• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Instantaneous phase-stepping interferometry based on a pixelated micro-polarizer arraySatoru Yoneyama?,Shuichi Arikawa

    2016-09-21 01:13:25DepartmentofMechanicalEngineeringAoyamaGakuinUniversity10FuchinobeSagamihara2525258Japan

    Department of Mechanical Engineering,Aoyama Gakuin University,5-10-1 Fuchinobe,Sagamihara 252-5258,Japan

    ?

    Letter

    Instantaneous phase-stepping interferometry based on a pixelated micro-polarizer array
    Satoru Yoneyama?,Shuichi Arikawa

    Department of Mechanical Engineering,Aoyama Gakuin University,5-10-1 Fuchinobe,Sagamihara 252-5258,Japan

    H I G H L I G H T S

    ·A camera equipped with micro-polarizer array is used in a polarization interferometer. ·Phase values of interference fringes can be obtained from a single image.

    ·This method can be applied to the measurement of time-varying phenomena.

    A R T I C L EI N F O

    Article history:

    in revised form

    22 March 2016

    Accepted 14 May 2016

    Available online 2 June 2016

    Instantaneous phase-stepping method

    Mach-Zehnder interferometry

    Micro-polarizer array

    Polarization

    Fringe

    Crack

    In this paper,we propose an instantaneous phase-stepping method for determining phase distribution of interference fringes utilizing a camera that is equipped with a micro-polarizer array on the sensor plane.An optical setup of polarization interferometry using a Mach-Zehnder interferometer with two polarizers is constructed.Light emerging from the interferometer is recorded using a camera that has a micro-polarizerarray.Thismicro-polarizerarrayhasfourdifferentopticalaxes.Thatis,animageobtained by the camera contains four types of information corresponding to four different optical axes of the polarizer.The four images separated from the image recorded by the camera are reconstructed using gray level interpolation.Subsequently,the distributions of the Stokes parameters that represent the state of polarization are calculated from the four images.The phase distribution of the interference fringe pattern produced by the Mach-Zehnder interferometer is then obtained from these Stokes parameters. The effectiveness of the proposed method is demonstrated by measuring a static carrier pattern and time-variant fringe patterns.It is emphasized that this method is applicable to time-variant phenomena because multiple exposures are unnecessary for sufficient data acquisition in the completion of the phase analysis.

    ?2016 The Author(s).Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and

    Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://

    creativecommons.org/licenses/by-nc-nd/4.0/).

    Several interferometric techniques,such as moiré,Twyman-Green,Mach-Zehnder,holographic and speckle pattern interferometries,have long been used for studying mechanical deformation of solids and the mechanics of fracture[1-4].Several techniques exist for the analysis of fringe patterns obtained by these methods.Among them,phase-stepping(or phase-shifting)method is the most important and widely accepted techniques[5]. Phase-stepping interferometry is a simple and precise method for converting interferograms into phase maps.However,it is known that a temporal phase-stepping method has the disadvantage of a time lag during phase stepping and acquisition between phase steps.

    Morimoto and co-workers[6-8]developed a high-speed temporal phase-shifting method for real-time measurement and applied it to analyses of time-varying Twyman-Green,moiré, and photoelastic fringes.Their method is applicable to slowly varying problems,but it is fundamentally difficult to analyze timevariant problems by their method because the multiple phasestepped images cannot be obtained simultaneously.Another approach to real-time measurement or instantaneous recording of phase-stepped images is a spatial phase-stepping method.The spatial phase-stepping method generates simultaneous phasestepped interferograms using polarization optics or diffraction grating[5].Several researchers have developed an instantaneous spatial phase-stepping method that uses multiple cameras for the acquisition of phase-stepped interferograms[9-13].Others have appliedittomeasurementsofcrystalgrowth[14]andsupercritical flow [15].The major drawback of this technique is the high complexity of the experimental setup,which requires perfect alignment and calibration of the pixels of multiple cameras.On the other hand,Novak et al.[16]proposed a method for recordingmultiple phase-stepped images using a camera with micropolarizers.Similarly,one author[17,18]proposed instantaneous phase-stepping interferometry and photoelasticity using a camera equippedwithamicro-retarderarray.Furthermore,thistechnique has been used for evaluating the stress fields around a propagating crack tip in a glass plate under thermal load[19].Recently,on the other hand,a high-speed camera that is equipped with a micro-polarizer array on the sensor plane is available[20-22]. Whereas this camera has been developed for the measurement of birefringence,it is considered that the instantaneous recording of phase-stepped interference fringes is possible using this camera, similar to the Novak’s method[16].

    In this paper we propose an instantaneous phase-stepping method for determining phase distribution of interference fringes utilizing a camera equipped with a micro-polarizer array on the sensor plane.An optical setup of polarization interferometry using a Mach-Zehnder interferometer with two polarizers is constructed to analyze the distribution of the thickness change of thetransparentsample,i.e.,thesumofprincipalstressesinthecase of the plane stress state.Light emerging from the interferometer is recorded using a camera that has a micro-polarizer array on a sensor plane.This micro-polarizer array has four different optical axes.That is,an image obtained by the camera contains four types of information corresponding to four different optical axes of the polarizer.The four images separated from the image recorded by the camera are reconstructed using gray level interpolation. Subsequently,the distributions of the Stokes parameters that represent the state of polarization are obtained from the four images.The phase distribution of the interference fringe pattern produced by the Mach-Zehnder interferometer is then obtained from these Stokes parameters.

    Figure 1 portrays the outline of the camera equipped with the micro-polarizer array on the sensor plane.As shown in this figure,many sets of four(2× 2)micro-polarizers whose optical axes subtend four different angles,0,π/4 rad,π/2 rad, 3π/4 rad,form the large array the sensor.The size of a single micro-polarizer is equivalent to a single pixel of the sensor. The micro-polarizer position is aligned with the sensor.A single sensor detects the intensity of a light that passes through a single polarizer with a specific angle of the optical axis.Then, the four light intensity distributions corresponding to the four optical axes are obtained as a single image.Spatial resolution of each light intensity distribution is reduced to one-fourth of the CCD’s resolution.In addition,the spatial positions of the four light intensitydistributionsdonotmutuallycorrespond.Therefore,light intensities other than the angle of the polarizer at the point are determined from light intensities at the neighboring points using interpolation such as bilinear or bicubic interpolation methods. Then,the four light intensity distributions whose respective sizes are equivalent to the original image are obtained by a single exposure.The four light intensity distributions are therefore phase-stepped images,similar to those obtained in other phasestepping methods.

    The interferometer used in this study is shown in Fig.2.This interferometer consists of a Mach-Zehnder interferometer,two polarizers,and a quarter-wave plate.Light emitted from a point light source is collimated using a collimator lens.Then,a beam splitter divides the light.The light beam reflected by the beam splitter passes through a polarizer whose optical axis is vertical and a transparent specimen.Meanwhile,the light that passes through the beam splitter passes a polarizer whose optical axis is horizontal.In the case of an ordinary Mach-Zehnder interferometer,the two light beams interfere at the beam splitter.Then,the interference fringe pattern is observed.On the other hand,no interference fringe pattern is observed for the interferometer shown in Fig.2 because polarization directions of the two light beams cross at the rightangles.TheStokesvectorofthelightemergingfromthebeam

    Fig.1.Configuration of the micro-polarizer array on the sensor plane.

    splitter is expressed as follows

    Therein,s0,s1,s2,and s3are the Stokes parameters,Axand Ayare the amplitude components,δrepresents the phase difference.The light beam passes through a quarter-wave plate and the polarizer attached on the sensor plane whose optical axis isθ.The Stokes vector of the light beam at the sensor plane is expressed as

    Therefore,the four light intensities,I0,I1,I2,and I3,corresponding to the four different angles of the polarizers,θ=0,π/4 rad, π/2 rad,3π/4 rad are obtained as

    Then,the Stokes parameters s2and s3of the light emerging from the interferometer are obtainable as

    Therefore,the phase value of the interference fringe is obtained as follows

    Using the above interferometer and the camera,the wrapped phase map is obtainable from an image obtained by a single exposure.A phase unwrapping procedure can be introduced to obtain the unwrapped phase map.Then,the sum of principal stresses is obtained for plane stress specimen as[23]

    whereσ1andσ2are the principal stresses,fsis the material constant,and d expresses the thickness of the specimens.It is notedthat this method can be applied to other interferometers than the Mach-Zehnder interferometer with the similar principle.

    Fig.2.Optical setup of Mach-Zehnder interferometry with polarizers and quarter-wave plate.

    Fig.3.(a)Light intensity distribution obtained using the camera with the micro-polarizer array;(b)magnified image of 20×20 pixels region.

    Fig.4.Separated images corresponding to optical axis of the polarizer:(a)θ=0;(b)θ=π/4;(c)θ=π/2;(d)θ=3π/4.

    A carrier pattern analysis without a transparent specimen is performed to validate the proposed method.The optical system in Fig.2 without the specimen is adjusted to appear the carrier pattern.Then,thelightemergingfromtheinterferometerandthen the quarter-wave plate is acquired using a camera with the micropolarizer array(Photron FASTCAM SA5P)with the resolution of 1024×1024pixelsandthegraylevelsof8bits.Thelightsourceisa YAGlaserwiththewavelengthof532nm.Aquarter-waveplatefor the wavelength of 514.5 nm is used for the interferometer because a quarter-wave plate for 532 nm is not available in the present stage.

    Figure 3(a)shows the image obtained by the camera with the micro-polarizer array;Fig.3(b)shows a magnified image of the 20×20pixelsregion oftheimageinFig.3(a).AsshowninFig.3(b), the gray level shows an unnatural and grating-like distribution causedbythemicro-polarizerarrayonthesensorplane.Theimage in Fig.3(a)is separable into four images corresponding to the four micro-polarizers,as shown in Fig.4.An interference fringe pattern cannot be observed in the case of the interferometer shown in Fig.2.In Fig.4,however,the phase-stepped interference fringes are observed because of the presence of the polarizer on the sensor plane.Theseseparatedimagescanbeconsideredasphase-stepped images.The phase map of the carrier pattern obtained by the proposed method is shown in Fig.5.It is noted that no smoothing process is introduced to the image in this figure.As shown in this figure,the phase map of the equally spaced carrier pattern is obtained by the proposed procedure.Figure 6 shows the phase distribution along a line around the center of the phase map in Fig.5.In this figure,the straight line expresses the approximation obtained using the least-squares.Because the values in Fig.6 represent the phase of the carrier pattern,the distribution can be approximated by a straight line.However,the curved distribution isobservedinthephaseinFig.6.Themaximumdifferencebetween the phase value and the approximated straight line is estimated as 0.75 rad,the average is 0.23 rad,and the standard deviation is 0.17 rad.There are some error sources such as the unmatched wavelength of the quarter-wave plate.On the other hand,the effectiveness of the proposed method is verified.That is,the phase analysis is possible from an image obtained using the camera with the micro-polarizer array.

    Next,the phase analyses of the time-variant interference fringes are performed.The outline of the specimen and the loadingdeviceisschematicallyshowninFig.7.Atransparentspecimen made of polymethylmethactylate(PMMA)is used.The modulus of elasticity E and the Poisson’s ratioνof the material are measured as E=3.0 GPa andν=0.3,respectively.The adopted specimen is a strip plate with 80 mm in width,20 mm in height,and 3 mm in thickness,having a notch of the 2 mm in length.The notch is introducedbyarazor.Thespecimenisplacedonafour-pointbending device.Then,a weight is dropped onto the upper loading device.The specimen is subjected to the impact load by the dropped weight.The time-variant interference fringes around the notch are then recorded by the camera with the micro-polarizer array at the frame rate of 150,000 fps.The image size is set to 128×240 pixels.

    Figure8showstheconsecutivephasemapsofthe Mach-Zehnder fringes obtained by the proposed method.These phasemapsareobtainedbysubtractingthephaseatthestaticstate before the load from the phase after the load.That is,the phase maps in Fig.8 represent the phase difference between the images before and after the load.It is observed that the number of the interference fringes increase with time and the fringes concentrate at the notch tip.It is noteworthy that,as shown in this figure,the phase values of the time-variant interference fringes are obtainable using the instantaneous phase-stepping method based on the micro-polarizer array.

    Fig.5.Phase map of the carrier pattern obtained by the proposed phase-stepping method.

    Fig.6.Phase distribution of the carrier pattern along a line.

    Fig.7.Specimen and loading configuration for dynamic test.

    It is observed that the crack starts to propagate after increasing the phase values,that is,the sum of the principal stresses near the notch tip.Figure 9 shows an example of the phase distribution during the crack propagation.At the instant of crack propagation in Fig.9,the crack propagates at the speed of about 579 m·s-1. As shown in this figure,a reasonable phase distribution cannot be obtained for the propagating crack because the speed of the change of the phase distributions is too fast to record the camera employed in this experiment.As shown in Fig.8,however,the timevariationoftheinterferencefringesforthephenomenawhosespeed of change is suited for the camera speed can be analyzed by the proposed instantaneous phase-stepping interferometry.

    Fig.8.Series of 6 consecutive phase maps of Mach-Zehnder fringes around a notch:camera speed 150,000 frames per sec.

    Fig.9.Phase map obtained during crack propagation.

    In this paper we propose an instantaneous phase-stepping method for determining phase distribution of interference fringes utilizing a camera equipped with a micro-polarizer array on the sensor plane.Light emerging from the interferometer is recorded using a camera that has a micro-polarizer array on a sensor plane.An image obtained by the camera contains four types of information corresponding to four different optical axes of the micro-polarizer.Subsequently,the distributions of the Stokes parameters that represent the state of polarization are evaluated from the four images.The phase distribution of the interference fringe pattern produced by the Mach-Zehnder interferometer is then obtained from these Stokes parameters.It is emphasized that this method is applicable to time-variant phenomena because multiple exposures are unnecessary for sufficient data acquisition in the completion of the phase analysis.

    Acknowledgments

    The authors express their thanks to Messrs.A.Mihara,T.Sasaki, and T.Onuma of Photron Limited for kindly providing the highspeedcameraequippedwiththemicro-polarizerarray.Ourthanks are extended to Mr.Y.Furuichi for his help in the experiments.

    [1]B.Han,Thermal stresses in microelectronics subassemblies:quantitative characterization using photomechanics methods,J.Therm.Stresses 26(2003)583-613.

    [2]X.L.Gong,S.Toyooka,Investigation on mechanism of plastic deformation by digital speckle pattern interferometry,Exp.Mech.39(1999)25-29.

    [3]R.D.Pfaff,P.D.Washabaugh,W.G.Knauss,An interpretation of twyman-green interferograms from static and dynamic fracture experiments,Int.J.Solids Struct.32(1995)939-955.

    [4]S.Yoneyama,H.Kamihoriuchi,A method for evaluating full-field stress components from a single image in interferometric photoelasticity,Meas.Sci. Technol.20(2009)075302.

    [5]J.M.Huntley,Automated fringe pattern analysis in experimental mechanics:a review,J.Strain Anal.Eng.Des.33(1997)105-125.

    [6]M.Fujigaki,Y.Morimoto,M.Yabe,Real-time measurement of nanometer displacement distribution by integrated phase-shifting method,JSME Int.J., Ser.A 45(2002)448-452.

    [7]Y.Yamamoto,Y.Morimoto,M.Fujigaki,Two-directional phase-shifting moiré interferometry and its application to thermal deformation measurement of an electronic device,Meas.Sci.Technol.18(2007)561-566.

    [8]S.Yoneyama,Y.Morimoto,R.Matsui,Photoelastic fringe pattern analsysi by real-time phase-shifting method,Opt.Lasers Eng.39(2003)1-13.

    [9]R.Smythe,R.Moore,Instantaneousphasemeasuringinterferometry,Opt.Eng. 23(1984)361-364.

    [10]C.L.Koliopoulos,Simultaneous phase shift interferometer,Proc.SPIE 1531(1991)119-127.

    [11]A.J.P.van Haasteren,H.J.Frankena,Real-time displacement measurement using a multicamera phase-stepping speckle interferometer,Appl.Opt.33(1994)4137-4142.

    [12]B.K.A.Ngoi,K.Venkatakrishnan,N.R.Sivakumar,et al.,Instantaneous phase shifting arrangement for microsurface profiling of flat surfaces,Opt.Commun. 190(2001)109-116.

    [13]N.R.Sivakumar,W.Hui,K.Venkatakrishnan,et al.,Large surface profile measurement with instantaneous phase-shifting interferometry,Opt.Eng.42(2003)367-372.

    [14]K.Onuma,T.Nakamura,S.Kuwashima,Development of new real-time phaseshift interferometry for the investigation of crystal growth kinetics,J.Cryst. Growth 167(1996)387-390.

    [15]E.Astrakharchik-Farrimond,B.Y.Shekunov,P.York,et al.,Dynamic measurements in supercritical flow using instantaneous phase-shift interferometry, Exp.Fluids 33(2002)307-314.

    [16]M.Novak,J.Millerd,N.Brock,et al.,Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,Appl.Opt.44(2005)6861-6868.

    [17]S.Yoneyama,H.Kikuta,K.Moriwaki,Instantaneous phase-stepping interferometry using polarization imaging with a micro-retarder array,Exp.Mech.45(2005)451-456.

    [18]S.Yoneyama,H.Kikuta,K.Moriwaki,Simultaneous observation of phasestepped photoelastic fringes using a pixelated microretarder array,Opt.Eng. 45(2006)083604.

    [19]S.Yoneyama,K.Sakaue,H.Kikuta,et al.,Observation of stress field around an oscillating crack tip in a quenched thin glass plate,Exp.Mech.48(2008)367-374.

    [20]W.Murata,E.Umezaki,T.Onuma,et al.,Phase-shifting photoelasticity using polarization high-speed camera,in:5th International Symposium on Advanced Science and Technology in Experimental Mechanics,Kyoto, November 2010.

    [21]T.Onuma,Y.Otani,Real-time measurement method for birefringence distribution by dynamic stokes polarimeter,in:International Symposium on Optomechatronic Technologies,Hong Kong,November 2012.

    [22]T.Kakue,R.Yonesaka,T.Tahara,et al.,High-speed phase imaging by parallel phase-shifting digital holography,Opt.Lett.36(2011)4131-4133.

    [23]S.Yoneyama,S.Arikawa,T.Shibayama,Stress separation of interferometrically measured isopachics in a perforated plate,Exp.Mech.52(2012)659-667.

    12 November 2015

    .

    E-mail address:yoneyama@me.aoyama.ac.jp(S.Yoneyama).

    http://dx.doi.org/10.1016/j.taml.2016.05.004

    2095-0349/?2016 The Author(s).Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    黑人猛操日本美女一级片| 80岁老熟妇乱子伦牲交| 国产精品麻豆人妻色哟哟久久| 亚洲国产看品久久| 丁香六月欧美| 日韩制服骚丝袜av| 欧美激情 高清一区二区三区| 精品卡一卡二卡四卡免费| 操出白浆在线播放| 国产在线视频一区二区| 国产精品一二三区在线看| 精品一区在线观看国产| 日韩大码丰满熟妇| 日韩精品免费视频一区二区三区| 欧美日韩国产mv在线观看视频| 18禁黄网站禁片午夜丰满| 精品国产一区二区三区四区第35| 国产视频首页在线观看| 欧美日韩成人在线一区二区| 人妻一区二区av| 亚洲国产精品999| 亚洲成人国产一区在线观看 | 精品国产一区二区三区久久久樱花| 在线观看人妻少妇| 亚洲成人免费av在线播放| 亚洲少妇的诱惑av| 纯流量卡能插随身wifi吗| 在线观看www视频免费| 久热爱精品视频在线9| 精品福利观看| 久久精品久久久久久久性| 99久久综合免费| 男的添女的下面高潮视频| 免费看不卡的av| 欧美av亚洲av综合av国产av| 国产深夜福利视频在线观看| 国产精品一区二区精品视频观看| 色婷婷久久久亚洲欧美| 欧美日韩av久久| 精品卡一卡二卡四卡免费| 9色porny在线观看| 精品一区在线观看国产| 一级毛片 在线播放| 亚洲欧美成人综合另类久久久| 亚洲av成人精品一二三区| 婷婷色麻豆天堂久久| 视频区欧美日本亚洲| 中文字幕另类日韩欧美亚洲嫩草| 嫁个100分男人电影在线观看 | 亚洲国产精品成人久久小说| xxxhd国产人妻xxx| 一级毛片 在线播放| 交换朋友夫妻互换小说| 免费高清在线观看日韩| 午夜福利,免费看| 少妇被粗大的猛进出69影院| 午夜影院在线不卡| 免费黄频网站在线观看国产| 99久久人妻综合| 999精品在线视频| 国产片特级美女逼逼视频| 美女福利国产在线| 国产男女内射视频| 免费久久久久久久精品成人欧美视频| 久久久久久久大尺度免费视频| 天天躁日日躁夜夜躁夜夜| 成人三级做爰电影| 男女边吃奶边做爰视频| 日韩一卡2卡3卡4卡2021年| 国产欧美日韩综合在线一区二区| 69精品国产乱码久久久| 母亲3免费完整高清在线观看| 天天操日日干夜夜撸| 99国产精品一区二区蜜桃av | www.999成人在线观看| kizo精华| 在线观看免费视频网站a站| 精品一品国产午夜福利视频| 伊人久久大香线蕉亚洲五| 妹子高潮喷水视频| 热re99久久精品国产66热6| 热re99久久精品国产66热6| 欧美国产精品va在线观看不卡| 欧美日韩av久久| 欧美性长视频在线观看| 欧美乱码精品一区二区三区| 啦啦啦中文免费视频观看日本| 亚洲精品av麻豆狂野| 色视频在线一区二区三区| 久久久精品94久久精品| 久久影院123| svipshipincom国产片| 亚洲av男天堂| 国产极品粉嫩免费观看在线| 日韩伦理黄色片| 嫁个100分男人电影在线观看 | 国语对白做爰xxxⅹ性视频网站| 9191精品国产免费久久| 成人国语在线视频| 如日韩欧美国产精品一区二区三区| a级毛片在线看网站| 中文字幕另类日韩欧美亚洲嫩草| 99精国产麻豆久久婷婷| 黑丝袜美女国产一区| 一二三四社区在线视频社区8| 深夜精品福利| 1024香蕉在线观看| 精品视频人人做人人爽| 亚洲第一av免费看| 日韩精品免费视频一区二区三区| 人妻 亚洲 视频| 日韩精品免费视频一区二区三区| 亚洲国产精品999| 免费在线观看完整版高清| 新久久久久国产一级毛片| 波多野结衣av一区二区av| 午夜影院在线不卡| 搡老岳熟女国产| 国产免费又黄又爽又色| 免费少妇av软件| av天堂在线播放| 亚洲 国产 在线| 成年动漫av网址| 两个人看的免费小视频| 欧美久久黑人一区二区| 国产日韩一区二区三区精品不卡| 日韩av免费高清视频| 久久久久视频综合| 爱豆传媒免费全集在线观看| 日日爽夜夜爽网站| 国产精品国产三级国产专区5o| 国产精品麻豆人妻色哟哟久久| 亚洲男人天堂网一区| 精品免费久久久久久久清纯 | 亚洲图色成人| 国产精品香港三级国产av潘金莲 | 黑人欧美特级aaaaaa片| 夜夜骑夜夜射夜夜干| 国产一级毛片在线| 国产又爽黄色视频| 亚洲av美国av| 亚洲中文av在线| 久久久久久久久久久久大奶| 99热网站在线观看| 黄片播放在线免费| 侵犯人妻中文字幕一二三四区| 免费黄频网站在线观看国产| 日韩 欧美 亚洲 中文字幕| kizo精华| 大陆偷拍与自拍| 久久精品国产亚洲av高清一级| 久久精品亚洲av国产电影网| 亚洲av日韩在线播放| 欧美在线一区亚洲| 亚洲欧美成人综合另类久久久| 黄色怎么调成土黄色| 日韩 亚洲 欧美在线| 涩涩av久久男人的天堂| 国产精品九九99| 如日韩欧美国产精品一区二区三区| 高清av免费在线| av电影中文网址| 青春草视频在线免费观看| 十八禁人妻一区二区| 中文字幕av电影在线播放| 亚洲成人免费av在线播放| 国产精品久久久久久人妻精品电影 | 丁香六月天网| 亚洲美女黄色视频免费看| 午夜日韩欧美国产| 国产又色又爽无遮挡免| 一级毛片 在线播放| 亚洲专区国产一区二区| 最近中文字幕2019免费版| 夫妻午夜视频| 亚洲精品一区蜜桃| 国产精品成人在线| 无限看片的www在线观看| h视频一区二区三区| 国产精品一国产av| 五月天丁香电影| 国产伦理片在线播放av一区| 国产精品亚洲av一区麻豆| 欧美日韩精品网址| 色网站视频免费| 欧美中文综合在线视频| 女人高潮潮喷娇喘18禁视频| 这个男人来自地球电影免费观看| 女人爽到高潮嗷嗷叫在线视频| 考比视频在线观看| 亚洲免费av在线视频| 国产精品免费视频内射| 亚洲九九香蕉| 50天的宝宝边吃奶边哭怎么回事| 一区福利在线观看| 日韩制服骚丝袜av| 婷婷色av中文字幕| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产色婷婷电影| 亚洲 国产 在线| 伊人亚洲综合成人网| 一区二区三区四区激情视频| 国产午夜精品一二区理论片| 日韩大片免费观看网站| 性色av一级| 赤兔流量卡办理| 制服诱惑二区| 中文乱码字字幕精品一区二区三区| 深夜精品福利| 国产成人免费观看mmmm| 啦啦啦视频在线资源免费观看| 亚洲av成人不卡在线观看播放网 | 亚洲黑人精品在线| 午夜日韩欧美国产| www.999成人在线观看| 狂野欧美激情性xxxx| 一区二区三区激情视频| 在线看a的网站| 日本av手机在线免费观看| 免费少妇av软件| 成人黄色视频免费在线看| 欧美 亚洲 国产 日韩一| 久久亚洲国产成人精品v| 亚洲av男天堂| 18禁观看日本| 99国产精品一区二区蜜桃av | 欧美激情高清一区二区三区| 两个人看的免费小视频| 午夜免费观看性视频| 黄色片一级片一级黄色片| 亚洲欧美一区二区三区国产| 少妇裸体淫交视频免费看高清 | 亚洲 欧美一区二区三区| 欧美在线黄色| 操美女的视频在线观看| 亚洲av综合色区一区| 男女之事视频高清在线观看 | 欧美变态另类bdsm刘玥| 最新的欧美精品一区二区| 免费一级毛片在线播放高清视频 | www.自偷自拍.com| 亚洲美女黄色视频免费看| 热99国产精品久久久久久7| 在线精品无人区一区二区三| svipshipincom国产片| 亚洲av在线观看美女高潮| 亚洲人成电影观看| 老司机深夜福利视频在线观看 | 香蕉国产在线看| 在现免费观看毛片| 99国产综合亚洲精品| 精品一区二区三区av网在线观看 | 色播在线永久视频| 成年人免费黄色播放视频| 日韩av免费高清视频| 久久人人97超碰香蕉20202| 欧美精品人与动牲交sv欧美| 我要看黄色一级片免费的| 在线精品无人区一区二区三| 成人影院久久| av欧美777| 国产麻豆69| 国产视频一区二区在线看| 欧美激情高清一区二区三区| 久久国产亚洲av麻豆专区| 成年动漫av网址| 视频区图区小说| 午夜两性在线视频| 亚洲av欧美aⅴ国产| 亚洲成人手机| 亚洲久久久国产精品| 日韩av免费高清视频| 人人妻,人人澡人人爽秒播 | 中文乱码字字幕精品一区二区三区| av有码第一页| 午夜免费鲁丝| 熟女av电影| 一级片'在线观看视频| 乱人伦中国视频| 亚洲人成电影观看| 777久久人妻少妇嫩草av网站| 五月开心婷婷网| 国产亚洲欧美精品永久| 丝袜喷水一区| 久久这里只有精品19| 一级黄片播放器| 老司机影院毛片| 色视频在线一区二区三区| 国产精品香港三级国产av潘金莲 | 国产亚洲精品第一综合不卡| 99精品久久久久人妻精品| 一边摸一边做爽爽视频免费| 老司机在亚洲福利影院| 一级毛片黄色毛片免费观看视频| 亚洲精品av麻豆狂野| 欧美黑人精品巨大| av网站在线播放免费| 国产深夜福利视频在线观看| 最黄视频免费看| 美女国产高潮福利片在线看| 黑丝袜美女国产一区| 亚洲欧美日韩高清在线视频 | av线在线观看网站| 麻豆av在线久日| 美国免费a级毛片| 亚洲国产日韩一区二区| 在线观看国产h片| 久久久国产欧美日韩av| 视频区图区小说| 亚洲av综合色区一区| 国产亚洲精品久久久久5区| 啦啦啦视频在线资源免费观看| 亚洲第一青青草原| 免费久久久久久久精品成人欧美视频| 亚洲成人免费av在线播放| 18禁黄网站禁片午夜丰满| 又紧又爽又黄一区二区| 亚洲国产精品一区二区三区在线| 婷婷色综合www| 久久精品国产亚洲av涩爱| 国产高清国产精品国产三级| 亚洲精品久久成人aⅴ小说| 成人国语在线视频| 天天躁夜夜躁狠狠躁躁| 99热国产这里只有精品6| 侵犯人妻中文字幕一二三四区| 日本a在线网址| 黄色毛片三级朝国网站| 欧美日本中文国产一区发布| 黄色a级毛片大全视频| 国产欧美日韩一区二区三 | 夫妻午夜视频| 日韩 欧美 亚洲 中文字幕| 老司机午夜十八禁免费视频| 精品人妻1区二区| av福利片在线| 国产高清视频在线播放一区 | 久久午夜综合久久蜜桃| 国产又色又爽无遮挡免| av一本久久久久| 欧美97在线视频| 久久久久国产一级毛片高清牌| 久久久久久久国产电影| 别揉我奶头~嗯~啊~动态视频 | 熟女av电影| √禁漫天堂资源中文www| 亚洲第一av免费看| 日韩中文字幕视频在线看片| 97在线人人人人妻| 日韩大片免费观看网站| av天堂在线播放| 国产精品秋霞免费鲁丝片| 亚洲av综合色区一区| 亚洲人成电影观看| 国产黄色视频一区二区在线观看| 大型av网站在线播放| 又黄又粗又硬又大视频| 国产精品一区二区在线观看99| 日韩中文字幕视频在线看片| 一个人免费看片子| 99久久精品国产亚洲精品| 狠狠精品人妻久久久久久综合| 亚洲熟女精品中文字幕| 久久久精品区二区三区| 日本色播在线视频| 欧美 日韩 精品 国产| 制服诱惑二区| 飞空精品影院首页| 日本一区二区免费在线视频| 亚洲 国产 在线| 又大又黄又爽视频免费| 国产深夜福利视频在线观看| 久久久久久亚洲精品国产蜜桃av| 精品亚洲成a人片在线观看| 亚洲欧美成人综合另类久久久| 亚洲 国产 在线| 亚洲人成电影免费在线| 自线自在国产av| 亚洲人成电影免费在线| 人人妻,人人澡人人爽秒播 | 丝袜在线中文字幕| 日本午夜av视频| 啦啦啦啦在线视频资源| 欧美日韩一级在线毛片| 亚洲国产成人一精品久久久| 亚洲伊人久久精品综合| 女人高潮潮喷娇喘18禁视频| 亚洲国产欧美在线一区| 精品一区二区三卡| 亚洲国产中文字幕在线视频| 久久久欧美国产精品| www.熟女人妻精品国产| 亚洲第一青青草原| 校园人妻丝袜中文字幕| 五月开心婷婷网| 人人妻人人添人人爽欧美一区卜| 99久久人妻综合| 大香蕉久久成人网| 亚洲欧美激情在线| 成年人黄色毛片网站| 免费看av在线观看网站| 后天国语完整版免费观看| 妹子高潮喷水视频| 免费观看a级毛片全部| 老汉色∧v一级毛片| 最新的欧美精品一区二区| 精品少妇一区二区三区视频日本电影| 午夜av观看不卡| 另类精品久久| 国产熟女午夜一区二区三区| 91字幕亚洲| 国产成人91sexporn| 韩国精品一区二区三区| 中文字幕色久视频| 精品一品国产午夜福利视频| 亚洲国产精品一区三区| 国产成人一区二区在线| 国产99久久九九免费精品| 日韩,欧美,国产一区二区三区| xxxhd国产人妻xxx| 国产高清不卡午夜福利| 欧美人与性动交α欧美软件| 老鸭窝网址在线观看| 一边摸一边抽搐一进一出视频| 天天躁夜夜躁狠狠久久av| 久热爱精品视频在线9| 一区二区三区精品91| 另类精品久久| 亚洲国产av影院在线观看| 女人高潮潮喷娇喘18禁视频| 高清av免费在线| avwww免费| 久久午夜综合久久蜜桃| 成年人免费黄色播放视频| 99久久综合免费| 夫妻性生交免费视频一级片| 男人爽女人下面视频在线观看| 亚洲国产欧美一区二区综合| 天堂俺去俺来也www色官网| 午夜av观看不卡| 韩国精品一区二区三区| 91麻豆av在线| 免费看不卡的av| 久久久久久久久免费视频了| 黄色一级大片看看| 国产精品久久久久成人av| 亚洲欧美一区二区三区黑人| 99热全是精品| 日韩av不卡免费在线播放| 亚洲九九香蕉| 中文字幕精品免费在线观看视频| 伊人亚洲综合成人网| 丰满饥渴人妻一区二区三| 日本午夜av视频| 嫩草影视91久久| 亚洲伊人久久精品综合| 国产亚洲精品第一综合不卡| 亚洲国产欧美在线一区| 亚洲人成电影免费在线| 久久久久久久大尺度免费视频| 极品人妻少妇av视频| 国产精品三级大全| 亚洲久久久国产精品| 丝袜美足系列| 大型av网站在线播放| 亚洲精品第二区| 日本午夜av视频| 乱人伦中国视频| av网站在线播放免费| 国产精品国产av在线观看| 黑人欧美特级aaaaaa片| 亚洲av电影在线进入| 亚洲欧美清纯卡通| 中国美女看黄片| 性色av一级| 久久这里只有精品19| 在线观看人妻少妇| 久久ye,这里只有精品| 男女床上黄色一级片免费看| 天天躁日日躁夜夜躁夜夜| 男女下面插进去视频免费观看| 亚洲欧美激情在线| 黄色片一级片一级黄色片| 搡老岳熟女国产| 亚洲欧洲精品一区二区精品久久久| 国产欧美亚洲国产| 中文字幕精品免费在线观看视频| 国产成人影院久久av| 免费在线观看影片大全网站 | 女人被躁到高潮嗷嗷叫费观| 一区二区av电影网| 日韩电影二区| 久久精品久久精品一区二区三区| 国产高清不卡午夜福利| 亚洲专区国产一区二区| 欧美日韩福利视频一区二区| 美女午夜性视频免费| 伦理电影免费视频| 19禁男女啪啪无遮挡网站| 2021少妇久久久久久久久久久| 在线看a的网站| 免费看av在线观看网站| 日韩制服骚丝袜av| 国产精品久久久人人做人人爽| 脱女人内裤的视频| 久久人妻熟女aⅴ| 亚洲熟女毛片儿| 国产极品粉嫩免费观看在线| 国产淫语在线视频| 久久久久久久精品精品| 日本a在线网址| 啦啦啦啦在线视频资源| 亚洲成国产人片在线观看| 热99久久久久精品小说推荐| 色播在线永久视频| 电影成人av| 飞空精品影院首页| 成人三级做爰电影| 成年人免费黄色播放视频| 中文字幕精品免费在线观看视频| 国产成人影院久久av| av天堂在线播放| √禁漫天堂资源中文www| 日本黄色日本黄色录像| 免费日韩欧美在线观看| 国产精品偷伦视频观看了| 精品亚洲成a人片在线观看| 久久ye,这里只有精品| videosex国产| 久久国产精品影院| 亚洲国产av新网站| avwww免费| 啦啦啦在线免费观看视频4| 大话2 男鬼变身卡| 亚洲精品国产区一区二| 91麻豆av在线| 精品少妇黑人巨大在线播放| 欧美人与性动交α欧美软件| 一区二区三区精品91| av天堂在线播放| 中文字幕最新亚洲高清| 欧美日韩综合久久久久久| 97人妻天天添夜夜摸| 99香蕉大伊视频| 午夜影院在线不卡| xxxhd国产人妻xxx| 大话2 男鬼变身卡| 免费看av在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| www.999成人在线观看| 精品久久久精品久久久| 久久性视频一级片| 亚洲伊人色综图| 夫妻午夜视频| 国产男女超爽视频在线观看| 欧美成人午夜精品| e午夜精品久久久久久久| 免费在线观看完整版高清| 中文字幕精品免费在线观看视频| 国产精品成人在线| 免费少妇av软件| 久久久久久久精品精品| 人成视频在线观看免费观看| 国产欧美日韩一区二区三区在线| 一级片'在线观看视频| 国产一区二区三区综合在线观看| 亚洲一区中文字幕在线| 精品熟女少妇八av免费久了| av欧美777| 免费一级毛片在线播放高清视频 | 黄色一级大片看看| 成年人午夜在线观看视频| av福利片在线| 赤兔流量卡办理| 精品国产国语对白av| 十八禁人妻一区二区| 精品亚洲成国产av| 久久人人爽av亚洲精品天堂| 亚洲七黄色美女视频| 免费在线观看影片大全网站 | av天堂在线播放| 制服人妻中文乱码| 欧美激情高清一区二区三区| 亚洲国产欧美日韩在线播放| 国产激情久久老熟女| 国产精品九九99| 亚洲欧美日韩另类电影网站| 99久久精品国产亚洲精品| 欧美激情 高清一区二区三区| 最近手机中文字幕大全| 久久精品亚洲av国产电影网| 精品一区二区三卡| 大片免费播放器 马上看| 最新的欧美精品一区二区| 亚洲欧美色中文字幕在线| 看免费av毛片| 亚洲av日韩在线播放| 自线自在国产av| 国产高清国产精品国产三级| 成年美女黄网站色视频大全免费| 每晚都被弄得嗷嗷叫到高潮| 欧美中文综合在线视频| 99国产综合亚洲精品| 超碰97精品在线观看| av网站在线播放免费| videosex国产| 精品国产超薄肉色丝袜足j| 大码成人一级视频| 午夜福利免费观看在线| 啦啦啦啦在线视频资源| av网站在线播放免费| 国产高清不卡午夜福利| 亚洲中文字幕日韩| 亚洲精品国产一区二区精华液| 久久精品人人爽人人爽视色|