• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DNA Damage Response in Hematopoietic Stem Cell Ageing

    2016-09-27 11:28:07TangliangLiZhongWeiZhouZhenyuJucZhaoQiWang
    Genomics,Proteomics & Bioinformatics 2016年3期

    Tangliang Li*,Zhong-Wei Zhou,Zhenyu Juc,Zhao-Qi Wang

    1Institute of Aging Research,School of Medicine,Hangzhou Normal University,Hangzhou 311121,China

    2Leibniz Institute on Aging-Fritz Lipmann Institute(FLI),Jena D-07745,Germany

    3Faculty of Biology and Pharmacy,F(xiàn)riedrich-Schiller University of Jena,Jena D-07745,Germany

    ?

    REVIEW

    DNA Damage Response in Hematopoietic Stem Cell Ageing

    Tangliang Li1,*,a,Zhong-Wei Zhou2,b,Zhenyu Ju1,c,Zhao-Qi Wang2,3,d

    1Institute of Aging Research,School of Medicine,Hangzhou Normal University,Hangzhou 311121,China

    2Leibniz Institute on Aging-Fritz Lipmann Institute(FLI),Jena D-07745,Germany

    3Faculty of Biology and Pharmacy,F(xiàn)riedrich-Schiller University of Jena,Jena D-07745,Germany

    Available online 21 May 2016

    Handled by Xingzhi Xu

    KEYWORDS

    Hematopoietic stem cells;

    DNA damage response;

    Epigenetics;

    Ageing;

    P53

    AbstractMaintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity.Hematopoietic stem cells(HSCs)are the most primitive cell type in the hematopoietic system.They divide asymmetrically and give rise to daughter cells with HSC identity(selfrenewal)and progenitor progenies(differentiation),which further proliferate and differentiate into full hematopoietic lineages.Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation.Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process.The DNA damage response(DDR)in the cells involves an orchestrated signaling pathway,consisting of cell cycle regulation,cell death and senescence,transcriptional regulation,as well as chromatin remodeling.Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review,we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

    Introduction

    In adult animals,tissue homeostasis is maintained by a hierarchy of different types of cells,ranging from tissue-specific stem cells,progenitors,to somatic cells with different functions[1]. Stem cells are the most primitive cell population in a specific tissue,which on the one hand self-renew to sustain the stem cell pool,and on the other hand differentiate to generate their somatic progenies[1,2].Dysregulation of self-renewal and differentiation of tissue-specific stem cells compromises the stem cell function,resulting in loss of tissue maintenance and organismal ageing[1,3,4].

    Among all types of tissue-specific stem cells,hematopoietic stem cell(HSC)is considered as the prototype to study the functions of genes of interest in adult stem cell self-renewal and maintenance,as well as their roles in physiological ageing[5,6].Under unperturbed conditions,HSCs reside within their niches(bone marrow stromal cells)and are exposed to systematic environments consisting of cytokine,chemokine(Figure 1),and other factors[7].The advantages of using the HSCs as the model to study stem cell ageing are mainly due to:(1)welldefined HSCs and their progenies with combinations of cell surface markers;(2)a panel of sophisticated in vitro assays to verify the HSC functions;and(3)the adoptive HSC transplantation assay as a gold standard to test stem cell functions[5].Using naturally-aged wild type mice and genetically-modified premature ageing mouse models[8-13],intrinsic and extrinsic factors contributing to the HSC ageing start to be unraveled[4,14-16]. Among them,cell cycle regulators,transcriptional factors,epigenetic modulators,and metabolic pathways have been implicated as important regulators for HSC self-renewal and maintenance during ageing process[10,12,17-23].

    DNA lesions in cells originate from endogenous cellular activities,such as DNA replication and mitochondrial respiration,as well as exogenous stimuli,such as therapeutic drugs against cancers and medical exposure to irradiation,posing direct threats to the integrity of the cellular genetic information[24-26].If these DNA lesions could not be handled well,they will compromise cellular viability and drive the tumor formation[27,28].When it comes to the HSCs,improper repair of DNA lesions could negatively regulate the HSC maintenance and lead to HSC ageing[4,8,26].Here,we concisely discuss the signatures defining‘‘a(chǎn)ged HSCs”and the role of genomic stability in HSC ageing.

    Characteristics of HSCs in ageing hematopoietic system

    Compared to the young individuals,the frequency(percentage of HSCs within bone marrows)and absolute numbers of HSCs,which are phenotypically designated with defined surface markers,increase in naturally-aged individuals of mice and humans(Figure 1)[8,29,30].However,HSCs in aged mice are defective in the self-renewal capacity[31].The adoptive bone marrow transplantation assay is the‘‘gold standard”to investigate the HSC functionality.Upon transplantation,HSCs are forced to enter the cell cycle and differentiate into different hematopoietic lineages[32].The sequential transplantation with the HSCs from the primary transplantation could be further employed to test the robustness of HSCs in self-renewal.During the serial transplantation,HSCs get exhausted and step into an‘‘a(chǎn)ged”status[12,33].Using this serial adoptive transplantation assay,aged HSCs(HSCs from aged mice)showed limited repopulation ability to replenish the hematopoietic system in bone marrow-ablated congenic mice[12,29].The HSC transplantation assay indicates that the aged HSCs,in addition to a homing defect(a failure of transplanted donor HSCs trafficking to and engrafting in recipient bone marrows),only represent around 25%efficiency of HSCs from young animals[29].

    Figure 1 Characteristics of aged HSCs

    Furthermore,aged HSCs have differentiation defects as well(Figure 1).Peripheral blood(PB)from aged mice contains a relative higher proportion of myeloid cells,such as Mac1+and Gr1+hematopoietic cells,as compared to the PB from young animals[29,34,35],which could be attributed to the higher proportion of myeloid progenitors generated in the bone marrow of aged mice[36].The biased myeloid hematopoiesis in the aged mice is detrimental to hematopoietic system functions since the dysregulated output of lymphoid and myeloid cells would compromise the immunological response upon injury or infection in the aged animals and further promote ageing.This skewed differentiation is cell-autonomous,since transplanting aged HSCs to young mice could recapitulate the phenotypes of‘‘a(chǎn)geing”hematopoietic compartments in these recipient mice[34,36]. The increased ratio of myeloid vs.lymphoid hematopoietic cells in ageing is further attributed to altered heterogeneity in HSC compartments during the ageing process[37,38]. Based on their differentiation capabilities,HSCs are further divided into lymphoid-biased HSCs(Ly-Bi HSCs),myeloidbiased HSCs(My-Bi HSCs),and balanced HSCs[17,37].The composition of HSC pools is shifted from Ly-Bi HSCs toward My-Bi HSCs during ageing.

    In addition to the aforementioned phenotypically-defined characteristics,aged HSCs are distinct from young HSCs due totheiruniquetranscriptomicandepigenomicfeatures[39-41].Aged HSCs are implicated with marked increase in the expression of genes involved in stress responses,inflammation,and protein aggregation,while the expression of factors responsible for DDR and chromatin remodeling is reduced(Figure 1)[40].Accordingly,aged HSCs accumulate DNA lesions[8],are defective in protein homeostasis,and exhibit abnormal epigenetic landscapes on DNAs and histones[9,39,40].DNA methylation is enriched specifically on the promoter regions of lymphoid and erythroid lineage genes[9].On the contrary,promoters of genes responsible for the myeloid lineages exhibit reduced DNA methylation.This finding correlates with the skewed hematopoietic lineage output in aged mice[8,36,42].Furthermore,hypo-methylated cysteines and activechromatinmarkers,suchasH3K9me3and H3K27me3,are enriched in the promoter regions of genes in the Gene Ontology categories of cell adhesion,proliferation,and ribosome,which are expressed higher in the aged HSCs than in the young ones[39].Such transcriptional and epigenetic alterations could partially explain the phenotypic characteristics of aged HSCs,such as an increased mobilization,reduced homing ability,and loss of quiescence[29,39].

    DNA damage accumulation in HSC ageing

    In somatic cells,loss of genomic integrity compromises the cellular viability and threatens the genetic information passage from parent cells to daughter cells[43].Accumulation of genomic instability has been implicated in the hematopoietic malignancy,which could be derived from transformed HSCs[26,28]. DNA lesions initiate DDR and induce chromatin remodeling,epigenetic modification,as well as transcriptional regulation,which consequently activate a series of cellular responses including DNA repair,cell cycle checkpoint,cellular senescence,and cell death[24-26,43].All of these pan-genome,epigenome,and transcriptome modifications definitely generate systematic outcome to shape the dynamics of the HSCs in the context of self-renewal and differentiation[44,45].

    The first direct link of DNA damage and HSC ageing comes from the analysis of double strand breakage(DSB)marker γ-H2AX in murine HSCs[8].Rossi and colleagues investigated the DNA damages inside aged murine HSCs and noticed that aged HSCs accumulate high levels of DNA DSBs[8]. However,a recent study suggested that those γ-H2AX marked‘‘DSB foci”may not be real DNA breaks.The‘‘DSB foci”are nucleolar-associated and represent the residual replication stress during the HSC cycling[46].The‘‘γ-H2AX foci”severs as the chromatin repressive marker for the silencing of rDNA transcription,which compromises the ribosome biogenesis in aged HSCs[46].Interestingly,Beerman et al.used the alkaline comet assay,which is extensively used in the field of DNA repair as the indicator for the DSBs and single strand breaks(SSBs)[47,48],to compare the DNA damages in young and aged quiescent HSCs.As a result,they noticed that aged HSCs have a high degree of DNA breaks,as indicated with increased‘‘Olive tail moment”[9,48].Similar to the murine HSCs,γ-H2AX antibody staining on human CD34+HSCs and hematopoietic progenitors reveals an significant accumulation of DSBs during normal ageing process[49].These data indicate that murine and human HSCs experience similar biological processes,namely genomic instability,during physiological ageing.

    How are these DNA breaks generated in HSCs under physiological conditions during the ageing process?Reactive oxygen species(ROS)generated from metabolic pathways in quiescent HSCs and replication errors during HSC proliferation could be the threats to genome integrity in HSCs[33,50,51].Using different mouse models that harbor deficiencies in DNA repair pathways,it is found that loss of DNA repair factors results in accumulation of DNA damages in HSCs and severely-compromised capabilities of HSCs for self-renewal and differentiation under physiological conditions[8,11,52-54].For examples,knockout mice with defects in DNA DSB repair and quenching the ROS(such as Atm-/-mice)or in resolving the replication fork stalls(knockout of Fancd2 pathway members)are ageing-prone and show defective hematopoiesis[51,55,56].These findings strongly indicate that the proper repair of DNA damage is important for the maintenance of HSCs and protects against functional decline of HSCs during ageing[4,8,26,45].

    DNA repair pathway choices in HSCs

    In order to fix DNA breaks,cells are equipped with different repair mechanisms or repair factors[24,43].The choice of pathways to repair a DNA lesion is highly dependent on the cell cycle phase and/or the physiological status of a cell[25,57,58].Our knowledge of DNA repair in cell cycle stems from studies on the cycling somatic cells.Intriguingly,adults HSCs reside in quiescent status(G0)[14].Two repair scenarios have been proposed to repair ionizing radiation(IR)-generated DSBs in HSCs in G0 phase[59,60].Passegue′and her colleagues found that quiescent HSCs use the same repair program as in G1 phase of somatic cells,i.e.,non-homologous end joining(NHEJ)pathway to repair the IR-generated DNA lesions[60].In this scenario,upon DSB induction,protein complex comprising MRE11/RAD50/NBS1 is recruited to the DSB sites and activates ATM kinase,which phosphorylates MDC1/H2AX/53BP1/SMC1/KAP1 to alter the chromatin status around the DSBs and CHK2/p53 to initiate the cell cycle checkpoints and/or cell death signaling pathways[24,61-63].In addition,MRE11 nuclease resects the DNA strand at DSBs to generate micro-homology to facilitate the repair process[62,64,65].This repair pathway is considered as a low fidelity repair choice,since abnormal chromosome fusions,loss of genetic material around the breakage sites,and accumulation of genetic mutations could happen following the repair[63].Indeed,Passegue′and her colleagues found that 53BP1 foci(a marker of NHEJ)rather than RAD51(a marker of homologous recombination,HR)were prominently evident in IR-treated quiescent HSCs[60].Consequently,chromosome analysis with spectral karyotyping(SKY)on the hematopoietic progenitors derived from IR-irradiated HSCs reveals a great increase in genome instabilities,including chromosome fusions[60].However,this repair pathway could not effectively explain the accumulation of DNA break marker γ-H2AX in naturally-aged HSCs,because ligation of DNA breaks by NHEJ quenches the DDR signaling and therebygenerates γ-H2AX-free HSCs[8,42].It has been proposed that quiescence is a cellular status when HSC loses its stringent control of repair machineries[42,48].Beerman et al.conducted the in vitro short-term culture of isolated quiescent HSCs[48]. After 24 h,a significant reduction in γ-H2AX-marked DSBs was noticed when the HSCs enter the cell cycle[48],suggesting that proliferating HSCs repair DSB better.G0 HSCs apparently express low levels of DDR genes as compared to proliferating HSCs(such as fetal liver HSCs)and progenitors[48]. In this way,DNA damage signaling may be attenuated in quiescent HSCs,which is consistent with the previous finding on accumulation of DNA breaks in aged HSCs[8,42].

    Once HSCs are mobilized and forced to enter cell cycle by in vivo administration of cytokine granulocyte-colony stimulating factor(G-CSF)or cultured in vitro in the presence of the stem cell factor(SCF),HSCs switch the repair mechanism from NHEJ toward HR[60].In S/G2/M HSCs,MRN complex recruits ATM and resects the DSBs to generate the single strand overhangs,which can activate ATR/CHK1 kinase[63,66].RAD51 is then loaded onto the exposed single strands and forms DNA/protein filaments to initiate strand invasion into their homologous chromosomes[67].As compared with NHEJ in G0/G1 cell cycle,HR is more stringent in keeping the genomic integrity.However,although HSCs can faithfully repair the DNA breaks when cycling[46,48,51],entry into cell cycle could be detrimental to the quality of HSCs because serial transplantation experiments in mice demonstrate that HSCs have limited replicative lifespan and multiple rounds of stress-induced HSC cycling can compromise self-renewal and differentiation capacity,leading to exhaustion of the HSC pool[12,46].

    p53-p21/PUMA pathway in HSC cell fate determination

    DNA damages exhaust HSCs in terms of self-renewal and differentiation by reducing the HSC pool(quantity)and compromising HSC stemness(quality)[26,35,45].Upon DNA damage,cells engage a serial of downstream cellular events including cell cycle arrest,apoptosis,and transcriptional reprogramming[43].Faithful DNA repair preserves the HSC genome integrity and sustains HSC stem cell identity in proper self-renewal and differentiation.However,depending on the repair efficiency for certain DNA lesions,HSCs undertake different fates toward permanent cell cycle arrest(senescence),cell death(HSC elimination)[68,69],and even differentiation[70-73].As the HSC fate determinant,the p53 pathway has been well studied in vivo[74,75].The p53 pathway is transiently activated after a single dose of IR or can be constantly activated in HSCs by persistent DNA damages,such as critically shortened telomeres[60,69,76].Downstream of p53 signaling,p53 trans-activates p21 to promote the cell survival by initiating cell cycle arrest for DNA repair or cellular senescence,while induced expression of the p53 upregulated modulator of apoptosis(PUMA)by p53 is responsible for cellular clearance(Figure 2)[13,68].Inhibition of either branch of p53-p21 or p53-PUMA benefits HSC selfrenewal and maintenance in several cases of HSC ageing mice models[74,77-79].Complete p53 loss renders cytoprotective effects on IR-damaged HSCs[80]and promotes symmetric division of HSCs to expand the HSC pool[74,81,82]. However,these p53-null HSCs show defective differentiation and are tumor-prone,indicating that p53 null compromises the HSC quality[74,78].In this regard,the balance of p21 and PUMA downstream of p53 signaling is essential for the maintenance of HSCs and hematopoietic system[75,83].

    Compared to hematopoietic progenitors,murine HSCs are resistant to acute DNA damage induction and prone to survival[60].This is likely due to a high expression level of the pro-survival genes in murine HSCs[60].In response to acute DNA damage,HSCs tend to be arrested and reside in the senescent status,suggesting that p53-p21 branch is activated in HSCs preferably to limit HSC self-renewal[77,84].Loss of p21 in the mouse model with persistent DNA damage(the 3rd generation of Terc-/-mice;G3 Terc-/-)with criticallyshortened telomeres could partially rescue ageing phenotypes by improving the repopulation capacity and self-renewal of HSCs[77].Furthermore,activated p53-PUMA branch is responsible for the HSC death upon lethal dose of γirradiation(10 Gy),since loss of PUMA protects the HSCs and extends the lifespan of irradiated mice[85].The constitutive activation of p53 signaling in mice lines expressing p53 phosphorylation mutations(T21D and S23D),a C-terminal truncatedp53allele,orothergenemutationsconfers premature ageing of hematopoietic systems[13,86,87].Genetic ablation of Puma restores the viability of HSCs,indicating p53-PUMA limiting the HSC pool size[85,86].These data point to a promising therapeutic strategy to protect HSCs and prolong healthy lifespan with p21 or PUMA inhibitors. However,it is of note that p21-null HSCs exhibit selfrenewaldefectsinserialtransplantationassay,while Puma-null HSCs are superior to their wild type controls[86,88].These findings indicate that p53-p21 and p53-PUMA have differential roles in mediating HSC fates and ageing due to different extents of DNA lesions(Figure 2).

    Persistent DNA damage creates a pro-ageing environment for HSCs

    Intrinsic defects in repairing DNA damages and their contributionstocompromisedHSCself-renewalandageing process have been extensively studied in recent years.However,ageing environments,such as mis-regulated cytokine factor secretion and altered stem cells niches,can all affect HSC maintenance(Figure 1)[4,76,89,90].An interesting example of the environmental impact on the HSC selfrenewal and differentiation comes from the parabiosis assay by surgical connection between young and aged mice with the circulatory blood system[91,92].In this assay,young and aged HSCs are unanimously exposed to a common systematic environment,such as serum factors and osteoblast niches.Multi-organ analysis shows that the interconnection of young and aged mice significantly improves tissue homeostasis including HSCs and hematopoietic system of the aged mice.These data strongly indicate that a young systematic environment can rejuvenate the aged HSCs[91,92]. Although the search for the key factors in the systematic environment that contribute to the ageing and rejuvenation of stem cells is still ongoing,these findings conceptually prove that the HSCs,in addition to the intrinsic regulation,could be functionally modulated by the environmental cues. On the other hand,parabiosis assay highlights a novelconcept that HSC ageing could be delayed or partially reversed by rejuvenating serum factors[69,91,92].

    Figure 2 p53 signaling in HSC fate determination toward ageing

    Does DNA damage generate a systematic change and promote the HSC ageing?The analysis of HSCs from G3 Terc-/-mice unveils some hints on this question.The criticallyshortened telomeres in G3 Terc-/-mice can be recognized as persistent DNA breaks,which constantly activate the p53-p21/PUMA pathway in tissue-specific stem cells and their somatic progenies[77,89,93].Ju et al.analyzed the interplay between HSCs and their niches,i.e.,mesenchymal stem cell(MSC)-derived bone marrow stromal cells.In G3 Terc-/-mice,the functionality of both MSCs and bone marrow stromal cells is compromised.In addition,the high level of G-CSF cytokine in the G3 Terc-/-mice serum significantly reduces the engraftment of HSCs in bone marrow niches[76].G-CSF inhibition leads to the improved engraftment and functionality of HSCs.These findings suggest that a cellular response from those‘‘damaged”cells with persistent DNA lesions caused by telomere shortening could alter the local environment(such as HSC niches)or systematic environment(i.e.,cytokines or chemokines in serum)and confer a deleterious effect on self-renewal and maintenance of HSCs[69,76,89].

    How persistent DNA damage signaling can change the systematic environment?One possibility could be the senescenceassociated secretory phenotype(SASP)[94,95].Campisi and colleagues found that senescent cells,although permanently arrested in cell cycle,is metabolically active in producing inflammatory factors(SASP cytokines),such as IL-6,IL-10,INF γ,and G-CSF[94].Furthermore,not only senescent cells,but also cells with persistent DNA damages,exhibit SASP and secrete pro-inflammatory cytokines to change systematic environment in the animal tissues[96].Activated NF-κB signaling has been implicated in SASP,since inhibition of NF-κB signaling by knocking down of p65 greatly alleviates the expression ofSASPcytokines[97-99].Furthermore,activationof p38MAPK kinase activity by various stimuli promotes SASP induction.p38MAPK sits upstream of NF-κB signaling and regulates the NF-κB activity.Interestingly,although p53 is not required for initiating SASP,p53 restrains SASP once the cellular senescence is established,since p53-null cells show enhanced expression of SASP cytokines[99].The inhibitory effects of SASP by p53 could be attributed to the fact that p53 restrains p38MAPK activity via its DDR-independent activity.In this sense,p53 DDR-independent signaling may provide protective roles in maintaining HSC homeostasis by inhibiting SASP in the systematic environment of hematopoietic system(Figure 2).

    The secreted inflammatory factors from these cells with persistent DNA damages,may be detrimental to the HSC self-renewal and maintenance.For example,G-CSF mobilizes the HSCs out of bone marrow niches and impairs their engraftment[76,100].IL6,INFα,and INF γ have been implicated inpromoting the cell cycle entry of HSCs,resulting in HSC exhaustion toward ageing[90,101].Tissues in aged animals are enriched in senescent somatic cells that contain persistent DNAdamages.Furthermore,ageingprocesspositively correlates with increased inflammatory responses[102],which may further ameliorate the HSC maintenance and promote ageing[103].Recent studies indicate that interfering with SASP by blocking the cytokine production pathway or eliminating cytokine-producing cells in tissues greatly improves the tissue function and animal lifespan.Clearance of p16Ink4a-positive senescent cells in progeroid BubR1 mutant mice could substantially delay the onset of ageing phenotypes and even rejuvenate the ageing tissues when such cellular clearance was applied in late-life of BubR1 mutants[104].Furthermore,Chang et al. employed ABT263,a specific chemical inhibitor for Bcl-2 and Bcl-xL,to induce the apoptosis of senescent HSCs.They found that ABT263 treatment restores the functionality of HSCs in the sub-lethally irradiated wild type mice and naturally-aged mice,thus greatly improving the healthy lifespan of mice[105].The data further confirm the assumption that senescent cells with persistent DNA damage can establish a systematic environment driving HSC ageing.

    Conclusions and perspectives

    Integrities of HSC pool and HSC quality are considered as the key factors contributing to the organismal ageing in mammals[4,29].DDR plays essential roles in the maintenance of these two HSC features[8,44,45,52,68].Deficiency in DNA repair results in the accumulation of unrepaired DNA breaks in aged HSCs,while persistent DNA breaks in hematopoietic cells and HSC niches create a pro-inflammatory environment to promote HSC entry into cell cycle and proliferation,which consequently exhausts HSCs[69].It would be very tricky to experimentallymodifythoseageingHSCswithgenetic approaches in order to achieve the better DNA repair and functional improvement.Instead,using bio-active cytokines to interfere with the systematic ageing environment or using small chemical molecules to specially remove the‘‘a(chǎn)ged”HSCs would be the reliable and practical strategies to rejuvenate theageingHSCsandprolongthehealthylifespanof mammals[105,106].

    Competing interests

    The authors declare that they have no competing interests.

    Acknowledgments

    TL is currently supported by the National Natural Science Foundation of China(Grant No.81571380),and the Natural Science Foundation of Zhejiang Province-China(Grant No. LY16H080009).ZJ is supported by the National Natural ScienceFoundationofChina(GrantNos.81130074,81420108017,and 81525010).TL and ZJ are both funded by the National Key R&D Plan from the Ministry of Science and Technology of China(Grant No.SQ2016ZY05002341). ZQW is partially supported by the Deutsche Forschungsgemeinschaft(DFG),Germany.

    References

    [1]Weissman IL.Stem cells:units of development,units of regeneration,and units in evolution.Cell 2000;100:157-68.

    [2]He S,Nakada D,Morrison SJ.Mechanisms of stem cell selfrenewal.Annu Rev Cell Dev Biol 2009;25:377-406.

    [3]Signer RA,Morrison SJ.Mechanisms that regulate stem cell aging and life span.Cell Stem Cell 2013;12:152-65.

    [4]Lopez-Otin C,Blasco MA,Partridge L,Serrano M,Kroemer G. The hallmarks of aging.Cell 2013;153:1194-217.

    [5]Orkin SH,Zon LI.Hematopoiesis:an evolving paradigm for stem cell biology.Cell 2008;132:631-44.

    [6]Mikkola HK,Orkin SH.The journey of developing hematopoietic stem cells.Development 2006;133:3733-44.

    [7]Morrison SJ,Scadden DT.The bone marrow niche for haematopoietic stem cells.Nature 2014;505:327-34.

    [8]Rossi DJ,Bryder D,Seita J,Nussenzweig A,Hoeijmakers J,Weissman IL.Deficiencies in DNA damage repair limit the functionofhaematopoieticstemcellswithage.Nature 2007;447:725-9.

    [9]Beerman I,Bock C,Garrison BS,Smith ZD,Gu H,Meissner A,et al.Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging.Cell Stem Cell 2013;12:413-25.

    [10]Challen GA,Sun D,Mayle A,Jeong M,Luo M,Rodriguez B,et al.Dnmt3a and Dnmt3b have overlapping and distinct functionsinhematopoieticstemcells.CellStemCell 2014;15:350-64.

    [11]Zhang S,Yajima H,Huynh H,Zheng J,Callen E,Chen HT,et al.Congenital bone marrow failure in DNA-PKcs mutant mice associated with deficiencies in DNA repair.J Cell Biol 2011;193:295-305.

    [12]Janzen V,F(xiàn)orkert R,F(xiàn)leming HE,Saito Y,Waring MT,Dombkowski DM,et al.Stem-cell ageing modified by the cyclindependent kinase inhibitor p16INK4a.Nature 2006;443:421-6.

    [13]Dumble M,Moore L,Chambers SM,Geiger H,Van Zant G,Goodell MA,et al.The impact of altered p53 dosage on hematopoieticstemcelldynamicsduringaging.Blood 2007;109:1736-42.

    [14]Chen J,Astle CM,Harrison DE.Genetic regulation of primitive hematopoieticstemcellsenescence.ExpHematol 2000;28:442-50.

    [15]Oshima M,Iwama A.Epigenetics of hematopoietic stem cell aging and disease.Int J Hematol 2014;100:326-34.

    [16]Rossi DJ,Jamieson CH,Weissman IL.Stems cells and the pathways to aging and cancer.Cell 2008;132:681-96.

    [17]Challen GA,Boles NC,Chambers SM,Goodell MA.Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1.Cell Stem Cell 2010;6:265-78.

    [18]Luo M,Jeong M,Sun D,Park HJ,Rodriguez BA,Xia Z,et al. Long non-coding RNAs control hematopoietic stem cell function.Cell Stem Cell 2015;16:426-38.

    [19]Zhao Y,Zhou J,Liu D,Dong F,Cheng H,Wang W,et al. ATF4 plays a pivotal role in the development of functional hematopoieticstemcellsinmousefetalliver.Blood 2015;126:2383-91.

    [20]Wang H,Diao D,Shi Z,Zhu X,Gao Y,Gao S,et al.SIRT6 controls hematopoietic stem cell homeostasis through epigenetic regulation of Wnt signaling.Cell Stem Cell 2016;18:495-507.

    [21]Wang X,Chu Y,Wang W,Yuan W.MTORC signaling in hematopoiesis.Int J Hematol 2016;103:510-8.

    [22]Qian P,He XC,Paulson A,Li Z,Tao F,Perry JM,et al.The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism.Cell Stem Cell 2016;18:214-28.

    [23]Lee JY,Nakada D,Yilmaz OH,Tothova Z,Joseph NM,Lim MS,et al.MTOR activation induces tumor suppressors thatinhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion.Cell Stem Cell 2010;7:593-605.

    [24]D’Amours D,Jackson SP.The Mre11 complex:at the crossroads of DNA repair and checkpoint signalling.Nat Rev Mol Cell Biol 2002;3:317-27.

    [25]Branzei D,F(xiàn)oiani M.Regulation of DNA repair throughout the cell cycle.Nat Rev Mol Cell Biol 2008;9:297-308.

    [26]Kenyon J,Gerson SL.The role of DNA damage repair in aging of adult stem cells.Nucleic Acids Res 2007;35:7557-65.

    [27]Hoeijmakers JH.Genome maintenance mechanisms for preventing cancer.Nature 2001;411:366-74.

    [28]Hoeijmakers JH.Genome maintenance mechanisms are critical for preventing cancer as well as other aging-associated diseases. Mech Ageing Dev 2007;128:460-2.

    [29]Geiger H,Denkinger M,Schirmbeck R.Hematopoietic stem cell aging.Curr Opin Immunol 2014;29:86-92.

    [30]Pang WW,Price EA,Sahoo D,Beerman I,Maloney WJ,Rossi DJ,et al.Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age.Proc Natl Acad Sci U S A 2011;108:20012-7.

    [31]Roobrouck VD,Ulloa-Montoya F,Verfaillie CM.Self-renewal and differentiation capacity of young and aged stem cells.Exp Cell Res 2008;314:1937-44.

    [32]Kondo M,Wagers AJ,Manz MG,Prohaska SS,Scherer DC,Beilhack GF,et al.Biology of hematopoietic stem cells and progenitors:implications for clinical application.Annu Rev Immunol 2003;21:759-806.

    [33]Kamminga LM,van Os R,Ausema A,Noach EJ,Weersing E,Dontje B,et al.Impaired hematopoietic stem cell functioning after serial transplantation and during normal aging.Stem Cells 2005;23:82-92.

    [34]Sudo K,Ema H,Morita Y,Nakauchi H.Age-associated characteristics of murine hematopoietic stem cells.J Exp Med 2000;192:1273-80.

    [35]RossiDJ,BryderD,WeissmanIL.Hematopoieticstemcellaging: mechanism and consequence.Exp Gerontol 2007;42:385-90.

    [36]Rossi DJ,Bryder D,Zahn JM,Ahlenius H,Sonu R,Wagers AJ,et al.Cell intrinsic alterations underlie hematopoietic stem cell aging.Proc Natl Acad Sci U S A 2005;102:9194-9.

    [37]Beerman I,Bhattacharya D,Zandi S,Sigvardsson M,Weissman IL,Bryder D,et al.Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion.Proc Natl Acad Sci U S A 2010;107:5465-70.

    [38]Muller-Sieburg CE,Sieburg HB,Bernitz JM,Cattarossi G.Stem cell heterogeneity:implications for aging and regenerative medicine.Blood 2012;119:3900-7.

    [39]Sun D,Luo M,Jeong M,Rodriguez B,Xia Z,Hannah R,et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal.Cell Stem Cell 2014;14:673-88.

    [40]Chambers SM,Shaw CA,Gatza C,F(xiàn)isk CJ,Donehower LA,Goodell MA.Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation.PLoS Biol 2007;5:e201.

    [41]Sinclair DA,Oberdoerffer P.The ageing epigenome:damaged beyond repair?Ageing Res Rev 2009;8:189-98.

    [42]Rossi DJ,Seita J,Czechowicz A,Bhattacharya D,Bryder D,Weissman IL.Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging.Cell Cycle 2007;6:2371-6.

    [43]Jackson SP,Bartek J.The DNA-damage response in human biology and disease.Nature 2009;461:1071-8.

    [44]Mandal PK,Blanpain C,Rossi DJ.DNA damage response in adult stem cells:pathways and consequences.Nat Rev Mol Cell Biol 2011;12:198-202.

    [45]Blanpain C,Mohrin M,Sotiropoulou PA,Passegue E.DNA-damage response in tissue-specific and cancer stem cells.Cell Stem Cell 2011;8:16-29.

    [46]Flach J,Bakker ST,Mohrin M,Conroy PC,Pietras EM,Reynaud D,et al.Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells.Nature 2014;512:198-202.

    [47]Klaude M,Eriksson S,Nygren J,Ahnstrom G.The comet assay: mechanismsandtechnicalconsiderations.MutatRes 1996;363:89-96.

    [48]Beerman I,Seita J,Inlay MA,Weissman IL,Rossi DJ.Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle.Cell Stem Cell 2014;15:37-50.

    [49]Rube CE,F(xiàn)ricke A,Widmann TA,F(xiàn)urst T,Madry H,Pfreundschuh M,et al.Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One 2011;6:e17487.

    [50]Naka K,Muraguchi T,Hoshii T,Hirao A.Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells.Antioxid Redox Signal 2008;10:1883-94.

    [51]Walter D,Lier A,Geiselhart A,Thalheimer FB,Huntscha S,Sobotta MC,et al.Exit from dormancy provokes DNA-damageinducedattritioninhaematopoieticstemcells.Nature 2015;520:549-52.

    [52]Nijnik A,Woodbine L,Marchetti C,Dawson S,Lambe T,Liu C,et al.DNA repair is limiting for haematopoietic stem cells during ageing.Nature 2007;447:686-90.

    [53]Bender CF,Sikes ML,Sullivan R,Huye LE,Le Beau MM,Roth DB,et al.Cancer predisposition and hematopoietic failure in Rad50(S/S)mice.Genes Dev 2002;16:2237-51.

    [54]Parmar K,Kim J,Sykes SM,Shimamura A,Stuckert P,Zhu K,et al.Hematopoietic stem cell defects in mice with deficiency of Fancd2 or Usp1.Stem Cells 2010;28:1186-95.

    [55]Ito K,Hirao A,Arai F,Takubo K,Matsuoka S,Miyamoto K,et al.Reactive oxygen species act through p38 MAPK to limit thelifespanofhematopoieticstemcells.NatMed 2006;12:446-51.

    [56]Ito K,Hirao A,Arai F,Matsuoka S,Takubo K,Hamaguchi I,et al.Regulation of oxidative stress by ATM is required for selfrenewal of haematopoietic stem cells.Nature 2004;431:997-1002.

    [57]Zhao B,Zhang WD,Duan YL,Lu YQ,Cun YX,Li CH,et al. Filia is an ESC-specific regulator of DNA damage response and safeguards genomic stability.Cell Stem Cell 2015;16:684-98.

    [58]Ahuja AK,Jodkowska K,Teloni F,Bizard AH,Zellweger R,Herrador R,et al.A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells.Nat Commun 2016;7:10660.

    [59]Ambrosio S,Di Palo G,Napolitano G,Amente S,Dellino GI,F(xiàn)aretta M,et al.Cell cycle-dependent resolution of DNA double-strand breaks.Oncotarget 2016;7:4949-60.

    [60]Mohrin M,Bourke E,Alexander D,Warr MR,Barry-Holson K,Le Beau MM,et al.Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis.Cell Stem Cell 2010;7:174-85.

    [61]Bruhn C,Zhou ZW,Ai H,Wang ZQ.The essential function of the MRN complex in the resolution of endogenous replication intermediates.Cell Rep 2014;6:182-95.

    [62]Saidi A,Li T,Weih F,Concannon P,Wang ZQ.Dual functions of Nbs1 in the repair of DNA breaks and proliferation ensure proper V(D)J recombination and T-cell development.Mol Cell Biol 2010;30:5572-81.

    [63]Yang YG,Saidi A,F(xiàn)rappart PO,Min W,Barrucand C,Dumon-Jones V,et al.Conditional deletion of Nbs1 in murine cells reveals its role in branching repair pathways of DNA doublestrand breaks.EMBO J 2006;25:5527-38.

    [64]Symington LS.End resection at double-strand breaks:mechanism and regulation,vol.6.Cold Spring Harb Perspect Biol;2014.

    [65]Xie A,Kwok A,Scully R.Role of mammalian Mre11 in classical and alternative nonhomologous end joining.Nat Struct Mol Biol 2009;16:814-8.

    [66]Jazayeri A,F(xiàn)alck J,Lukas C,Bartek J,Smith GC,Lukas J,et al. ATM-and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks.Nat Cell Biol 2006;8:37-45.

    [67]Baumann P,West SC.Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci 1998;23:247-51.

    [68]Sperka T,Wang J,Rudolph KL.DNA damage checkpoints in stemcells,ageingandcancer.NatRevMolCellBiol 2012;13:579-90.

    [69]Behrens A,van Deursen JM,Rudolph KL,Schumacher B. Impact of genomic damage and ageing on stem cell function.Nat Cell Biol 2014;16:201-7.

    [70]Weiss CN,Ito K.DNA damage:a sensible mediator of the differentiation decision in hematopoietic stem cells and in leukemia.Int J Mol Sci 2015;16:6183-201.

    [71]Inomata K,Aoto T,Binh NT,Okamoto N,Tanimura S,Wakayama T,et al.Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation.Cell 2009;137:1088-99.

    [72]Sherman MH,Bassing CH,Teitell MA.Regulation of cell differentiation by the DNA damage response.Trends Cell Biol 2011;21:312-9.

    [73]Santos MA,F(xiàn)aryabi RB,Ergen AV,Day AM,Malhowski A,Canela A,et al.DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier.Nature 2014;514:107-11.

    [74]Liu Y,Elf SE,Miyata Y,Sashida G,Liu Y,Huang G,et al.P53 regulates hematopoietic stem cell quiescence.Cell Stem Cell 2009;4:37-48.

    [75]Liu Y,Elf SE,Asai T,Miyata Y,Liu Y,Sashida G,et al.The p53tumorsuppressorproteinisacriticalregulatorof hematopoietic stem cell behavior.Cell Cycle 2009;8:3120-4.

    [76]Ju Z,Jiang H,Jaworski M,Rathinam C,Gompf A,Klein C,et al.Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment.Nat Med 2007;13:742-7.

    [77]Sperka T,Song Z,Morita Y,Nalapareddy K,Guachalla LM,Lechel A,et al.Puma and p21 represent cooperating checkpoints limiting self-renewal and chromosomal instability of somatic stem cells in response to telomere dysfunction.Nat Cell Biol 2012;14:73-9.

    [78]Begus-Nahrmann Y,Lechel A,Obenauf AC,Nalapareddy K,Peit E,Hoffmann E,et al.P53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice.Nat Genet 2009;41:1138-43.

    [79]Choudhury AR,Ju Z,Djojosubroto MW,Schienke A,Lechel A,Schaetzlein S,et al.Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation.Nat Genet 2007;39:99-105.

    [80]Marusyk A,Porter CC,Zaberezhnyy V,DeGregori J.Irradiation selects for p53-deficient hematopoietic progenitors.PLoS Biol 2010;8:e1000324.

    [81]Cicalese A,Bonizzi G,Pasi CE,F(xiàn)aretta M,Ronzoni S,Giulini B,etal.Thetumorsuppressorp53regulatespolarityofself-renewing divisions in mammary stem cells.Cell 2009;138:1083-95.

    [82]Insinga A,Cicalese A,F(xiàn)aretta M,Gallo B,Albano L,Ronzoni S,et al.DNA damage in stem cells activates p21,inhibits p53,and induces symmetric self-renewing divisions.Proc Natl Acad Sci U S A 2013;110:3931-6.

    [83]Bonizzi G,Cicalese A,Insinga A,Pelicci PG.The emerging role of p53 in stem cells.Trends Mol Med 2012;18:6-12.

    [84]Wang Y,Schulte BA,LaRue AC,Ogawa M,Zhou D.Total body irradiation selectively induces murine hematopoietic stem cell senescence.Blood 2006;107:358-66.

    [85]Yu H,Shen H,Yuan Y,XuFeng R,Hu X,Garrison SP,et al. Deletion of Puma protects hematopoietic stem cells and confers long-term survival in response to high-dose gamma-irradiation. Blood 2010;115:3472-80.

    [86]Liu D,Ou L,Clemenson Jr GD,Chao C,Lutske ME,Zambetti GP,et al.Puma is required for p53-induced depletion of adult stem cells.Nat Cell Biol 2010;12:993-8.

    [87]Belle JI,Langlais D,Petrov JC,Pardo M,Jones RG,Gros P,et al.P53 mediates loss of hematopoietic stem cell function and lymphopenia in Mysm1 deficiency.Blood 2015;125:2344-8.

    [88]Cheng T,Rodrigues N,Shen H,Yang Y,Dombkowski D,Sykes M,et al.Hematopoietic stem cell quiescence maintained by p21cip1/waf1.Science 2000;287:1804-8.

    [89]Song Z,Ju Z,Rudolph KL.Cell intrinsic and extrinsic mechanisms of stem cell aging depend on telomere status.Exp Gerontol 2009;44:75-82.

    [90]Baldridge MT,King KY,Goodell MA.Inflammatory signals regulatehematopoieticstemcells.TrendsImmunol2011;32:57-65.

    [91]Conboy IM,Conboy MJ,Wagers AJ,Girma ER,Weissman IL,Rando TA.Rejuvenation of aged progenitor cells by exposure to a young systemic environment.Nature 2005;433:760-4.

    [92]Conboy MJ,Conboy IM,Rando TA.Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity.Aging Cell 2013;12:525-30.

    [93]SchaetzleinS,KodandaramireddyNR,JuZ,LechelA,Stepczynska A,Lilli DR,et al.Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomeredysfunctional mice.Cell 2007;130:863-77.

    [94]Coppe JP,Patil CK,Rodier F,Sun Y,Munoz DP,Goldstein J,et al.Senescence-associated secretory phenotypes reveal cellnonautonomous functions of oncogenic RAS and the p53 tumor suppressor.PLoS Biol 2008;6:2853-68.

    [95]Coppe JP,Desprez PY,Krtolica A,Campisi J.The senescenceassociated secretory phenotype:the dark side of tumor suppression.Annu Rev Pathol 2010;5:99-118.

    [96]Rodier F,Coppe JP,Patil CK,Hoeijmakers WA,Munoz DP,Raza SR,et al.Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion.Nat Cell Biol 2009;11:973-9.

    [97]Salminen A,Kauppinen A,Kaarniranta K.Emerging role of NF-kappaB signaling in the induction of senescence-associated secretory phenotype(SASP).Cell Signal 2012;24:835-45.

    [98]Chien Y,Scuoppo C,Wang X,F(xiàn)ang X,Balgley B,Bolden JE,et al.Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity.Genes Dev 2011;25:2125-36.

    [99]Freund A,Patil CK,Campisi J.P38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype.EMBO J 2011;30:1536-48.

    [100]Tesio M,Oser GM,Baccelli I,Blanco-Bose W,Wu H,Gothert JR,et al.Pten loss in the bone marrow leads to G-CSF-mediated HSC mobilization.J Exp Med 2013;210:2337-49.

    [101]Baldridge MT,King KY,Boles NC,Weksberg DC,Goodell MA.Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection.Nature 2010;465:793-7.

    [102]Franceschi C,Bonafe M,Valensin S,Olivieri F,De Luca M,Ottaviani E,et al.Inflamm-aging.An evolutionary perspective on immunosenescence.Ann N Y Acad Sci 2000;908:244-54.

    [103]King KY,Goodell MA.Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response.Nat Rev Immunol 2011;11:685-92.

    [104]Baker DJ,Wijshake T,Tchkonia T,LeBrasseur NK,Childs BG,van de Sluis B,et al.Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders.Nature 2011;479:232-6.

    [105]Chang J,Wang Y,Shao L,Laberge RM,Demaria M,Campisi J,et al.Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice.Nat Med 2016;22:78-83.

    [106]Sinha M,Jang YC,Oh J,Khong D,Wu EY,Manohar R,et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle.Science 2014;344:649-52.

    29 February 2016;revised 20 April 2016;accepted 24 April 2016

    *Corresponding author.

    E-mail:li.tangliang@hznu.edu.cn(Li T).aORCID:0000-0003-0671-9166.bORCID:0000-0002-5936-9094.cORCID:0000-0002-9525-6521.dORCID:0000-0002-8336-3485.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.04.002

    1672-0229?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    人人妻人人添人人爽欧美一区卜| 观看av在线不卡| 妹子高潮喷水视频| 综合色丁香网| 最新中文字幕久久久久| 涩涩av久久男人的天堂| 黄色怎么调成土黄色| 亚洲色图 男人天堂 中文字幕| 久久鲁丝午夜福利片| 精品少妇一区二区三区视频日本电影 | 精品亚洲成a人片在线观看| 国产精品久久久久久精品电影小说| 国产精品成人在线| 人体艺术视频欧美日本| 午夜精品国产一区二区电影| 成人黄色视频免费在线看| 丁香六月天网| 日本av手机在线免费观看| 极品人妻少妇av视频| 精品国产乱码久久久久久男人| 飞空精品影院首页| 免费人妻精品一区二区三区视频| 少妇的逼水好多| 亚洲国产欧美在线一区| 欧美日韩视频精品一区| 国产成人精品无人区| 欧美日韩综合久久久久久| 国产欧美亚洲国产| 国产成人一区二区在线| 热re99久久精品国产66热6| 国产成人av激情在线播放| 成年人免费黄色播放视频| 国产精品99久久99久久久不卡 | 亚洲国产毛片av蜜桃av| 人妻少妇偷人精品九色| 黑人猛操日本美女一级片| 一区在线观看完整版| 精品国产露脸久久av麻豆| 99久久人妻综合| 免费在线观看视频国产中文字幕亚洲 | 亚洲人成网站在线观看播放| 自线自在国产av| 水蜜桃什么品种好| 美国免费a级毛片| 国产视频首页在线观看| 视频区图区小说| 91国产中文字幕| 国产精品 国内视频| 亚洲国产看品久久| 欧美成人午夜免费资源| 好男人视频免费观看在线| 亚洲欧洲日产国产| 五月伊人婷婷丁香| 大陆偷拍与自拍| 国产毛片在线视频| 1024香蕉在线观看| 久久久欧美国产精品| 午夜精品国产一区二区电影| 久久精品久久精品一区二区三区| 91国产中文字幕| 最近最新中文字幕大全免费视频 | 美女脱内裤让男人舔精品视频| 国产不卡av网站在线观看| 一区福利在线观看| 欧美97在线视频| 成人亚洲精品一区在线观看| 午夜福利网站1000一区二区三区| 狠狠婷婷综合久久久久久88av| 老女人水多毛片| 成人漫画全彩无遮挡| 只有这里有精品99| 寂寞人妻少妇视频99o| kizo精华| 国产亚洲一区二区精品| 人妻人人澡人人爽人人| 我的亚洲天堂| 国产精品国产三级专区第一集| 亚洲一区二区三区欧美精品| 老汉色av国产亚洲站长工具| 国产午夜精品一二区理论片| 久久精品熟女亚洲av麻豆精品| 欧美97在线视频| 赤兔流量卡办理| 亚洲视频免费观看视频| 少妇的逼水好多| 国产日韩欧美在线精品| 亚洲国产欧美日韩在线播放| 超碰97精品在线观看| 婷婷色综合www| 黑人猛操日本美女一级片| 国产成人91sexporn| 伊人亚洲综合成人网| 不卡视频在线观看欧美| 久久精品熟女亚洲av麻豆精品| 另类精品久久| 欧美精品亚洲一区二区| 一区二区三区乱码不卡18| 精品少妇久久久久久888优播| 久久午夜综合久久蜜桃| 2018国产大陆天天弄谢| 精品国产一区二区久久| 免费观看a级毛片全部| 亚洲一区二区三区欧美精品| 永久网站在线| 日韩熟女老妇一区二区性免费视频| 巨乳人妻的诱惑在线观看| 美女中出高潮动态图| 十八禁高潮呻吟视频| 久久久a久久爽久久v久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产色婷婷99| 久久人人爽人人片av| 日韩欧美精品免费久久| 大片免费播放器 马上看| 在线观看美女被高潮喷水网站| 日日摸夜夜添夜夜爱| 国产高清国产精品国产三级| 可以免费在线观看a视频的电影网站 | 日韩一区二区三区影片| 婷婷成人精品国产| 18禁动态无遮挡网站| 久久精品久久久久久久性| 超碰97精品在线观看| 韩国高清视频一区二区三区| 久久久精品94久久精品| 一区在线观看完整版| 黄片无遮挡物在线观看| 九草在线视频观看| 国产日韩欧美在线精品| 国产色婷婷99| 宅男免费午夜| 一个人免费看片子| 久久精品国产综合久久久| 精品一区二区免费观看| 视频区图区小说| 只有这里有精品99| 国产精品 国内视频| 久久精品亚洲av国产电影网| 久久99蜜桃精品久久| 少妇人妻 视频| 日韩大片免费观看网站| 午夜久久久在线观看| 午夜免费鲁丝| 9色porny在线观看| 精品少妇内射三级| 亚洲综合精品二区| 丝袜美足系列| xxxhd国产人妻xxx| 综合色丁香网| 久久人人爽av亚洲精品天堂| 黑人猛操日本美女一级片| 有码 亚洲区| 久久久国产一区二区| 日日撸夜夜添| av片东京热男人的天堂| 少妇人妻久久综合中文| 日韩一卡2卡3卡4卡2021年| 国产1区2区3区精品| 成人影院久久| 搡老乐熟女国产| 亚洲情色 制服丝袜| 久久久久久久精品精品| 中文字幕av电影在线播放| 啦啦啦在线免费观看视频4| 久久午夜福利片| 日韩欧美精品免费久久| 在线 av 中文字幕| av不卡在线播放| 少妇熟女欧美另类| 国产黄色视频一区二区在线观看| 亚洲一区中文字幕在线| 美女xxoo啪啪120秒动态图| 成年女人毛片免费观看观看9 | 午夜福利视频精品| 国产 一区精品| 久久99精品国语久久久| 观看av在线不卡| 18禁裸乳无遮挡动漫免费视频| 免费久久久久久久精品成人欧美视频| 色婷婷av一区二区三区视频| 亚洲综合色网址| 亚洲欧洲精品一区二区精品久久久 | 久久精品久久久久久久性| 免费黄网站久久成人精品| 亚洲第一av免费看| 国产一区二区激情短视频 | 一区二区三区激情视频| 中文乱码字字幕精品一区二区三区| 亚洲精品成人av观看孕妇| 咕卡用的链子| 一级毛片我不卡| 成人漫画全彩无遮挡| 最新的欧美精品一区二区| 国产熟女欧美一区二区| 午夜福利乱码中文字幕| 亚洲国产日韩一区二区| 国产精品国产av在线观看| 国产精品二区激情视频| 黄频高清免费视频| 大香蕉久久成人网| 久久久久久伊人网av| 91久久精品国产一区二区三区| 热re99久久国产66热| 亚洲精品国产av成人精品| av电影中文网址| 妹子高潮喷水视频| 女人被躁到高潮嗷嗷叫费观| 亚洲三区欧美一区| 天堂俺去俺来也www色官网| 韩国av在线不卡| 国产无遮挡羞羞视频在线观看| 飞空精品影院首页| 国产乱人偷精品视频| 亚洲少妇的诱惑av| 男女无遮挡免费网站观看| 日韩在线高清观看一区二区三区| 国产在线视频一区二区| 成人亚洲欧美一区二区av| 在线看a的网站| 只有这里有精品99| 久久这里只有精品19| 亚洲av男天堂| 多毛熟女@视频| 丰满少妇做爰视频| 精品亚洲成国产av| 成人亚洲精品一区在线观看| 久久99一区二区三区| 天天躁夜夜躁狠狠久久av| 亚洲熟女精品中文字幕| 少妇的丰满在线观看| 中文字幕最新亚洲高清| 黄色毛片三级朝国网站| 国产片特级美女逼逼视频| 美女国产高潮福利片在线看| 美女国产高潮福利片在线看| 秋霞在线观看毛片| 亚洲图色成人| 久久这里有精品视频免费| 性高湖久久久久久久久免费观看| 午夜日本视频在线| 久久久久久伊人网av| 啦啦啦中文免费视频观看日本| 午夜免费鲁丝| 色播在线永久视频| 99久国产av精品国产电影| 超碰97精品在线观看| 成年动漫av网址| 亚洲成人av在线免费| 日本午夜av视频| av片东京热男人的天堂| 制服人妻中文乱码| 丝袜脚勾引网站| 亚洲国产毛片av蜜桃av| 看十八女毛片水多多多| 男人舔女人的私密视频| 青春草视频在线免费观看| 亚洲成色77777| 国产精品偷伦视频观看了| √禁漫天堂资源中文www| 久久韩国三级中文字幕| 自线自在国产av| 狠狠精品人妻久久久久久综合| 午夜免费男女啪啪视频观看| a级片在线免费高清观看视频| 成人亚洲精品一区在线观看| 久久女婷五月综合色啪小说| 亚洲成人av在线免费| 婷婷色麻豆天堂久久| 91aial.com中文字幕在线观看| 免费av中文字幕在线| 国产视频首页在线观看| 精品少妇内射三级| 久久久精品区二区三区| 精品一区二区三卡| 亚洲av电影在线进入| 亚洲色图 男人天堂 中文字幕| 免费久久久久久久精品成人欧美视频| 亚洲综合精品二区| 久久精品国产a三级三级三级| 亚洲久久久国产精品| 2022亚洲国产成人精品| 啦啦啦在线观看免费高清www| 好男人视频免费观看在线| 丝瓜视频免费看黄片| 成年动漫av网址| 1024香蕉在线观看| 黄频高清免费视频| 国产精品成人在线| 成年女人毛片免费观看观看9 | 免费大片黄手机在线观看| 成年美女黄网站色视频大全免费| av免费观看日本| 91久久精品国产一区二区三区| 中文字幕精品免费在线观看视频| 男人舔女人的私密视频| 国产成人一区二区在线| 亚洲精品自拍成人| av片东京热男人的天堂| 午夜91福利影院| 丰满饥渴人妻一区二区三| 久久久国产欧美日韩av| 女性生殖器流出的白浆| av福利片在线| 天堂8中文在线网| 99热全是精品| 亚洲第一青青草原| 在线观看免费日韩欧美大片| 久久影院123| 青春草国产在线视频| 亚洲欧美色中文字幕在线| videosex国产| 精品久久久久久电影网| 99久久综合免费| 久久久a久久爽久久v久久| 久久精品国产亚洲av高清一级| 日韩精品有码人妻一区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av在线观看美女高潮| 少妇精品久久久久久久| 亚洲精品美女久久久久99蜜臀 | 国产av国产精品国产| 人妻少妇偷人精品九色| 欧美97在线视频| 免费观看av网站的网址| 成人国产av品久久久| 777米奇影视久久| 久久97久久精品| 精品国产超薄肉色丝袜足j| 亚洲成人一二三区av| 国产精品99久久99久久久不卡 | 老汉色∧v一级毛片| 中文字幕人妻丝袜一区二区 | 九草在线视频观看| 69精品国产乱码久久久| 在线观看国产h片| 激情视频va一区二区三区| 亚洲精品久久成人aⅴ小说| 国产精品 国内视频| 亚洲精品国产色婷婷电影| 久久精品久久久久久久性| 国产探花极品一区二区| 观看av在线不卡| 国产精品亚洲av一区麻豆 | 国产极品天堂在线| 日韩三级伦理在线观看| 成人漫画全彩无遮挡| 婷婷色综合www| 欧美亚洲日本最大视频资源| 欧美日本中文国产一区发布| 欧美精品一区二区大全| 2018国产大陆天天弄谢| 最近中文字幕高清免费大全6| 久久久精品区二区三区| 久久av网站| 久久久久久久久久久久大奶| 2018国产大陆天天弄谢| 日韩人妻精品一区2区三区| www.精华液| 亚洲五月色婷婷综合| 亚洲久久久国产精品| 男人操女人黄网站| 免费观看无遮挡的男女| 国产在线一区二区三区精| 熟女电影av网| 多毛熟女@视频| 亚洲一区中文字幕在线| 捣出白浆h1v1| 久久精品亚洲av国产电影网| 亚洲欧洲日产国产| 丰满饥渴人妻一区二区三| 欧美变态另类bdsm刘玥| 欧美激情高清一区二区三区 | 久久女婷五月综合色啪小说| 久久这里只有精品19| 丝袜美足系列| 精品亚洲乱码少妇综合久久| 国产精品一区二区在线观看99| 亚洲欧美成人综合另类久久久| 久久韩国三级中文字幕| www.自偷自拍.com| 欧美日本中文国产一区发布| 69精品国产乱码久久久| av在线播放精品| 18禁观看日本| 午夜福利在线免费观看网站| 精品一区二区三区四区五区乱码 | 人妻系列 视频| 欧美+日韩+精品| 男人操女人黄网站| 卡戴珊不雅视频在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 国产福利在线免费观看视频| av网站在线播放免费| 国产老妇伦熟女老妇高清| 日日啪夜夜爽| 中文字幕另类日韩欧美亚洲嫩草| 在线观看三级黄色| 少妇人妻精品综合一区二区| 国产精品二区激情视频| 久久久久精品久久久久真实原创| videossex国产| 日日啪夜夜爽| 成人毛片a级毛片在线播放| 搡老乐熟女国产| 男人舔女人的私密视频| 午夜福利在线观看免费完整高清在| 国产精品 欧美亚洲| 999精品在线视频| 国产福利在线免费观看视频| 国产男女内射视频| 久热久热在线精品观看| 人人妻人人澡人人爽人人夜夜| 永久免费av网站大全| 免费播放大片免费观看视频在线观看| 精品久久久精品久久久| 国产av一区二区精品久久| 久久久亚洲精品成人影院| 国产成人av激情在线播放| 成年av动漫网址| 久久精品国产亚洲av高清一级| 久久午夜综合久久蜜桃| 男人舔女人的私密视频| 永久免费av网站大全| 黄色怎么调成土黄色| 老女人水多毛片| 欧美亚洲 丝袜 人妻 在线| 午夜日韩欧美国产| 久久狼人影院| 黄片无遮挡物在线观看| 91精品国产国语对白视频| 99热全是精品| 少妇的逼水好多| 亚洲成国产人片在线观看| 午夜老司机福利剧场| 天天影视国产精品| 国产女主播在线喷水免费视频网站| 久久久久视频综合| 欧美日韩精品网址| 另类亚洲欧美激情| 亚洲国产av新网站| 亚洲国产最新在线播放| 日韩精品免费视频一区二区三区| 日韩一本色道免费dvd| 国产片内射在线| 男人舔女人的私密视频| 亚洲一码二码三码区别大吗| 久久99热这里只频精品6学生| 男女午夜视频在线观看| 亚洲精品日韩在线中文字幕| 久久 成人 亚洲| 两个人免费观看高清视频| 日韩不卡一区二区三区视频在线| 欧美日韩av久久| 欧美最新免费一区二区三区| 亚洲国产精品一区三区| 国产精品麻豆人妻色哟哟久久| 成人黄色视频免费在线看| 99九九在线精品视频| 成人午夜精彩视频在线观看| 最黄视频免费看| 五月天丁香电影| 国产一区二区三区综合在线观看| 高清av免费在线| 久久精品国产亚洲av天美| 永久免费av网站大全| 国精品久久久久久国模美| 成年女人在线观看亚洲视频| 看非洲黑人一级黄片| 97人妻天天添夜夜摸| 亚洲视频免费观看视频| 99热国产这里只有精品6| 五月天丁香电影| 国产一区二区三区综合在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲美女视频黄频| 欧美日韩精品网址| 国产精品.久久久| 欧美少妇被猛烈插入视频| 亚洲精品一区蜜桃| 青草久久国产| 国产精品久久久久久精品电影小说| 久久久久精品人妻al黑| 少妇的丰满在线观看| 亚洲久久久国产精品| 国产一区二区在线观看av| 少妇人妻精品综合一区二区| 国产成人精品久久久久久| 久久国产亚洲av麻豆专区| 久久婷婷青草| 亚洲欧洲国产日韩| 建设人人有责人人尽责人人享有的| 午夜福利在线观看免费完整高清在| 啦啦啦视频在线资源免费观看| 91成人精品电影| 日本色播在线视频| 一级a爱视频在线免费观看| 国产熟女欧美一区二区| 国产av国产精品国产| 1024香蕉在线观看| 午夜激情久久久久久久| 日日啪夜夜爽| 国产一区二区在线观看av| 韩国av在线不卡| 在线天堂最新版资源| av在线播放精品| 亚洲精品久久成人aⅴ小说| 精品一区二区免费观看| 青春草国产在线视频| 男女免费视频国产| 久久97久久精品| 欧美变态另类bdsm刘玥| 女人精品久久久久毛片| 在线观看www视频免费| 国产熟女欧美一区二区| 我的亚洲天堂| 男女无遮挡免费网站观看| 亚洲综合色惰| 在线亚洲精品国产二区图片欧美| 免费高清在线观看视频在线观看| 国产精品久久久久成人av| 国产免费现黄频在线看| 久久99热这里只频精品6学生| 久久这里有精品视频免费| 中国三级夫妇交换| 成年av动漫网址| 欧美精品一区二区免费开放| 午夜激情av网站| 国产av码专区亚洲av| 两个人看的免费小视频| 国产一区有黄有色的免费视频| 69精品国产乱码久久久| 曰老女人黄片| 欧美日韩综合久久久久久| 国产精品女同一区二区软件| 国产精品麻豆人妻色哟哟久久| 色吧在线观看| 热re99久久精品国产66热6| 寂寞人妻少妇视频99o| 国产片特级美女逼逼视频| 亚洲中文av在线| 久久午夜综合久久蜜桃| 日韩在线高清观看一区二区三区| 亚洲av.av天堂| 国产成人欧美| 久久久亚洲精品成人影院| 不卡av一区二区三区| 波野结衣二区三区在线| 亚洲精品国产一区二区精华液| 国产免费又黄又爽又色| 一本—道久久a久久精品蜜桃钙片| 精品亚洲乱码少妇综合久久| 日韩伦理黄色片| 欧美 日韩 精品 国产| 制服诱惑二区| 国产一级毛片在线| 国产精品一国产av| 韩国av在线不卡| 午夜福利在线免费观看网站| av一本久久久久| 日韩精品免费视频一区二区三区| av免费观看日本| 老司机影院成人| 制服丝袜香蕉在线| 国产片特级美女逼逼视频| 国产女主播在线喷水免费视频网站| 曰老女人黄片| 母亲3免费完整高清在线观看 | 亚洲欧美一区二区三区国产| 亚洲av日韩在线播放| 99久久精品国产国产毛片| 久久久国产精品麻豆| 久久精品久久精品一区二区三区| 国产毛片在线视频| 亚洲精品国产色婷婷电影| 久久久精品免费免费高清| 国产激情久久老熟女| 亚洲国产看品久久| 一级片'在线观看视频| 精品一区二区三卡| 午夜激情久久久久久久| 亚洲三级黄色毛片| 精品午夜福利在线看| 巨乳人妻的诱惑在线观看| 中文字幕色久视频| 在线观看一区二区三区激情| 可以免费在线观看a视频的电影网站 | 激情五月婷婷亚洲| 国产不卡av网站在线观看| 伦理电影免费视频| 国产精品不卡视频一区二区| 在线观看美女被高潮喷水网站| 国产在线视频一区二区| 成年av动漫网址| 久久久久精品久久久久真实原创| 18禁动态无遮挡网站| 欧美bdsm另类| 三上悠亚av全集在线观看| 人人妻人人澡人人看| 黑人巨大精品欧美一区二区蜜桃| 亚洲美女视频黄频| 欧美成人午夜免费资源| 精品国产一区二区久久| 高清在线视频一区二区三区| av片东京热男人的天堂| videos熟女内射| 国产一区亚洲一区在线观看| 日韩电影二区| 成人影院久久| 久久久久精品人妻al黑| 久久精品国产综合久久久| 亚洲精品aⅴ在线观看| 久久久精品区二区三区| 中文字幕人妻熟女乱码| 国产在线一区二区三区精| 亚洲精品国产一区二区精华液|