperature for 1 h with 3 % fat-free milk in TBS (2M Tris, NaCl, PH 7.5). The membrane was then incubated in 1:500 diluted HIF-1α antibody (Abcam, Cambridge, UK)at 4°C overnight. After washing twice with TBS-T (1 L TBS + 200 μl Tween), and twice with TBS-every washing lasted for 10 min - the membrane was incubated with HIF-1α-ChIP grade antibody (diluted 1:10 000; AB2185,Abcam, Cambridge, MA) for 3h at room temperature. After additional washing, twice with TBS-T and twice with TBS, proteins were visualized by exposing the blot to an X-ray fi lm, and photographed with an ImageQuantLAS4000 (GE Healthcare UK Ltd, Little Chalfont, UK). The net intensities of individual bands were measured using Quantity One (version 4.6.2, Bio-Rad company,USA). Each altitude group was measured three times.

    2.6 Statistical analysis of data Results were presented as mean ± S.E. per altitude group. Group means were compared by one-way analysis of variance, with a post hoc Scheffe's test. A value of P < 0.05 was considered statistically signifi cant (SPSS ver. 17.0).

    3. Results

    3.1 The sequence alignment of HIF-1A Chromatograms of the pooled sequences indicated no mixed signals from nucleotide variation that might have been present in the pooled individuals. We therefore infer no signs of intraaltitude genetic variation. The length of the N. parkeri HIF-1A cDNA was 2358 bp. The identity of HIF-1A cDNA sequences between altitudes was 99.38% across the three altitudes (3008 m a.s.l., 3440 m a.s.l. and 4312 m a.s.l.; Figure 1), and there were a total number of 28 variable sites. Among them, 23 were substitutions, and five of them were indels (insertions or deletions). Eight of these substitution sites lead to amino acid differences(Table 3).

    3.2 The expression of HIF-1α protein The protein concentration of HIF-1α increased significantly with increasing altitude, as measured by the net intensities ± SE of individuals bands: 8.20 ± 0.8418 (low altitude),24.81 ± 1.6079 (medium altitude), and 68.63 ± 1.0281(high altitude) (Table 4 Line A, Figure 2A).

    3.3 The expression of HIF-1A, VEGF and TF mRNA The expression of HIF-1A, VEGF or TF mRNA increased with altitude, too (Figure 2B, C, D). For HIF-1A and VEGF, the largest source of variance was between groups; for example, the expression of high altitude was significantly higher than the medium altitude and low altitude. For TF, the largest source of variance derived from within groups, so no signifi cant differences among the three altitudes was observed (Table 4 Lines B, C, D).

    4. Discussion

    Although sequence similarity of HIF-1A among samples collected from the three altitudes was high, some substitutions have led to amino acid changes (Table 3). Furthermore, there seem to be more genetic differences between the high altitude group and the two other groups. For example, six of the eight amino acid changes werebetween high altitude and the two other altitude groups;therefore, the high altitude environment seems to have resulted in the largest change in the genetic background. Variation in the amino acid sequence may induce important functional changes of HIF-1α, and could therefore be responsible for differences between altitude groups. A functional analysis of the changed amino acid residues in further proteomic experiments might shed light on the important questions of the function of this protein.

    Table 3 Eight substitution sites cause amino acid differences.

    Simultaneously, differential gene expression patterns among different altitude groups were observed. The HIF-1α expression of N. parkeri is increasing with increased habitat altitude. The same pattern of expression is also observed in plateau pika (Ochotona curzoniae; Li et al.,2009). These results indicate that HIF-1A is a hypoxiainducible gene in N. parkeri, just like in endothermic animals. In lower vertebrates, the role of HIF-1α in hypoxia tolerance was first reported for rainbow trout(Soitamo et al., 2001). Furthermore, the role of HIF-1α in hypoxia tolerance has also been proven indirectly by a set of target genes of HIF-1α in euryoxic fi sh (Gillichthys mirabilis; Gracey et al., 2001). Rissanen et al. (2006)found that except for hypoxia (Cao et al. 2008), cold temperature also induces the expression of HIF-1α in crucian carp (Rissanen et al., 2006). In our study,low temperature and high altitude habitats covary, and temperature could thus play an additional role in altituderelated HIF-1α regulation. The possible interaction of altitude and temperature will need to be addressed in future experiments. However, whatever up-regulated the HIF-1A expression, hypoxia or the cold temperature,HIF-1α plays an important role in the local adaptation of N. parkeri to its high-altitude environment.

    Figure 1 Multiple sequence alignment of Nanorana parkeri HIF-1α cDNA at three altitudes (high altitude: HIF-1AH, medium altitude: HIF-1AM and low altitude: HIF-1AL). Asterisks indicate identical sites and the gap indicated the variable sites among three altitude sequences.

    Table 4 The ANOVA results of HIF-1α protein and HIF-1A, VEGF and TF mRNA expression.

    Figure 2 Expression of HIF-1α protein (A) and HIF-1A (B) , VEGF (C) and TF (D) mRNA of Nanorana parkeri at different altitudes (low,3008 m; medium, 3440 m; high, 4312 m). For mRNA, expression levels were normalized to β-actin mRNA levels. Representative results from three independent experiments in triplicate on the same protein or mRNA of different individuals are presented as means ± standard error.

    Our findings indicate that VEGF mRNA levels are increased in the N. parkeri that inhabit higher altitudes. The trend is similar to the changes in HIF-1α mRNA expression with altitude. It is well known that hypoxiainduced expression of VEGF is under the control of HIF-1A in other species (Damert et al., 1997), therefore we assume that the higher expression level of VEGF mRNA may be supported by the higher expression of HIF-1α protein in N. parkeri inhabiting higher altitudes. In addition, low temperature is reported to be involved inangiogenesis through up-regulating VEGF expression by HIF in mouse adipose tissue (Xue et al., 2009). Thus,cold temperatures could also a play an important role in VEGF up-regulation, like for HIF-1A. Therefore, hypoxia and cold temperature, the two prime ecological factors of high-altitude habitat, may play an important role in the adaption of N. parkeri to high altitude environments through HIF-1A and VEGF.

    Chytridiomycosis is a potentially lethal disease of amphibians caused by the amphibian chytrid fungus(Batrachochytrium dendrobatidis) that has been associated with population declines in several amphibian species throughout the world (Daszak et al., 1999; Carey, 2000;Green et al., 2002; Lips et al., 2006). Research suggests that B. dendrobatidis is more abundant in medium and high altitudes than low altitude because medium and high altitudes provide ideal temperatures for B. dendrobatidis(Daszak et al., 2003; Berger et al., 2004; Woodhams and Alford, 2005; Drew et al., 2006). The downstream gene of HIF-1A, TF, is up-regulated under hypoxic conditions in endothermic animals (e.g. Ethiopians, Beall et al.,2002; plateau pika, Ochotona curzoniae, Li et al., 2013). In our study, we indeed found a trend of increasing TF mRNA expression with increasing altitude in N. parkeri. TF is also associated with the innate immune system(Breitman et al., 1980; Evans et al., 1989; Stafford and Belosevic, 2003) as an acute phase protein in response to infection or stress conditions and limits the amount of iron, leading to the inhibition of bacterial growth (Sahoo et al., 2009). Based on the fact that orthologs of TF were identifi ed in amphibians (Moskaitis et al., 1990; Morabito and Moczydlowski, 1994; Mohd-Padil H et al., 2012)and that the amphibian's skin can excrete antimicrobial peptides (Bevins and Zasloff, 1990), we hypothesize that high expression of TF mRNA could be related to defense mechanisms against pathogenic microorganisms in high altitude.

    In conclusion, comparison of HIF-1α protein and mRNA expression across various altitudes indicates the important role of HIF-1α in adaptation to a high altitude environment. Our study made the first step for the understanding of ranids' adaptation to such high altitude environments. In future, creating whole transcriptomes(Wolf, 2013) will become affordable also for ecologically oriented working groups and might allow for a fresh look without being biased towards knowledge from other systems. Candidate genes for adaptive processes have been mined with genome-wide technology before in similar experimental or empirical set-ups (Bonin et al., 2006; Kane and Rieseberg, 2007) and true RNA sequencing may help us to identify so far unknown genes and pathways.

    Acknowledgements We thank the anonymous villagers in Tibet for assisting with our collecting samples. Our research was supported by National Natural Science Foundation of China (No. 31471994). The samples were analyzed at Key laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences.

    References

    Beall C. M., Decker M. J., Brittenham G. M., Kushner I.,Gebremedhin A., Strohl K. P. 2002. An Ethiopian pattern of human adaptation to high-altitude hypoxia. Proc Natl Acad Sci USA, 99: 17215-17218

    Bevins C. L., Zasloff M. 1990. Peptides from frog skin. Annu Rev Biochem, 59: 395-414

    Berger L., Spear R., Hines H. B. Marantelli G., Hyatt A. D.,McDonald K. R. 2004. Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust Vet J, 82:31-36

    Bonin A., Taberlet P., Miaud C., Pompanon F. 2006. Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol Biol Evol, 23: 773-783

    Breitman T. R., Collins S. J., Keene B. R. 1980. Replacement of serum by insulin and transferring supports growth and differentiation of the human promyelocytic cell line HL-60. Exp Cell Res, 126, 494-498

    Cao Y. B., Chen X. Q., Wang S., Wang Y. X., Du J. Z. 2008. Evolution and regulation of the downstream gene of hypoxiainducible factor-1 α in naked carp (Gymnocypris przewalskii)from lake Qinghai, China. J Mol Evol, 67: 570-580

    Carey C. 2000. Infectious disease and worldwide declines of amphibian populations, with comments on emerging diseases in coral reef organisms and in humans. Environ Health Persp, 108:143-150

    Costanzo J. P., Lee R. E., Wright M. F. 1991. Effect of cooling rate on the survival of frozen wood frogs, Rana sylvatica. J Comp Physiol B, 161: 225-229

    Cruz J. C., Reeves J. T., Russell B. E., Alexander A. F., Will D. H. 1980. Embryo transplanted calves: the pulmonary hypertensive trait is genetically transmitted. Proc Soc Exp Biol Med, 164: 142-145

    Damert A., Ikeda E., Risau W. 1997. Activator-protein-1 binding potentiates the hypoxia-inducible factor-1-mediated hypoxiainduced transcriptional activation of vascular-endothelial growth factor expression in c6 glioma cells. Biochem J, 327: 419-423

    Daszak P., Berger L., Cuningham A. A., Hyatt A., Green D. E.,Spear R. 1999. Emerging infectious diseases and amphibian population declines. Emerg infect dis, 5: 735-748

    Daszak P., Cunningham A. A., Hyatt A. D. 2003. Infectious disease and amphibian populations declines. Divers Distrib, 9:141-150

    Drew A., Allen E. J., Allen L. J. S. 2006. Analysis of climatic andgeographic factors affecting the presence of chytridiomycosis in Australia. Dis Aquat Organ, 68: 245-250

    Espinoza J. R., Alvarez G., León-Velarde F., Preciado H. F. J., Macarlupu J., Rivera-Ch M., Rodriguez J., Favier J.,Gimenez-Roqueplo A., Richalet J. 2014. Vascular Endothelial Growth Factor-A is associated with chronic mountain sickness in the Andean population. High Alt Med Biol, 15:146-154

    Evans W. H., Wilson S. M., Bednarek J. M., Peterson E. A.,Knight R. D., Mage M. G., McHugh L. 1989. Evidence for a factor in normal human serum that induces human neutrophilic granulocyte end-stage maturation in vitro. Leuk Res, 13: 673-682

    Forsythe J. A., Jiang B. H., Iyer N. V., Agani F., Leung S. W.,Koos R. D., Semenza G. L. 1996. Activation of vascular endothelial growth factor gene transcription by hypoxiainducible factor 1. Mol Cell Biol, 16: 4604-4613

    Ge R. L., Cai Q., Shen Y. Y., San A., Ma L., Zhang Y., Yi X.,Chen Y., Yang L. F., Huang Y. 2013. Draft genome sequence of the Tibetan antelope. Nat Commun 4, 1858 | DOI: 10.1038/ ncomms2860

    Giordano F. J. 2005. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest, 115: 500-508

    Gracey A. Y., Troll J. V. Somero G. N. 2001. Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci USA, 98:1993-1998

    Green D. E., Converse K. A., Schrader A. K. 2002 Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996-2001. Ann NY Acad Sci, 969: 323-339

    Hu S. Q. 1987. Amphibia-reptilia in Tibet. Beijing: Science Press

    Hutchison V. H., Haines H. B., Engbretson G. 1976. Aquatic life at high altitude: respiratory adaptations in the lake Titicaca frog,Telmatobius coleus. Respir Physiol, 27: 115-129

    Kane N. C., Rieseberg L. H. 2007. Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus. Genetics, 175: 1823-1834

    Knickerbocker D. L., Lutz P. L. 2001. Slow ATP loss and the defense of ion homeostasis in the anoxic frog brain. J Exp Biol,204: 3547-3551

    Li Q. F., Sun R. Y., Huang C. X., Wang Z. K., Liu X. T., Hou J. J., Liu J. S., Cai L. Q., Li N., Zhang S. Z., Wang Y. 2001. Cold adaptive thermogenesis in small mammals from different geographical zones of China. Comp Biochem Physiol A, 129:949-961

    Li H., Ren Y., Guo S., Cheng L., Wang D., Yang J., Chang Z.,Zhao X. 2009. The protein level of hypoxia-inducible factor-1α is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes. J Exp Zool, 311A: 134-141

    Li H., Guo S., Ren Y., Wang D., Yu H., Li W., Zhao X., Chang Z. 2013. VEGF189expression is highly related to adaptation of the plateau pika (Ochotona curzoniae) inhabiting high altitudes. High Alt Med Biol, 14: 395-404

    Lip K., Brem F., Brenes R., Reeve J. D., Alford R. A. Voyles J.,Carey C., Livo L., Pessier A. P., Collins J. P. 2006. Emerging infectious disease and the loss of biodiversity in a neotropical amphibian community. Proc Natl Acad Sci USA, 103: 3165-3170.

    Livak K. J., Schmittgen T. D. 2001. Analysis of relative gene expression data using realtime quantitative PCR and theMethod. Methods, 25: 402-408

    Lu Z. K., Zhai L., Wang H., Che Q., Wang D., Feng F., Zhao Z., Yu H. 2010. Novel families of antimicrobial peptides with multiple functions from skin of Xizang plateau frog, Nanorana parkeri. Biochimie, 92: 475-481

    Ma X. Y., Lu X., Meril? J. 2009. Altitudinal decline of body size in a Tibetan frog. J Zool, 279: 364-371

    Ma X. Y., Lu X. 2009. Sexual size dimorphism in relation to age and growth based on skeletochronological analysis in a Tibetan frog. Amphib Reptil, 30: 351-359

    Ma X. Y., Lu X. 2010. Annual cycle of reproductive organs in a Tibetan frog, Nanorana parkeri. Anim Biol, 60: 259-271

    Mohd-Padil H., Mohd-Adnan A, Gabaldón T. 2012. Phylogenetic analyses uncover a novel clade of transferrin in nonmammalian vertebrates. Mol Biol Evol, doi:10.1093/molbev/ mss325

    Moore L. G., Armaza F., Villena M., Vargas E. 2000. Comparative aspects of high-altitude adaptation in human populations. Adv Exp Med Biol, 475: 45-62

    Morabito M. A., Moczydlowski E. 1994. Molecular cloning of bullfrog saxiphilin: a unique relative of the transferrin family that binds saxitoxin. Proc Natl Acad Sci USA, 91: 2478-2482

    Moskaitis J. E., Pastori R. L., Schoenberg D. R. 1990. The nucleotide sequence of Xenopus laevis transferrin mRNA. Nucleic Acids Res, 18: 6135

    Nor J. E., Christensen J., Mooney D. J., Polverini P. J. 1999. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol, 154:375-384

    Qiu Q., Zhang G., Ma T., Qian W., Wang J., Ye Z., Cao C.,Hu Q., Kim J., Larkin D. M., Auvil L., Capitanu B., Ma J.,Lewin H. A., Qian X., Lang Y., Zhou R., Wang L., Wang K.,Xia J., Liao S., Pan S., Lu X., Hou H., Wang Y., Zang X., Yin Y., Ma H., Zhang J., Wang Z., Zhang Y., Zhang D., Yonezawa T., Hasegawa M., Zhong Y., Liu W., Zhang Y., Huang Z.,Zhang S., Long R., Yang H., Wang J., Lenstra J. A., Cooper D. N., Wu Y., Wang J., Shi P., Wang J., Liu J. 2012. The yak genome and adaptation to life at high altitude. Nature Genet, 44:946-949

    Rissane E., Tranberg H. K., Sollid J., Nilsson G. E., Nikinmaa M. 2006. Temperature regulates hypoxia-inducible factor-1(HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius). J Exp Biol, 209: 994-1003

    Rose M. R. 2001. Adaptation. In Levin RA (Eds), Encyclopedia of Biodiversity. San Diego: Academic Press: 17-23

    Sahoo P. K., Mohanty B. R., Kumari J., Barat A., Sarangi N. 2009. Cloning, nucleotide sequence and phylogenetic analyses,and tissue-specifi c expression of the transferrin gene in Cirrhinus mrigala infected with Aeromonas hydrophila. Comp Immunol Microb, 32: 527-537

    Simonson T. S., Yang Y., Huff C. D., Yun H., Qin G.,Witherspoon D. J., Bai Z., Lorenzo F. R., Xing J., Jorde L. B., Prchal J. T., Ge R. L. 2010. Genetic evidence for highaltitude adaptation in Tibet. Science, 329: 72-75

    Soitamo A. J., Rabergh C. M., Gassmann M., Sistonen L.,Nikinmaa M. 2001. Characterization of a hypoxia-induciblefactor (HIF-1α) from rainbow trout. Accumulation of protein occurs at normal venous oxygen tension. J Biol Chem, 276:19699-19705

    Stafford J. L., Belosevic M. 2003. Transferrin and innate immune response of fish: identification of a novel mechanism of macrophage activation. Dev Comp Immunol, 27: 539-554

    Stewart E. R., Reese S. A., Ultsh G. R. 2004. The physiology of hibernation in Canadian leopard frogs (Rana pipiens) and bullfrogs (Rana catesbeiana). Physio Biochem Zool, 77: 65-73

    Sun Y. B., Xiong Z. J., Xiang X. Y., Liu S. P., Zhou W. W., Tu X. L., Zhong L., Wang L., Wu D. D., Zhang B. L., Zhu C. L., Yang M. M., Chen H. M., Li F., Zhou L., Feng S. H.,Huang C., Zhang G. J., Irwin D., Hillis D. M., Murphy R. W., Yang H. M., Che J., Wang J., Zhang Y. P. 2014. Wholegenome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proc Natl Acad Sci USA, 112: E1257-E1262

    Tacchini L., Bianchi L., Bernelli-Zazzera A., Cairo G. 1999. Transferrin Receptor Induction by Hypoxia: HIF-1-Mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem, 274: 24142-24146

    Weber R. E., Ostojic H., Fago A., Dewilde S., Van Hauwaert M. L., Moens L., Monge C. 2002. Novel mechanism for high-altitude adaptation in hemoglobin of the Andean frog Telmatobius peruvianus. Am J of Physiol-Regul Integr Comp Physiol, 283: 1052-1060

    Wenger R. H., Gassmann M. 1997. Oxygen (es) and the hypoxiainducible factor-1. Biol Chem, 378: 609-616

    William G. K., Peter J. R. 2008. Oxygen sensing by metazoans:the central role of the HIF hydroxylase pathway. Mol Cell, 30:393-402

    Wolf J. B. W. 2013. Principles of transcriptome analysis and gene expression quantifi cation: an RNA-seq tutorial. Mol Ecol Resour, 13: 559-572

    Woodhams D. C., Alford R. A. 2005. Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conserv Biol, 19: 1449-1459

    Wu T., Kayser B. 2006. High altitude adaptation in Tibetans. High Alt Med Biol, 7: 193-208

    Xue Y., Petrovic N., Cao R., Larsson O., Lim S., Chen S.,F(xiàn)eldmann H. M., Liang Z. Zhu Z., Nedergaard J., Cannon B., Cao Y. 2009. Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metabol, 9: 99-109

    Zhang L. X., Ma X. Y., Jiang J. P., Lu X. 2012. Stronger condition dependence in female size explains altitudinal variation in sexual size dimorphism of a Tibetan frog. Biol J Linnean Soc, 107:558-565

    *

    Dr. Qiong Zhang, from Institute of Zoology,Chinese Academy of Sciences, Beijing, China, with her research focusing on the molecular ecology and adaptive evolution of amphibians.

    E-mail: zhangqiong@ioz.ac.cn

    29 June 2015 Accepted: 1 December 2015

    精品一区二区三区视频在线| 午夜日本视频在线| 欧美精品高潮呻吟av久久| 一本大道久久a久久精品| 中文字幕人妻丝袜制服| 国产日韩欧美在线精品| 亚洲精品第二区| 男女高潮啪啪啪动态图| 中文欧美无线码| 久久精品人人爽人人爽视色| 日本欧美视频一区| 麻豆乱淫一区二区| 欧美精品av麻豆av| 欧美日韩视频精品一区| 高清毛片免费看| 亚洲欧洲精品一区二区精品久久久 | 熟女人妻精品中文字幕| 久久精品久久久久久噜噜老黄| 免费观看av网站的网址| 亚洲欧美成人精品一区二区| 中文乱码字字幕精品一区二区三区| 国产av国产精品国产| 久久久久人妻精品一区果冻| 一本色道久久久久久精品综合| 久久久久久人人人人人| 久久青草综合色| 日本午夜av视频| 免费女性裸体啪啪无遮挡网站| 亚洲国产精品999| 久久久久久久亚洲中文字幕| 精品一区在线观看国产| 日韩伦理黄色片| 日韩av在线免费看完整版不卡| 欧美最新免费一区二区三区| kizo精华| 欧美成人午夜精品| 久久精品国产综合久久久 | 国产欧美日韩一区二区三区在线| 看非洲黑人一级黄片| 在线天堂最新版资源| 精品一区二区三卡| 97人妻天天添夜夜摸| 一级毛片我不卡| 18禁在线无遮挡免费观看视频| 精品一区二区三区四区五区乱码 | 国产视频首页在线观看| freevideosex欧美| 一级片免费观看大全| 亚洲人成77777在线视频| 日日爽夜夜爽网站| 色吧在线观看| 最近最新中文字幕大全免费视频 | 岛国毛片在线播放| 亚洲成人一二三区av| 国产男女内射视频| 亚洲精品日韩在线中文字幕| 国产免费现黄频在线看| 久久女婷五月综合色啪小说| 日韩欧美一区视频在线观看| 2021少妇久久久久久久久久久| 国产精品一区二区在线不卡| 亚洲av欧美aⅴ国产| 色网站视频免费| 国产淫语在线视频| 久久人人爽av亚洲精品天堂| 少妇人妻 视频| 边亲边吃奶的免费视频| 精品酒店卫生间| 日韩精品免费视频一区二区三区 | 亚洲精品国产av蜜桃| 一二三四在线观看免费中文在 | 韩国av在线不卡| 好男人视频免费观看在线| 男女边吃奶边做爰视频| 丝袜人妻中文字幕| 久久久久久久久久人人人人人人| 赤兔流量卡办理| 国产欧美日韩一区二区三区在线| 国产 精品1| 一边亲一边摸免费视频| 亚洲精品视频女| 十八禁网站网址无遮挡| 国产又色又爽无遮挡免| 久久久a久久爽久久v久久| 久久久精品94久久精品| 欧美激情国产日韩精品一区| 夜夜爽夜夜爽视频| 成人午夜精彩视频在线观看| 久久婷婷青草| 亚洲国产欧美日韩在线播放| 丰满少妇做爰视频| 亚洲精品国产色婷婷电影| 大片电影免费在线观看免费| 亚洲国产欧美在线一区| 亚洲婷婷狠狠爱综合网| 在线观看美女被高潮喷水网站| 我的女老师完整版在线观看| 亚洲美女视频黄频| 久久99精品国语久久久| 国产成人一区二区在线| 亚洲欧美色中文字幕在线| 久久久久精品性色| 久久青草综合色| 亚洲色图综合在线观看| 在线观看免费高清a一片| 国产成人91sexporn| 五月伊人婷婷丁香| videosex国产| 免费在线观看完整版高清| 欧美97在线视频| 自线自在国产av| 欧美丝袜亚洲另类| 男人爽女人下面视频在线观看| 亚洲高清免费不卡视频| 青春草亚洲视频在线观看| 草草在线视频免费看| 18在线观看网站| freevideosex欧美| 亚洲av国产av综合av卡| 欧美最新免费一区二区三区| 十八禁高潮呻吟视频| 91在线精品国自产拍蜜月| 国产精品一区二区在线不卡| 日本爱情动作片www.在线观看| 热re99久久国产66热| 精品一区在线观看国产| 搡女人真爽免费视频火全软件| 日本wwww免费看| 国产欧美另类精品又又久久亚洲欧美| 丝袜人妻中文字幕| 另类亚洲欧美激情| 内地一区二区视频在线| 老熟女久久久| 成人午夜精彩视频在线观看| 国产成人精品在线电影| 香蕉精品网在线| 性色av一级| 秋霞在线观看毛片| 最近2019中文字幕mv第一页| 熟女人妻精品中文字幕| 欧美精品亚洲一区二区| 国产免费视频播放在线视频| 欧美国产精品一级二级三级| 亚洲欧美成人综合另类久久久| 插逼视频在线观看| 国产在线免费精品| 亚洲久久久国产精品| 国产精品不卡视频一区二区| 午夜视频国产福利| 一个人免费看片子| 免费黄网站久久成人精品| 欧美成人精品欧美一级黄| 韩国高清视频一区二区三区| 欧美xxxx性猛交bbbb| 婷婷色综合www| 丰满少妇做爰视频| 精品卡一卡二卡四卡免费| 美女福利国产在线| av国产精品久久久久影院| 看免费av毛片| 啦啦啦中文免费视频观看日本| 亚洲精品国产色婷婷电影| 亚洲国产av新网站| 婷婷色麻豆天堂久久| 天堂中文最新版在线下载| a级毛片在线看网站| 日本黄色日本黄色录像| 成人综合一区亚洲| 韩国av在线不卡| 久久精品久久久久久久性| 婷婷色av中文字幕| a 毛片基地| 午夜老司机福利剧场| 好男人视频免费观看在线| 天堂8中文在线网| 在线观看国产h片| 欧美日韩视频高清一区二区三区二| 少妇猛男粗大的猛烈进出视频| 亚洲精品日本国产第一区| 国产 精品1| 在线 av 中文字幕| 国产片特级美女逼逼视频| 亚洲精品成人av观看孕妇| 女性被躁到高潮视频| 老司机亚洲免费影院| 国产精品99久久99久久久不卡 | 国产日韩欧美视频二区| 大片免费播放器 马上看| 制服人妻中文乱码| 日韩欧美精品免费久久| 日韩 亚洲 欧美在线| 男人舔女人的私密视频| 老司机影院成人| 国产精品久久久久久精品电影小说| 久久99热6这里只有精品| 熟妇人妻不卡中文字幕| 内地一区二区视频在线| 国产精品99久久99久久久不卡 | 伦理电影大哥的女人| 免费在线观看完整版高清| 80岁老熟妇乱子伦牲交| 考比视频在线观看| 国产午夜精品一二区理论片| 热99久久久久精品小说推荐| 日韩精品免费视频一区二区三区 | 国产白丝娇喘喷水9色精品| 90打野战视频偷拍视频| 亚洲成人av在线免费| 波野结衣二区三区在线| 日本免费在线观看一区| 在线看a的网站| 亚洲av国产av综合av卡| av福利片在线| 午夜福利网站1000一区二区三区| 国产成人精品无人区| 亚洲国产精品一区二区三区在线| 亚洲激情五月婷婷啪啪| 精品熟女少妇av免费看| 亚洲精品456在线播放app| 精品一区二区三区视频在线| 国产色爽女视频免费观看| 亚洲精品美女久久av网站| 91成人精品电影| 黄色一级大片看看| 国产一区二区在线观看av| 国语对白做爰xxxⅹ性视频网站| 高清不卡的av网站| 成年av动漫网址| 国产白丝娇喘喷水9色精品| 最新中文字幕久久久久| 国内精品宾馆在线| 在线精品无人区一区二区三| 亚洲欧洲国产日韩| 97人妻天天添夜夜摸| 中国美白少妇内射xxxbb| 美女主播在线视频| 老司机影院成人| 免费看光身美女| 少妇的丰满在线观看| 少妇 在线观看| 国产免费现黄频在线看| 在线观看国产h片| 亚洲国产精品国产精品| 国产精品成人在线| 热99国产精品久久久久久7| 伦精品一区二区三区| 成人国语在线视频| 香蕉精品网在线| 免费女性裸体啪啪无遮挡网站| 精品第一国产精品| tube8黄色片| 一区二区三区精品91| 性色avwww在线观看| 18禁国产床啪视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 999精品在线视频| 永久网站在线| 美女福利国产在线| kizo精华| 国产欧美另类精品又又久久亚洲欧美| 美女视频免费永久观看网站| 男的添女的下面高潮视频| 国产av国产精品国产| 亚洲三级黄色毛片| 菩萨蛮人人尽说江南好唐韦庄| 欧美xxxx性猛交bbbb| 夫妻性生交免费视频一级片| 国产成人av激情在线播放| 久久国产精品男人的天堂亚洲 | 巨乳人妻的诱惑在线观看| 国产一区二区三区av在线| 欧美国产精品va在线观看不卡| 巨乳人妻的诱惑在线观看| 欧美xxⅹ黑人| 欧美老熟妇乱子伦牲交| 国产视频首页在线观看| 男女国产视频网站| 大片免费播放器 马上看| 热99国产精品久久久久久7| 在线观看www视频免费| 男人添女人高潮全过程视频| 少妇高潮的动态图| 日韩人妻精品一区2区三区| 又粗又硬又长又爽又黄的视频| 黄色怎么调成土黄色| 亚洲欧美中文字幕日韩二区| 飞空精品影院首页| 午夜免费观看性视频| 中文天堂在线官网| 人妻人人澡人人爽人人| 国产一区二区激情短视频 | 嫩草影院入口| 精品少妇黑人巨大在线播放| 中国国产av一级| 又黄又爽又刺激的免费视频.| 成人黄色视频免费在线看| 亚洲国产精品成人久久小说| 国产av码专区亚洲av| xxxhd国产人妻xxx| 18禁国产床啪视频网站| 97在线视频观看| 在线观看人妻少妇| 日本wwww免费看| 久久精品久久久久久久性| 在线看a的网站| 亚洲高清免费不卡视频| 亚洲国产日韩一区二区| 美女xxoo啪啪120秒动态图| 久久久久久久亚洲中文字幕| 亚洲av成人精品一二三区| 丰满饥渴人妻一区二区三| 男女下面插进去视频免费观看 | 精品福利永久在线观看| 国产在视频线精品| 亚洲人成77777在线视频| 色视频在线一区二区三区| 成年动漫av网址| 美女国产视频在线观看| 久久人人97超碰香蕉20202| 亚洲精品,欧美精品| 成年人午夜在线观看视频| 久久女婷五月综合色啪小说| 美女福利国产在线| 国产免费现黄频在线看| 天美传媒精品一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩中文字幕视频在线看片| 精品亚洲乱码少妇综合久久| 免费播放大片免费观看视频在线观看| 美女视频免费永久观看网站| 欧美人与性动交α欧美精品济南到 | 一区在线观看完整版| 亚洲人与动物交配视频| 久久免费观看电影| 最近的中文字幕免费完整| 欧美xxⅹ黑人| 国产老妇伦熟女老妇高清| 黑丝袜美女国产一区| 亚洲精品av麻豆狂野| 国产毛片在线视频| 欧美少妇被猛烈插入视频| 国产精品久久久av美女十八| 日韩大片免费观看网站| 久久久国产欧美日韩av| 我的女老师完整版在线观看| 久久久a久久爽久久v久久| 亚洲美女视频黄频| 内地一区二区视频在线| 又大又黄又爽视频免费| 国产爽快片一区二区三区| 亚洲色图 男人天堂 中文字幕 | 国产毛片在线视频| 免费大片18禁| 国产探花极品一区二区| 亚洲精品久久午夜乱码| 亚洲欧美成人精品一区二区| 狂野欧美激情性xxxx在线观看| 精品国产一区二区三区四区第35| 欧美精品国产亚洲| av在线app专区| 日韩不卡一区二区三区视频在线| 精品亚洲乱码少妇综合久久| 99久久中文字幕三级久久日本| 自线自在国产av| 婷婷色综合大香蕉| 欧美日韩亚洲高清精品| 99香蕉大伊视频| 国产精品久久久久久精品古装| 亚洲av国产av综合av卡| 亚洲精品第二区| a级毛片在线看网站| 国产成人aa在线观看| 欧美日韩综合久久久久久| 在线观看免费高清a一片| 久久久久国产网址| 国精品久久久久久国模美| 99re6热这里在线精品视频| 黑人欧美特级aaaaaa片| 捣出白浆h1v1| 一区二区三区四区激情视频| 国产精品.久久久| 日日摸夜夜添夜夜爱| 久久久久精品人妻al黑| 91精品伊人久久大香线蕉| 久久久国产精品麻豆| 免费观看无遮挡的男女| 亚洲成色77777| 国产免费视频播放在线视频| 久久精品人人爽人人爽视色| 午夜老司机福利剧场| 老司机影院毛片| 99九九在线精品视频| 亚洲经典国产精华液单| 午夜91福利影院| 美女脱内裤让男人舔精品视频| 9191精品国产免费久久| 你懂的网址亚洲精品在线观看| 日韩欧美精品免费久久| 精品熟女少妇av免费看| 国产精品99久久99久久久不卡 | 中文字幕人妻丝袜制服| 午夜福利影视在线免费观看| 亚洲一码二码三码区别大吗| 欧美精品亚洲一区二区| 亚洲av中文av极速乱| 少妇 在线观看| 欧美亚洲 丝袜 人妻 在线| 韩国av在线不卡| 在线观看免费日韩欧美大片| 美女视频免费永久观看网站| 搡女人真爽免费视频火全软件| 免费黄网站久久成人精品| 国产国语露脸激情在线看| 亚洲av在线观看美女高潮| 又大又黄又爽视频免费| videos熟女内射| 在线观看三级黄色| 午夜视频国产福利| 久久综合国产亚洲精品| 日韩,欧美,国产一区二区三区| av在线播放精品| 欧美激情极品国产一区二区三区 | 午夜福利网站1000一区二区三区| 久久精品夜色国产| 超色免费av| 亚洲精品456在线播放app| 免费播放大片免费观看视频在线观看| 丁香六月天网| 欧美精品国产亚洲| 国产精品成人在线| 国产亚洲午夜精品一区二区久久| 日韩av免费高清视频| 亚洲国产成人一精品久久久| 成人毛片a级毛片在线播放| 性色avwww在线观看| 欧美日本中文国产一区发布| 亚洲av福利一区| 国产69精品久久久久777片| 日本免费在线观看一区| 久久97久久精品| 亚洲精华国产精华液的使用体验| 日韩三级伦理在线观看| 老女人水多毛片| 亚洲欧洲国产日韩| 中文字幕制服av| 亚洲美女黄色视频免费看| 97精品久久久久久久久久精品| 成年美女黄网站色视频大全免费| 男女免费视频国产| 黄片无遮挡物在线观看| av不卡在线播放| 亚洲中文av在线| 激情五月婷婷亚洲| 91成人精品电影| 婷婷色综合大香蕉| 丝袜脚勾引网站| 亚洲经典国产精华液单| 在线观看美女被高潮喷水网站| 午夜影院在线不卡| 国产国语露脸激情在线看| 999精品在线视频| 极品人妻少妇av视频| 久久久a久久爽久久v久久| 日韩av免费高清视频| 18禁国产床啪视频网站| 国产精品久久久久久av不卡| 日本-黄色视频高清免费观看| 亚洲国产精品成人久久小说| 香蕉国产在线看| 中文字幕免费在线视频6| 菩萨蛮人人尽说江南好唐韦庄| 免费少妇av软件| 丰满乱子伦码专区| 尾随美女入室| √禁漫天堂资源中文www| 青春草视频在线免费观看| 国产一区亚洲一区在线观看| 精品人妻一区二区三区麻豆| 免费播放大片免费观看视频在线观看| 婷婷成人精品国产| 永久免费av网站大全| 成年人午夜在线观看视频| 欧美亚洲 丝袜 人妻 在线| 三上悠亚av全集在线观看| 99热网站在线观看| 久久精品aⅴ一区二区三区四区 | 黑人猛操日本美女一级片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 男男h啪啪无遮挡| 在线天堂最新版资源| 美女国产高潮福利片在线看| 亚洲熟女精品中文字幕| 日本91视频免费播放| 91久久精品国产一区二区三区| 伦精品一区二区三区| 国产免费一区二区三区四区乱码| 国产女主播在线喷水免费视频网站| 国产精品一二三区在线看| 又大又黄又爽视频免费| 久久精品熟女亚洲av麻豆精品| 国产高清国产精品国产三级| 90打野战视频偷拍视频| 国产片特级美女逼逼视频| 超色免费av| 亚洲伊人色综图| 久久人人爽人人爽人人片va| 久久鲁丝午夜福利片| 久久韩国三级中文字幕| 高清黄色对白视频在线免费看| 性色av一级| 99久久中文字幕三级久久日本| 午夜免费男女啪啪视频观看| 热re99久久国产66热| 国产成人精品久久久久久| 国产乱来视频区| 亚洲av成人精品一二三区| h视频一区二区三区| 日日爽夜夜爽网站| 亚洲国产精品一区二区三区在线| 建设人人有责人人尽责人人享有的| 亚洲美女视频黄频| 欧美变态另类bdsm刘玥| 丝袜美足系列| 22中文网久久字幕| 美女视频免费永久观看网站| 777米奇影视久久| 亚洲性久久影院| av电影中文网址| 国产精品国产三级专区第一集| 国产乱人偷精品视频| 欧美少妇被猛烈插入视频| 成人亚洲精品一区在线观看| 国产黄色视频一区二区在线观看| 看非洲黑人一级黄片| 日韩精品免费视频一区二区三区 | 国产又爽黄色视频| 久久综合国产亚洲精品| 午夜福利在线观看免费完整高清在| 韩国av在线不卡| 亚洲欧美成人综合另类久久久| 男女无遮挡免费网站观看| 观看美女的网站| 亚洲第一区二区三区不卡| 韩国高清视频一区二区三区| 国产成人91sexporn| 亚洲精华国产精华液的使用体验| 国语对白做爰xxxⅹ性视频网站| 日产精品乱码卡一卡2卡三| 久久精品国产鲁丝片午夜精品| 欧美国产精品一级二级三级| 精品酒店卫生间| 成年人午夜在线观看视频| 欧美bdsm另类| 在线观看免费视频网站a站| 久久97久久精品| 纵有疾风起免费观看全集完整版| 纯流量卡能插随身wifi吗| 一边亲一边摸免费视频| 久久久久国产网址| 人妻少妇偷人精品九色| 久久久久精品久久久久真实原创| 赤兔流量卡办理| 一级毛片我不卡| 久久久久久久久久久久大奶| 高清毛片免费看| 欧美少妇被猛烈插入视频| 黑丝袜美女国产一区| 国产精品一二三区在线看| 国产精品人妻久久久影院| 亚洲精品美女久久av网站| 中文字幕精品免费在线观看视频 | 99久久人妻综合| 欧美少妇被猛烈插入视频| 国产av精品麻豆| 久久久久国产精品人妻一区二区| 人人妻人人澡人人看| 午夜视频国产福利| 午夜老司机福利剧场| 久久99蜜桃精品久久| 日韩视频在线欧美| 久久97久久精品| 天堂中文最新版在线下载| 少妇熟女欧美另类| 亚洲av.av天堂| 国产毛片在线视频| 五月天丁香电影| 亚洲欧洲国产日韩| 国产伦理片在线播放av一区| 最近手机中文字幕大全| 69精品国产乱码久久久| 成人午夜精彩视频在线观看| 精品少妇内射三级| 蜜臀久久99精品久久宅男| 久久久久久久亚洲中文字幕| 久久久久人妻精品一区果冻| 你懂的网址亚洲精品在线观看| 亚洲精品456在线播放app| 一级a做视频免费观看| 精品国产一区二区三区久久久樱花| 国产精品国产三级国产专区5o| 777米奇影视久久| videosex国产| 一级黄片播放器| 777米奇影视久久| 90打野战视频偷拍视频| 久久久精品区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 熟女av电影| 美女内射精品一级片tv| 寂寞人妻少妇视频99o| 日韩 亚洲 欧美在线| 日韩伦理黄色片| 又黄又爽又刺激的免费视频.| 两个人看的免费小视频| 老司机影院毛片|