• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一類分?jǐn)?shù)階復(fù)雜網(wǎng)絡(luò)混沌系統(tǒng)的投影同步*

    2016-09-21 03:05:00毛北行李慶賓
    動力學(xué)與控制學(xué)報 2016年4期
    關(guān)鍵詞:網(wǎng)絡(luò)系統(tǒng)時滯投影

    毛北行 李慶賓

    (鄭州航空工業(yè)管理學(xué)院理學(xué)院, 鄭州 450015)

    ?

    一類分?jǐn)?shù)階復(fù)雜網(wǎng)絡(luò)混沌系統(tǒng)的投影同步*

    毛北行?李慶賓

    (鄭州航空工業(yè)管理學(xué)院理學(xué)院, 鄭州450015)

    根據(jù)分?jǐn)?shù)階系統(tǒng)的相關(guān)理論研究了一類分?jǐn)?shù)階復(fù)雜網(wǎng)絡(luò)混沌系統(tǒng)的投影同步問題,給出了分?jǐn)?shù)階復(fù)雜網(wǎng)絡(luò)以及分?jǐn)?shù)階時滯復(fù)雜網(wǎng)絡(luò)系統(tǒng)實(shí)現(xiàn)投影同步的充分性條件,仿真結(jié)果表明了方法的正確性.

    投影同步,分?jǐn)?shù)階系統(tǒng),復(fù)雜網(wǎng)絡(luò)

    引言

    定義1[14]:Caputo分?jǐn)?shù)階導(dǎo)數(shù)定義為:

    n-1<α

    1 分?jǐn)?shù)階復(fù)雜網(wǎng)絡(luò)系統(tǒng)的投影同步

    考慮如下一類分?jǐn)?shù)階復(fù)雜網(wǎng)絡(luò)系統(tǒng):

    ui(t)(i=1,2,…,N),

    (1)

    A為適當(dāng)維數(shù)的常數(shù)矩陣,ui為控制輸入,Γ是網(wǎng)絡(luò)的內(nèi)部耦合矩陣,C=(cij)N×N是外部耦合矩陣,滿足cij=0,(i≠j),cij≥0(i≠j),對角線元素定義為:

    (2)

    假設(shè)1:復(fù)雜網(wǎng)絡(luò)的孤立節(jié)點(diǎn)的解滿足:

    Dtqs(t)=As(t)+f(s(t))

    (3)

    s(t)可以是一個穩(wěn)定點(diǎn),或者周期解,也可以是混沌軌跡.

    定義1: 對給定的分?jǐn)?shù)階系統(tǒng)(1),若存在一個非零矩陣Λ,使得

    假設(shè)2:非線性函數(shù)滿足條件:

    ‖f(xi(t))-Λf(s(t))‖≤li‖xi(t)-Λs(t)‖,其中l(wèi)i為大于零的常數(shù).

    定義系統(tǒng)誤差為:

    ei(t)=xi(t)-Λs(t), (i=1,2,…,N),

    則有:

    Dtqei(t)=Aei(t)+f(xi(t))-Λf(s(t))+

    引理1[15]:對于一般的分?jǐn)?shù)階自治非線性微分方程Dtαx(t)=f(x(t)),當(dāng)系統(tǒng)的階數(shù)0<α≤1時,如果存在實(shí)對稱正定矩陣P,使得J(x(t))=xT(t)PDtαx(t)<0,則上述分?jǐn)?shù)階系統(tǒng)漸近穩(wěn)定.

    定理1:設(shè)計控制器ui(t)=-kiei(t),若滿足條件(A+(li-ki)IN)+C?Γ<0則分?jǐn)?shù)階復(fù)雜網(wǎng)絡(luò)系統(tǒng)(1)可以實(shí)現(xiàn)投影同步.

    證明:由

    Dtqei(t)=Aei(t)+f(xi(t))-Λf(s(t))+

    C?Γ]ei(t)<0,

    根據(jù)引理1,很容易得到定理1.

    2 分?jǐn)?shù)階時滯復(fù)雜網(wǎng)絡(luò)系統(tǒng)的投影同步

    考慮如下一類分?jǐn)?shù)階時滯復(fù)雜網(wǎng)絡(luò)系統(tǒng):

    Dtqxi(t)=Axi(t)+f(xi(t-τ))+

    (i=1,2,…,N),

    (5)

    A為適當(dāng)維數(shù)的常數(shù)矩陣,ui為控制輸入,τ為時滯常數(shù),Γ是網(wǎng)絡(luò)的內(nèi)部耦合矩陣,C=(cij)N×N是外部耦合矩陣,滿足cij≥0(i≠j),同時對角線元素定義為:

    (6)

    假設(shè)3:復(fù)雜網(wǎng)絡(luò)的孤立節(jié)點(diǎn)的解滿足:

    Dtqs(t)=As(t)+f(s(t-τ))

    (7)

    s(t)可以是一個穩(wěn)定點(diǎn),或者周期解,也可以是混沌軌跡.

    假設(shè)4:非線性函數(shù)滿足條件:

    ‖f(xi(t-τ))-Λf(s(t-τ))‖≤

    li‖xi(t-τ)-Λs(t-τ)‖

    定義系統(tǒng)誤差為:

    ei(t)=xi(t)-Λs(t),(i=1,2,…,N),

    則有:

    Dtqei(t)=Aei(t)+f(xi(t-τ))-Λf(s(t-τ))+

    (8)

    引理2[16]:分?jǐn)?shù)階時滯系統(tǒng)

    Dtαx(t)=f(x(t),x(t-τ)),如果有正定的矩陣P和半正定矩陣Q滿足

    xT(t)PDtαx(t)+xTQx(t)-

    xT(t-τ)Qx(t-τ)≤0,

    則上述分?jǐn)?shù)階時滯系統(tǒng)是Lyapunov穩(wěn)定的.

    定理2:設(shè)計控制器ui(t)=-kiei(t),若滿足如下矩陣不等式(9),則分?jǐn)?shù)階復(fù)雜網(wǎng)絡(luò)系統(tǒng)(5)可以實(shí)現(xiàn)投影同步.

    (9)

    證明:根據(jù)引理2:

    其中

    e(t-τ)=[‖e1(t-τ)‖,‖e2(t-τ)‖,…,

    ‖eN(t-τ)‖]T.

    3 數(shù)值仿真

    選取分?jǐn)?shù)階Lorenz系統(tǒng)為例,系統(tǒng)描述為

    Dtqx1=a(x2-x1)

    Dtqx2=bx1-x1x3-x2

    Dtqx3=x1x2-cx3,

    Dtqs1=a(s2-s1)

    Dtqs2=bs1-s1s3-s2

    Dtqs3=s1s2-cs3

    其中x1,x2,x3為狀態(tài)變量,a,b,c為系統(tǒng)參數(shù),當(dāng)q=0.93,a=10,b=28,c=8/3時系統(tǒng)處于混沌狀態(tài).為了方便,取含三個節(jié)點(diǎn)的網(wǎng)絡(luò)進(jìn)行仿真.

    圖1 定理1中的系統(tǒng)誤差曲線Fig. 1 The system errors for Theorem 1

    圖2 定理2中的系統(tǒng)誤差曲線Fig. 2 The system errors for Theorem 2

    定理1中選取控制器ui(t)=-kiei(t),Λ=diag(-1,1,1),Γ=I3,li=1.2ki=1,從系統(tǒng)的誤差曲線如圖1所示, 定理2中選取控制器ui(t)=-kiei(t), Λ=diag(-1,1,1),Γ=I3,τ=0.5,li=1.5,ki=1.5,系統(tǒng)的誤差曲線如圖2所示.

    4 結(jié)論

    研究了一類分?jǐn)?shù)階復(fù)雜網(wǎng)絡(luò)混沌系統(tǒng)及其時滯系統(tǒng)的投影同步問題,基于Lyapunov穩(wěn)定性理論和分?jǐn)?shù)階微積分的相關(guān)理論,給出了分?jǐn)?shù)階復(fù)雜網(wǎng)絡(luò)以及分?jǐn)?shù)階時滯復(fù)雜網(wǎng)絡(luò)實(shí)現(xiàn)投影同步的充分性條件,將系統(tǒng)實(shí)現(xiàn)投影同步的充分性條件轉(zhuǎn)化為矩陣不等式,從而更容易MATLAB求解,仿真結(jié)果表明了方法的正確性.

    1徐爭輝,劉友金,譚文等.一個對稱分?jǐn)?shù)階經(jīng)濟(jì)系統(tǒng)混沌特性分析.系統(tǒng)工程理論與實(shí)踐,2014,34(5):1237~1242 (Xu Z H, Liu Y J,Tan W,et al. Chaotic dynamics in a commensurate fractional-order nonlinear economic system.SystemsEngineeringandThroryPractice,2014,34(5):1237~1242 (in Chinese))

    2郝建紅,賓虹,姜蘇娜等.分?jǐn)?shù)階線性系統(tǒng)穩(wěn)定理論在混沌同步中的簡單應(yīng)用.河北師范大學(xué)學(xué)報自然版,2014,38(5):469~475 (Hao J H,Bin H,Jiang S N,et al. Stability theorem for fractional linear systems and its application in chaos synchronization.JournalofHebeiNormalUniversity(NaturalScuenceEdition),2014,38(5):469~475 (in Chinese))

    3鐘啟龍,邵永輝,鄭永愛.基于TS模型的分?jǐn)?shù)階混沌系統(tǒng)同步.揚(yáng)州大學(xué)學(xué)報(自然版),2012,17(2):46~49 ( Zhong Q L,Shao Y H,Zheng Y A. Synchronization of the fractional order chaotic systems based on TS models.JournalofYangzhouUniversity(NaturalScienceEdition),2012,17(2):46~49 (in Chinese))

    4張?jiān)评?吳超然.基于反饋控制的分?jǐn)?shù)階時滯神經(jīng)網(wǎng)絡(luò)的同步.重慶工商大學(xué)學(xué)報(自然版),2014,31(12):49~53(Zhang Y L ,Wu C R. Synchronization of fractional -order neural network with delay based on feedback control.JournalofChongqingTechnolBusinessUniversity(NaturalScienceEdition), 2014,31(12):49~53 (in Chinese))

    5韓敏,張雅美,張檬.具有雙重時滯的時變耦合復(fù)雜網(wǎng)絡(luò)的牽制外同步.物理學(xué)報,2015,64(7):5061~5069 (Han M,Zhang Y M,Zhang M. Outer syncronization analysis of two time-varying networks with double delays based on pinning control.ActaPhysicaSinica, 2015,64(7):5061~5069 (in Chinese))

    6Lü L, Li G,Guo Y. Generalized chaos synchronization of a weighted complex network with different nodes.ChinesePhysicsB,2010,19(8):5071~5077

    7Mei J, Jiang M H, Wang J. Finite-time structure identification and synchronization of drive-response systems with uncertain parameter.CommunicationsinNonlinearScienceandNumericalSimulation,2013,(18):999~1015

    8余明哲,張友安.一類不確定分?jǐn)?shù)階混沌系統(tǒng)的滑模自適應(yīng)同步.北京航空航天大學(xué)學(xué)報,2014,40(9):1276~1280 (Yu M Z, Zhang Y A. Sliding mode adaptive synchronization for a class of fractional-order chaotic systems with uncertainties.JournalofBeijingUniversityofAeronauticsandAstronautics, 2014,40(9):1276~1280 (in Chinese))

    9嚴(yán)勝利,張昭晗.一類不確定分?jǐn)?shù)階混沌系統(tǒng)的同步控制.系統(tǒng)仿真技術(shù),2013,9(4):366~370 (Yan S L,Zhang Z H. Synchronization control of a class of uncertain fractional order chaotic systems.SystemSimulationTechnology, 2013,9(4):366~370 (in Chinese))

    10潘廣,魏靜.一種分?jǐn)?shù)階混沌系統(tǒng)同步的只適應(yīng)滑??刂破髟O(shè)計.物理學(xué)報,2015,64(4):5051~5057 (Pan G,Wei J. Design of an adaptive sliding mode controller for synchronization of fractional-order chaotic systems.ActaPhysicaSinica,2015,64(4):5051~5057 (in Chinese))

    11張燕蘭.分?jǐn)?shù)階Rayleigh-Duffing-like系統(tǒng)的自適應(yīng)追蹤廣義投影同步.動力學(xué)與控制學(xué)報,2014,12(4):348~352 (Zhang Y L. Adaptive tracking generalized projective synchronization of fractional Rayleigh-Duffing-like system.JournalofDynamicsandControl,2014,12(4):348~352 (in Chinese))

    12董俊,張廣軍,姚宏,王玨,許根.分?jǐn)?shù)階異結(jié)構(gòu)超混沌系統(tǒng)完全同步與反相同步控制.動力學(xué)與控制報,2014,12(2):119~126 (D J, Z G J, Yao H, Wang J, Xu G. The control of complete synchronization and anti-phase synchronization for fractional-order hyper-chaotic systems of different structures.JournalofDynamicsandControl,2014,12(2):119~126 (in Chinese))

    13楊麗新,江俊.分?jǐn)?shù)階復(fù)雜網(wǎng)絡(luò)系統(tǒng)的混合投影同步研究.動力學(xué)與控制學(xué)報,2015,13(1):52~55 (Yang L X,Jiang J. Hybrid projective synchronization of fractional-order complex dynamical networks.JournalofDynamicsandControl,2015,13(1):52~55 (in Chinese))

    14Podlubny. Fractional differential equation. Academic Press:San Diego,CA ,USA,1999

    15胡建兵,趙靈冬.分?jǐn)?shù)階系統(tǒng)穩(wěn)定性理論與控制研究.物理學(xué)報,2013,62(24):5041~5047 (Hu J B, Zhao L D. Stability theorem and control of fractional systems.ActaPhysicaSinica,2013,62(24):5041~5047 (in Chinese))

    16趙靈冬.分?jǐn)?shù)階非線性時滯系統(tǒng)的穩(wěn)定性理論及控制研究[博士學(xué)位論文].上海:東華大學(xué),2014 (Zhao L D. The stability theory of fracional nonlinear tiem-delay systems and its control[PhD Thesis]. Shanghai:Donghua University,2014 (in Chinese))

    *The project supported by the National Natural Science Foundation of Tianyuan (11226337)

    ? Corresponding author E-mail: bxmao329@163.com

    18 May 2015,revised 18 September 2015.

    PROJECTIVE SYNCHRONIZATION OF A CLASS OF FRACTIONAL-ORDER COMPLEX NETWORK CHAOS SYSTEMS*

    Mao Beixing?Li Qingbin

    (DepartmentofMathematicsandPhysics,ZhengzhouInstituteofAeronauticalIndustryManagement,Zhengzhou450015,China)

    The paper studied the projective synchronization problem of a class of fractional-order complex network chaos systems based on fractional order systems theory. The sufficient conditions for fractional-order complex network and its time-delayed systems to realize the projective synchronization was proposed. Numerical simulations of chaotic system verified the validity of the proposed method.

    projective synchronization,fractional order systems,complex networks

    E-mail: bxmao329@163.com

    10.6052/1672-6553-2015-72

    2015-05-18收到第1稿,2015-09-18收到修改稿.

    *國家自然科學(xué)基金數(shù)學(xué)天元基金資助項(xiàng)目(11226337)

    猜你喜歡
    網(wǎng)絡(luò)系統(tǒng)時滯投影
    解變分不等式的一種二次投影算法
    帶有時滯項(xiàng)的復(fù)Ginzburg-Landau方程的拉回吸引子
    基于最大相關(guān)熵的簇稀疏仿射投影算法
    找投影
    找投影
    基于DEMATEL-ISM的軍事通信網(wǎng)絡(luò)系統(tǒng)結(jié)構(gòu)分析
    高速公路網(wǎng)絡(luò)系統(tǒng)配置淺析
    時滯復(fù)雜網(wǎng)絡(luò)系統(tǒng)的保性能控制
    一階非線性時滯微分方程正周期解的存在性
    一類時滯Duffing微分方程同宿解的存在性
    黄山市| 额敏县| 仙游县| 邳州市| 铜鼓县| 修武县| 濉溪县| 新昌县| 尚志市| 沂源县| 陆川县| 巧家县| 玉龙| 定州市| 嘉兴市| 郎溪县| 彰化县| 龙口市| 鄂州市| 方城县| 白玉县| 韩城市| 雅江县| 中超| 武山县| 腾冲县| 当雄县| 清河县| 高邮市| 咸宁市| 嫩江县| 灵璧县| 扶沟县| 阿尔山市| 聂拉木县| 通道| 靖江市| 澄江县| 桐梓县| 广西| 水富县|