• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of nanoscale speckle using broad ion beam milling on polymers for deformation analysisQinghua Wanga,?,Satoshi Kishimotob,Yoshihisa Tanakab,Kimiyoshi Naitob

    2016-09-21 01:13:24ReserchInstituteforMesurementndAnlyticlInstrumenttionNtionlInstituteofAdvncedIndustrilSciencendTechnologyUmezonoTsukuIrki3058568JpnNtionlInstituteforMterilsScienceSengenTsukuIrki3050047Jpn

    Reserch Institute for Mesurement nd Anlyticl Instrumenttion,Ntionl Institute of Advnced Industril Science nd Technology,1-1-1 Umezono,Tsuku,Irki 305-8568,JpnNtionl Institute for Mterils Science,1-2-1 Sengen,Tsuku,Irki 305-0047,Jpn

    ?

    Letter

    Fabrication of nanoscale speckle using broad ion beam milling on polymers for deformation analysis
    Qinghua Wanga,?,Satoshi Kishimotob,Yoshihisa Tanakab,Kimiyoshi Naitob

    aResearch Institute for Measurement and Analytical Instrumentation,National Institute of Advanced Industrial Science and Technology,1-1-1 Umezono,Tsukuba,Ibaraki 305-8568,Japan
    bNational Institute for Materials Science,1-2-1 Sengen,Tsukuba,Ibaraki 305-0047,Japan

    H I G H L I G H T S

    ·A fabrication technique of nanoscale speckle using broad ion milling was proposed.

    ·It is simple and low-cost to fabricate nanoscale speckle on polymers in a large area.

    ·Speckle morphologies under different milling times and tilt angles on different polymers were studied.

    ·The fabricated speckle with good time stability is useful for deformation measurement.

    A R T I C L EI N F O

    Article history:

    in revised form

    12 July 2016

    Accepted 12 July 2016

    Available online 21 July 2016

    Nanoscale speckle

    Ion beam milling

    Polymer

    Deformation

    Digital image correlation

    We first report a fabrication technique of nanoscale speckle patterns on polymers using broad ion beam milling.The proposed technique is simple and low-cost to produce speckles ranging from dozens of nanometers to less than three micrometers in a large area of several millimeters.Random patterns were successfully produced with an argon(Ar)ion beam on the surfaces of four kinds of polymers:the epoxy matrix of carbon fiber reinforced plastic,polyester,polyvinyl formal-acetal,and polyimide.The speckle morphologies slightly vary with different polymers.The fabricated speckle patterns have good time stabilityandarepromisingtobeusedtomeasurethenanoscaledeformationsofpolymersusingthedigital image correlation method.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and

    Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Polymers,which are extensively used as substrates or matrixes in flexible electronics,aerospace materials and so on,play an essential and ubiquitous role in daily life.Micro/nano-scale deformation measurement has become a key issue for understanding the fundamental mechanical properties of polymer materials[1,2].One of the most popular methods for deformation measurement is the digital image correlation(DIC)method[3-6].With the combination of a scanning electron microscope(SEM),the DIC methodcanrealizemeasuringmicro/nano-scaledeformation[7,8]. Considerable attention has concentrated on the SEM-DIC method because of its high spatial resolution,high displacement sensitivity,noncontact and full-field properties[9,10].In the implementation process of the SEM-DIC method,fabrication of high-quality micro/nano-scale speckle or random patterns as the deformation carriers is of vital importance[11].

    Common micro/nano-scale speckle fabrication techniques include electron beam lithography(EBL)[12]and focused ion beam(FIB)milling[13,14].An improved EBL technique was reported to generate a high quality micro/nano-scale random speckle pattern on various specimens[15].The FIB milling technique was often used to produce micro/nano-scale random or periodic patterns for local stress and residual stress measurement[16-19].However, due to the disadvantage of time consumption,the EBL and the FIB milling techniques can only produce micro/nano-scale speckle in a very small region and it is troublesome to splice some speckle patterns in a large area of several millimeters.Another method is using a fine point airbrush to generate random speckle patterns for micro/nano-scale deformation measurement of surface and internal planes via the DIC method[20].Nevertheless,there are some disadvantages about this method including long preparation time and complex experiment steps.Besides,chemical vapor exposure and ultraviolet(UV)lithography were also successfully utilized tofabricate random patterns[21].However,the high cost for chemical vapor exposure and the greater speckle size(2-20μm)for UV photo-lithography become the limitations for their wide applications in nanoscale measurement field.Although small-scale speckle can also be fabricated by mixing graphite powder particles and epoxy resin[22],this method is difficult to be used for nanoscale deformation due to the effect of epoxy resin and the micro speckle size(greater than 3μm).

    Fig.1.Schematicmapoffabricatingspecklepatternsusingbroadionbeammilling.

    Broad ion beam (BIB)milling is another kind of ion beam lithography using low-energy noble gas ion beams(such as argon(Ar)Ar+and helium(He)He+).The BIB milling technique has been widely used for milling a re-shining a sample for transmission electron microscope(TEM)observation[23,24].In this study,we will put forward a new technique using BIB milling for fabricating nano-scale speckle patterns on polymer substrates in a large area withadiameterofaround10mm.Theinfluencingfactorsincluding the tilt angle and the milling time will be investigated and the verification experiments for the deformation measurement will be performed.The proposed method is believed to be easy to operate and the cost is much lower.

    Four different kinds of polymer materials were chosen as the samples,on which nanoscale speckle patterns will be fabricated. These polymers have often been used in industrial and scientific fields,and their deformation characteristics are key influencing factors of their applications.

    The first sample is a polyacrylonitrile(PAN)-based IM600 carbon fiber reinforced plastic(CFRP)prepreg material QC133-149A from Toho Tenax Co.,Ltd.The epoxy matrix(133)contains three-dimensional cross-linked structures formed by the reaction betweentheepoxyresinandthehardeners.CFRPisusuallyapplied in sailboats,rowing shells,modern bicycles,and motorcycles owing to its high strength-to-weight ratio and good rigidity.

    The second sample includes 90%polyvinyl formal-acetal and 10%epoxy novolac.Since this polymer is widely used in flexible electronic devices such as strain gages,the deformation measurement of this kind of material has become a focus of attention in the field of flexible electronics.

    The third sample is a plastic film with component of polyester in the structure of strain gages from Kyowa Electronic Instruments Co.,Ltd.Besides strain gages,the wide application of polyester also lies in making bottles,films,tarpaulin,liquid crystal displays, filters,dielectric film for capacitors,film insulation for wire and insulating tapes.

    The last sample is polyimide(PI).Due to lightweight and flexible,the polyimide materials are usually used as an insulating film on magnet wire in the electronics industry and an insulating as well as passivation layer in the manufacture of digital semiconductor and micro electro mechanical system (MEMS)chips.Therefore,the deformation analysis is important for understanding the properties of PI in the modern industries.

    The samples were first polished using a coarse sandpaper, a fine sandpaper,and polishing solutions(9,3,and 0.05μm)on an automatic polishing machine.After mechanical polishing, these four kinds of samples were placed on the sample stage of a BIB milling machine(IE-20S).When the sample surface was bombarded by the accelerated Ar ions,some of the sample atoms would be sputtered away from the surface(Fig.1).Due to different components,the sputtering ratios of different parts of the sample surface would be different and a speckle pattern similar to the cross-linked structure would emerge when the ion milling time is long enough.During the ion beam milling process,the sample stage was not rotated,the ion gun voltage was 2 kV and the ion beamcurrentwas0.35mA.Theproposedtechniquecanbeapplied to fabricate speckle patterns on all kinds of polymers.

    In order to check the effects of the ion beam milling time and the tilt angle of the sample stage on the speckle patterns,we used several samples under different ion beam milling time and with two sample stage tilt angles.The ion beam milling time was chosen to be 1,3,6,and 12 h for the CFRP samples and the sample stage tilt angles were set to be 0°and 22°.The polyvinyl formal-acetal samples were under ion beam milling for 3,4,5, and 6 h.The polyester samples were milled by the ion beam for 4 and 6 h.For the PI samples,the ion beam milling time was chosen to be 2,6,and 8 h.The sample stage for the last three kind of polymers did not tilt.The tilt experiments were carried out by placing an oblique block on the sample stage.The sample surface was observed in an SEM(SM510)after ion beam milling.

    Nanoscale random patterns were successfully produced on the surfaces of the samples using BIB milling.The variation of the speckle patterns on the CFRP samples with the increase of the sample stage tilt angle was investigated.Figure 2 shows a typical comparison between the speckle patterns when the sample stage tilts 0°and 22°after milling 6 h.Our experiments demonstrate that the greater the sample stage tilt angle is,the longer the columnar speckle is.The columnar random patterns in Fig.2(b)can also be used as speckle in the SEM-DIC method.However,it is simpler to get a better random pattern when the sample stage is not tilted.Besides,the speckle size is smaller when there is no tilt.Consequently,the sample stage will not be tilted during ion beam milling processes for the other three kinds of polymers.

    Thesampleswereunderionbeammillingfordifferenttimeand the effect of milling time for speckle patterns were observed and analyzed.Figure 3 shows the speckle morphologies before milling and after milling 4,5,and 6 h for the CFRP samples.The sample surface should be coated with an aurum (Au)layer for electrical conductivity before milling and does not need an Au layer after milling.If the milling time is too short,the nano speckle pattern will be invisible(Fig.3(b))or not distinct(Fig.3(c)).The suitable milling time is around 6 h from Fig.3 and the nano speckle size ranges from 90 to 1200 nm.

    For the polyvinyl formal-acetal samples,they were milled for 3, 4,5,and 6 h.From comparison of speckle morphologies in Fig.4, thespecklepatternsaftermilling5hhasbecomeclearanduniform(Fig.4(c)),and so 5 h is regarded to be the desired milling time.The size of the nanoscale speckle pattern varies from 120 to 1700 nm and the number of the speckle with size of greater than 1000 nm in the polyvinyl formal-acetal samples is much greater than those in other samples.

    The polyester samples are milled for 4 and 6 h,respectively.As shown in Fig.5,the speckle size of this kind of polymer is greater and the size ranges from 50 up to 2500 nm.After milling 6 h,there aremorelegiblespecklepatternformed(Fig.5(b))thanthatmilling 4 h(Fig.5(a)).

    Fig.2.Speckle patterns on the CFRP sample surface after ion beam milling 6 h when the sample stage tilts(a)0°and(b)22°.

    Fig.3.CFRP sample surface morphologies before and after ion beam milling,(a)before milling with an Au layer,(b)after 4 h,(c)after 5 h,and(d)after 6 h.

    Figure 6(a)and(b)reveals different speckle morphology for the PI samples after milling 6 and 8 h,respectively.Most speckle patternsofPIsamplesaresmallandintensivewiththespecklesize from 20 to 700 nm.Since the nano speckle patterns in Fig.6(b)is easier to distinguish,8 h is chosen to be the optimum milling time for PI samples.

    ItcanbeseenfromFigs.3-6,thelongermillingtimewillenlarge the speckle size for a specific material.The generated speckle is located in a circle area with a diameter of around 10 mm,which depends on the ion beam diameter and the distance from the ion gun to the sample surface.BIB milling is very simple,fast,and low-cost in producing nanoscale speckle in a large area of several millimeters compared with FIB milling and electron beam lithography.

    To evaluate the time stability of the fabricated speckle,the CFRP specimen with the speckle pattern after ion beam milling for 6 h shown in Fig.3(d)was put in a Hitachi S-4800N SEM, and the speckle appearance was presented in Fig.7(a).The accelerated voltage was 20 kV,the working distance was 8.3 mm and the magnification was 6000×.A series of speckle images were recorded every 30 s.The histograms of the speckle patterns at 0, 210,420,and 600 s are displayed in Fig.7(b).The variations of the mean intensity and the standard deviation of the speckle pattern along with the time of duration is plotted in Fig.7(c).It can be seen that the mean intensity is around 110 and there is only a slight change during the period of 600 s.Based on the mean intensity at 0 s,the relative error of the mean intensity at 600 s is only 1.53%.The standard deviation of the intensity also changes slightly from 24.793 at 0 s to 25.265 at 600 s.It demonstrates that the fabricatedspecklepatternhasagoodtimestabilityandcanbeused for deformation measurement.

    The fabricated nanoscale speckle pattern can be used to check the accuracy of the mechanical movement of an SEM sample stage. Asanexample,theaccuracyoftheFEIQUANTA200Ffieldemission SEMwiththeminimumtranslationdistanceof0.1μmwasstudied. In the experiment,the specimen stage was operated to translate for 0.1μm in the X direction and the speckle pattern images were recorded before and after translation.

    The displacement between the two images was calculated by the DIC method using the vic-2D software as shown in Fig.8.The displacement distribution is relatively uniform.The average value of the full-field displacement is 0.11μm and the average full-field matching confidence is 0.01 pixel,which proved the accuracy ofcalculation.The error between the DIC calculation result 0.11μm and the translation distance of the sample stage 0.1μm reveals that the mechanical translation error of the SEM sample stage is around 10%.The fabricated speckle patterns have great potential in the accurate micro/nano deformation measurement.

    Fig.4.Polyvinyl formal-acetal sample surface morphologies after ion beam milling,(a)after 3 h,(b)after 4 h,(c)after 5 h,and(d)after 6 h.

    Fig.5.Polyester sample surface morphologies after ion beam milling,(a)after 4 h,(b)after 6 h.

    Fig.6.PI sample surface morphologies after ion beam milling,(a)after 6 h,(b)after 8 h.

    Fig.7.Time stability of speckle pattern on CFRP during 600 s.

    Fig.8.Displacement distribution of CFRP measured by the DIC method after the sample stage of SEM translate 0.1μm.

    A fabrication technique of nanoscale speckle patterns on polymersusingBIBmillingwasproposed.Thistechniqueiscapable of producing speckles ranging from dozens of nanometers to a few micrometers in size in a circle area with a diameter of around 10 mm.The variations of the speckle patterns with the increases of the ion beam milling time and the tilt angle of the sample stage were investigated.It is easier to get a better speckle pattern whenthesamplestageisnottilted.Specklepatternswithdifferent morphologieswerefabricatedonthesurfaceoffourdifferentkinds of polymers.The speckle size on the PI samples is smaller than that on the other samples.The fabricated speckle has excellent time stability and can be used to check the mechanical translation error of an SEM using DIC.The proposed speckle fabrication method is useful in micro/nano-scale deformation analysis of polymers.

    Acknowledgment

    ThisworkwassupportedbyCross-ministerialStrategicInnovation Promotion Program(Unit D66)Innovative Measurement and AnalysisforStructuralMaterials(SIP-IMASM)operatedbytheCabinet Office,Japan.

    [1]J.H.Qiu,T.Murata,X.L.Wu,et al.,Plastic deformation mechanism of crystallinepolymermaterialsduringtherollingprocess,J.Mater.Sci.48(2013)1920-1931.

    [2]H.M.Xie,S.Kishimoto,Y.J.Li,Fabrication of micro-moire gratings on a strain sensor structure for deformation analysis with micro-moire technique, Microelectron.Reliab.49(2009)727-733.

    [3]W.H.Peters,W.F.Ranson,Digital imaging techniques in experimental stress analysis,Opt.Eng.21(1982)427-431.

    [4]M.A.Sutton,M.Q.Cheng,W.H.Peters,et al.,Application of an optimized digital correlation method to planar deformation analysis,Image Vision Comput.4(1986)143-150.

    [5]T.C.Chu,W.Ranson,M.A.Sutton,Applications of digital-image correlation techniques to experimental mechanics,Exp.Mech.25(1985)232-244.

    [6]B.Pan,Recent progress in digital image correlation,Exp.Mech.51(2011)1223-1235.

    [7]M.A.Sutton,N.Li,D.Garcia,et al.,Metrology in a scanning electron microscope:Theoreticaldevelopmentsandexperimentalvalidation,Meas.Sci. Technol.17(2006)2613-2622.

    [8]A.D.Kammers,S.Daly,Small-scale patterning methods for digital image correlation under scanning electron microscopy,Meas.Sci.Technol.22(2011)125501.

    [9]B.Winiarski,G.S.Schajer,P.J.Withers,Surface decoration for improving the accuracy of displacement measurements by digital image correlation in SEM, Exp.Mech.51(2012)793-804.

    [10]Z.B.Zhou,P.W.Chen,F.L.Huang,Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method, Opt.Laser Eng.49(2011)366-370.

    [11]T.Hua,H.M.Xie,S.Wang,et al.,Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation,Opt.Laser Technol.43(2011)9-13.

    [12]Y.Tanaka,K.Naito,S.Kishimoto,et al.,Development of a pattern to measure multiscale deformation and strain distribution via in situ FE-SEM observation, Nanotechnology 22(2011)115704.

    [13]Y.J.Li,H.M.Xie,Q.Luo,etal.,Fabricationtechniqueofmicro/nano-scalespeckle patterns with focused ion beam,Sci.China Phys.Mech.Astronom.55(2012)1037-1044.

    [14]Z.W.Liu,H.M.Xie,D.N.Fang,et al.,Deformation analysis in microstructures and micro-devices,Microelectron.Reliab.47(2007)2226-2230.

    [15]N.Li,S.M.Guo,M.A.Sutton,Recent Progress in E-beam Lithography for SEM Patterning,MEMS and Nanotechnology,in:Conference Proceedings of the Society for Experimental Mechanics Series,2011,pp.163-166.

    [16]N.Sabate,D.Vogel,A.Gollhardt,et al.,Digital image correlation of nanoscale deformation fields for local stress measurement in thin films,Nanotechnology 17(2006)5264-5270.

    [17]N.Sabate,D.Vogel,A.Gollhardt,et al.,Measurement of residual stress by slot milling with focused ion-beam equipment,J.Micromech.Microeng.16(2006)254-259.

    [18]M.Sebastiani,C.Eberl,E.Bemporad,et al.,Depth resolved residual stress analysis of thin coatings by a new FIB-DIC method,Mater.Sci.Eng.A 528(2011)7901-7908.

    [19]A.Korsunsky,M.Sebastiani,E.Bemporad,Residual stress evaluation at the micrometer scale:Analysis of thin coatings by FIB milling and digital image correlation,Surf.Coat.Technol.205(2010)2393-2403.

    [20]T.A.Berfield,J.K.Patel,R.G.Shimmin,et al.,Micro-and nanoscale deformation measurement of surface and internal planes via digital image correlation,Exp. Mech.47(2007)51-62.

    [21]W.A.Scrivens,Y.Luo,M.A.Sutton,et al.,Development of patterns for digital image correlation measurements at reduced length scales,Exp.Mech.47(2007)63-77.

    [22]H.X.Wang,H.M.Xie,Y.J.Li,et al.,Fabrication of micro-scale speckle pattern and its applications for deformation measurement,Meas.Sci.Tech.23(2012)035402.

    [23]N.Brodusch,K.Zaghib,R.Gauvin,Electron backscatter diffraction applied to lithium sheets prepared by broad ion beam milling,Microsc.Res.Tech.78(2015)30-39.

    [24]B.J.Olanipekun,K.Azmy,Genesis and morphology of intracrystalline nanopores and mineral micro inclusions hosted in burial dolomite crystals: Application of broad ion beam-scanning electron microscope(BIB-SEM),Mar. Pet.Geol.74(2016)1-11.

    11 May 2016

    .

    E-mail address:wang.qinghua@aist.go.jp(Q.Wang).

    http://dx.doi.org/10.1016/j.taml.2016.07.001

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    欧美成人免费av一区二区三区| 在线观看免费日韩欧美大片| 免费高清在线观看日韩| 国产蜜桃级精品一区二区三区| 精品人妻1区二区| 亚洲少妇的诱惑av| 亚洲精品久久成人aⅴ小说| 国产三级黄色录像| 欧美黑人欧美精品刺激| 一区福利在线观看| 日韩欧美一区二区三区在线观看| 91成人精品电影| 精品少妇一区二区三区视频日本电影| www日本在线高清视频| 中文亚洲av片在线观看爽| 变态另类成人亚洲欧美熟女 | 18禁观看日本| 色在线成人网| 免费在线观看影片大全网站| 少妇熟女aⅴ在线视频| 亚洲一区二区三区不卡视频| 在线观看舔阴道视频| 9热在线视频观看99| 国产精品亚洲美女久久久| 一边摸一边做爽爽视频免费| 亚洲精品在线美女| 日本五十路高清| 日韩免费av在线播放| 侵犯人妻中文字幕一二三四区| 亚洲欧美激情在线| 亚洲 欧美 日韩 在线 免费| 国产成+人综合+亚洲专区| 韩国av一区二区三区四区| 侵犯人妻中文字幕一二三四区| 国产精品一区二区精品视频观看| 国产精品乱码一区二三区的特点 | 亚洲熟妇中文字幕五十中出| 国产精品免费一区二区三区在线| 久久婷婷人人爽人人干人人爱 | 色尼玛亚洲综合影院| 怎么达到女性高潮| 久久热在线av| 久久人人爽av亚洲精品天堂| 精品第一国产精品| 精品久久蜜臀av无| 美女扒开内裤让男人捅视频| 亚洲男人的天堂狠狠| 亚洲免费av在线视频| 亚洲一区高清亚洲精品| 精品久久蜜臀av无| 欧美国产日韩亚洲一区| 在线av久久热| 女人精品久久久久毛片| 精品无人区乱码1区二区| 国产精品美女特级片免费视频播放器 | 大型黄色视频在线免费观看| 在线观看www视频免费| 美女国产高潮福利片在线看| 91麻豆av在线| 欧美人与性动交α欧美精品济南到| 1024视频免费在线观看| 午夜免费激情av| 一进一出抽搐动态| 1024视频免费在线观看| a级毛片在线看网站| 中文字幕另类日韩欧美亚洲嫩草| 亚洲九九香蕉| 99国产精品一区二区蜜桃av| 这个男人来自地球电影免费观看| 亚洲黑人精品在线| 黄片播放在线免费| 亚洲全国av大片| 露出奶头的视频| 无人区码免费观看不卡| 天天一区二区日本电影三级 | 国产成人啪精品午夜网站| 手机成人av网站| 一区福利在线观看| 一区在线观看完整版| 精品国产乱子伦一区二区三区| 欧美日韩黄片免| 国产蜜桃级精品一区二区三区| 一个人观看的视频www高清免费观看 | 91在线观看av| 久久狼人影院| 亚洲精华国产精华精| 天堂影院成人在线观看| 老司机靠b影院| 国产午夜精品久久久久久| 久99久视频精品免费| 男男h啪啪无遮挡| av天堂在线播放| av在线天堂中文字幕| 桃色一区二区三区在线观看| 欧美不卡视频在线免费观看 | 午夜福利18| 18禁美女被吸乳视频| 国产单亲对白刺激| 亚洲人成网站在线播放欧美日韩| 一二三四社区在线视频社区8| 在线观看日韩欧美| 精品国产国语对白av| 精品久久久久久,| 大型av网站在线播放| 丰满人妻熟妇乱又伦精品不卡| 黑人巨大精品欧美一区二区mp4| 欧美激情 高清一区二区三区| 午夜精品在线福利| 美国免费a级毛片| 美女大奶头视频| а√天堂www在线а√下载| 可以免费在线观看a视频的电影网站| 亚洲午夜精品一区,二区,三区| 欧美黑人精品巨大| 日韩有码中文字幕| 美女国产高潮福利片在线看| 亚洲熟妇熟女久久| 午夜老司机福利片| 亚洲午夜精品一区,二区,三区| 色综合亚洲欧美另类图片| 久久性视频一级片| 亚洲中文日韩欧美视频| 国产xxxxx性猛交| 电影成人av| 黄片播放在线免费| 日韩精品青青久久久久久| av在线天堂中文字幕| 午夜福利成人在线免费观看| 老汉色∧v一级毛片| 90打野战视频偷拍视频| 色尼玛亚洲综合影院| 欧美日韩黄片免| 一个人免费在线观看的高清视频| 欧美成人免费av一区二区三区| 黑人巨大精品欧美一区二区mp4| 亚洲av成人av| 性欧美人与动物交配| 亚洲av五月六月丁香网| 岛国视频午夜一区免费看| 精品熟女少妇八av免费久了| 两性午夜刺激爽爽歪歪视频在线观看 | 一边摸一边抽搐一进一出视频| 国产私拍福利视频在线观看| 久99久视频精品免费| 国产精品亚洲美女久久久| 亚洲精品久久成人aⅴ小说| 久久性视频一级片| 欧美日本视频| 精品人妻在线不人妻| 成年人黄色毛片网站| 一级毛片高清免费大全| 一a级毛片在线观看| 又大又爽又粗| 色播在线永久视频| 日本 av在线| 欧美成狂野欧美在线观看| 一区二区三区国产精品乱码| 搡老岳熟女国产| 一级,二级,三级黄色视频| 黄色a级毛片大全视频| www.自偷自拍.com| 又大又爽又粗| 中文字幕精品免费在线观看视频| 日本精品一区二区三区蜜桃| 精品欧美一区二区三区在线| 纯流量卡能插随身wifi吗| 国内毛片毛片毛片毛片毛片| 91老司机精品| 午夜免费成人在线视频| 青草久久国产| 亚洲最大成人中文| 日韩三级视频一区二区三区| √禁漫天堂资源中文www| 亚洲中文字幕一区二区三区有码在线看 | av天堂久久9| 午夜精品国产一区二区电影| 日韩av在线大香蕉| 久久青草综合色| 亚洲国产精品sss在线观看| 丝袜人妻中文字幕| 免费在线观看视频国产中文字幕亚洲| 十八禁网站免费在线| 性欧美人与动物交配| 久久香蕉精品热| 久久精品人人爽人人爽视色| 免费久久久久久久精品成人欧美视频| 精品国产超薄肉色丝袜足j| 成在线人永久免费视频| 淫妇啪啪啪对白视频| 国产精品影院久久| 久久午夜亚洲精品久久| 97人妻天天添夜夜摸| 国产一区二区在线av高清观看| 久久精品国产99精品国产亚洲性色 | 亚洲片人在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲专区字幕在线| 成人三级黄色视频| 国产亚洲av嫩草精品影院| 国产亚洲精品一区二区www| 国产av一区二区精品久久| av福利片在线| 在线观看66精品国产| 久久精品人人爽人人爽视色| 9色porny在线观看| 国产主播在线观看一区二区| 十分钟在线观看高清视频www| 黄网站色视频无遮挡免费观看| or卡值多少钱| 日本在线视频免费播放| 亚洲成人精品中文字幕电影| 在线观看日韩欧美| 欧美成人午夜精品| 18禁美女被吸乳视频| 50天的宝宝边吃奶边哭怎么回事| 美女午夜性视频免费| 久久香蕉激情| 亚洲中文字幕日韩| 免费看美女性在线毛片视频| 看片在线看免费视频| 国产高清激情床上av| 女警被强在线播放| av免费在线观看网站| 国产亚洲欧美在线一区二区| 久久影院123| 久久久国产欧美日韩av| 欧美乱妇无乱码| 亚洲专区字幕在线| 露出奶头的视频| av天堂久久9| 成人av一区二区三区在线看| 麻豆av在线久日| 亚洲av片天天在线观看| 国产精品二区激情视频| 国产精品 欧美亚洲| 婷婷精品国产亚洲av在线| 18禁裸乳无遮挡免费网站照片 | 老司机在亚洲福利影院| 成人免费观看视频高清| 中文字幕久久专区| 黄片小视频在线播放| 国产精品亚洲av一区麻豆| 欧美日韩黄片免| 99国产精品一区二区蜜桃av| 精品国产国语对白av| 岛国视频午夜一区免费看| 亚洲欧美精品综合久久99| 每晚都被弄得嗷嗷叫到高潮| 日韩大码丰满熟妇| 欧美日韩瑟瑟在线播放| 日韩欧美免费精品| 国产1区2区3区精品| 国产欧美日韩一区二区三| 99久久精品国产亚洲精品| 亚洲熟女毛片儿| 久久精品国产亚洲av高清一级| 亚洲精品av麻豆狂野| 少妇被粗大的猛进出69影院| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲 国产 在线| 中国美女看黄片| 香蕉久久夜色| 亚洲精品粉嫩美女一区| 日本三级黄在线观看| 乱人伦中国视频| 欧美成狂野欧美在线观看| 亚洲色图av天堂| 俄罗斯特黄特色一大片| 99久久99久久久精品蜜桃| 精品乱码久久久久久99久播| 成人18禁在线播放| 午夜a级毛片| av片东京热男人的天堂| 色哟哟哟哟哟哟| 国产精品久久久久久人妻精品电影| 国产亚洲精品综合一区在线观看 | 男人舔女人下体高潮全视频| 三级毛片av免费| 精品国产超薄肉色丝袜足j| 国产精品久久久久久人妻精品电影| 99久久99久久久精品蜜桃| 亚洲久久久国产精品| 免费久久久久久久精品成人欧美视频| 欧美在线黄色| 亚洲第一欧美日韩一区二区三区| 久久欧美精品欧美久久欧美| 国产麻豆成人av免费视频| 国产亚洲精品久久久久久毛片| 搡老妇女老女人老熟妇| 国产伦一二天堂av在线观看| 国产精品日韩av在线免费观看 | av有码第一页| 日韩大尺度精品在线看网址 | 一级毛片高清免费大全| 人人妻人人爽人人添夜夜欢视频| 91大片在线观看| avwww免费| 欧美色欧美亚洲另类二区 | 成年女人毛片免费观看观看9| 一进一出抽搐gif免费好疼| 午夜免费激情av| 午夜激情av网站| 搡老妇女老女人老熟妇| 欧美绝顶高潮抽搐喷水| 日本免费a在线| 99久久99久久久精品蜜桃| 久久久水蜜桃国产精品网| 日韩欧美国产在线观看| 午夜福利一区二区在线看| 成人国语在线视频| 精品久久久久久,| 午夜老司机福利片| 日韩欧美国产一区二区入口| 一区在线观看完整版| 中文亚洲av片在线观看爽| 电影成人av| www日本在线高清视频| 丝袜美腿诱惑在线| 国产亚洲精品一区二区www| 视频区欧美日本亚洲| 看免费av毛片| 欧美激情 高清一区二区三区| 午夜成年电影在线免费观看| 中文字幕人成人乱码亚洲影| 性欧美人与动物交配| 人人妻,人人澡人人爽秒播| 99精品久久久久人妻精品| 激情视频va一区二区三区| 日本 欧美在线| 少妇熟女aⅴ在线视频| av在线天堂中文字幕| 久久久久久久久中文| 在线天堂中文资源库| 人人澡人人妻人| 久久婷婷人人爽人人干人人爱 | 久久精品影院6| 久久久久久久久免费视频了| www.999成人在线观看| 国产日韩一区二区三区精品不卡| 亚洲激情在线av| 国产精品久久电影中文字幕| 黄色女人牲交| 在线播放国产精品三级| 久久精品aⅴ一区二区三区四区| 色av中文字幕| 一a级毛片在线观看| 色综合欧美亚洲国产小说| 精品久久久久久,| 久久久久久亚洲精品国产蜜桃av| 亚洲美女黄片视频| 成年女人毛片免费观看观看9| 亚洲美女黄片视频| 欧美一级毛片孕妇| 中文字幕人成人乱码亚洲影| 午夜久久久在线观看| 啦啦啦免费观看视频1| 最新在线观看一区二区三区| 午夜福利18| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久av美女十八| 国产单亲对白刺激| 在线观看一区二区三区| 欧美中文综合在线视频| 黄色女人牲交| 亚洲情色 制服丝袜| 国产精品,欧美在线| 黄色丝袜av网址大全| 美女大奶头视频| av福利片在线| 中文字幕人妻熟女乱码| 午夜成年电影在线免费观看| 男人舔女人的私密视频| 两个人视频免费观看高清| 成人18禁高潮啪啪吃奶动态图| 波多野结衣高清无吗| 一级,二级,三级黄色视频| 精品高清国产在线一区| ponron亚洲| 日本五十路高清| 男人操女人黄网站| 精品不卡国产一区二区三区| 久久中文字幕一级| 日日夜夜操网爽| 午夜免费观看网址| 欧美丝袜亚洲另类 | 成人欧美大片| 巨乳人妻的诱惑在线观看| 热99re8久久精品国产| 精品国产亚洲在线| 亚洲七黄色美女视频| 男男h啪啪无遮挡| 久久久水蜜桃国产精品网| 日韩欧美国产在线观看| 人人妻,人人澡人人爽秒播| 亚洲一卡2卡3卡4卡5卡精品中文| 一二三四在线观看免费中文在| 免费看美女性在线毛片视频| 亚洲色图综合在线观看| 日韩精品免费视频一区二区三区| 免费在线观看亚洲国产| 免费在线观看影片大全网站| www.www免费av| 不卡av一区二区三区| or卡值多少钱| 久久 成人 亚洲| 亚洲激情在线av| 最新在线观看一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 亚洲第一青青草原| 欧美中文日本在线观看视频| 侵犯人妻中文字幕一二三四区| 在线天堂中文资源库| 久久久久国产一级毛片高清牌| 日韩免费av在线播放| 18禁裸乳无遮挡免费网站照片 | 色综合欧美亚洲国产小说| 亚洲五月色婷婷综合| 亚洲性夜色夜夜综合| 伦理电影免费视频| 国产精品综合久久久久久久免费 | 午夜精品久久久久久毛片777| 欧美精品亚洲一区二区| 极品教师在线免费播放| 黑人欧美特级aaaaaa片| 国产精品久久久av美女十八| 亚洲国产欧美一区二区综合| 欧美一级a爱片免费观看看 | 97超级碰碰碰精品色视频在线观看| 夜夜看夜夜爽夜夜摸| 一二三四社区在线视频社区8| 亚洲男人的天堂狠狠| 美女大奶头视频| 制服诱惑二区| 亚洲av五月六月丁香网| 嫩草影院精品99| 亚洲欧美日韩高清在线视频| 级片在线观看| 欧美日韩精品网址| 亚洲精品国产精品久久久不卡| 欧洲精品卡2卡3卡4卡5卡区| 国产男靠女视频免费网站| 国产亚洲精品久久久久5区| svipshipincom国产片| 国产精品久久久久久亚洲av鲁大| 亚洲国产欧美一区二区综合| 波多野结衣巨乳人妻| 美女午夜性视频免费| 十分钟在线观看高清视频www| 国产精品久久久久久亚洲av鲁大| 女警被强在线播放| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩综合在线一区二区| 亚洲三区欧美一区| 亚洲精品久久国产高清桃花| 侵犯人妻中文字幕一二三四区| 满18在线观看网站| 精品卡一卡二卡四卡免费| 久久人人爽av亚洲精品天堂| 亚洲人成电影免费在线| 在线观看免费视频日本深夜| 夜夜爽天天搞| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看免费日韩欧美大片| 久久香蕉精品热| 丝袜人妻中文字幕| 好男人在线观看高清免费视频 | 黄网站色视频无遮挡免费观看| 色播亚洲综合网| 国产精品亚洲美女久久久| 国内毛片毛片毛片毛片毛片| 可以在线观看毛片的网站| 精品乱码久久久久久99久播| svipshipincom国产片| 精品国产一区二区三区四区第35| 国产精品亚洲av一区麻豆| 成人三级黄色视频| 成熟少妇高潮喷水视频| 国产不卡一卡二| 亚洲男人的天堂狠狠| 免费少妇av软件| 十分钟在线观看高清视频www| 人人妻,人人澡人人爽秒播| 一进一出抽搐动态| 久久香蕉精品热| 啪啪无遮挡十八禁网站| 岛国在线观看网站| 亚洲九九香蕉| 国产亚洲精品一区二区www| 天天添夜夜摸| 精品卡一卡二卡四卡免费| 亚洲无线在线观看| 脱女人内裤的视频| 一二三四社区在线视频社区8| 国产在线精品亚洲第一网站| 免费在线观看完整版高清| 黑人欧美特级aaaaaa片| 午夜福利,免费看| 久久国产精品人妻蜜桃| 国产精品免费一区二区三区在线| 黄色丝袜av网址大全| 亚洲视频免费观看视频| 黄色丝袜av网址大全| 在线永久观看黄色视频| 在线播放国产精品三级| 国产精品久久久久久精品电影 | 欧美一级a爱片免费观看看 | 好男人电影高清在线观看| 三级毛片av免费| 国产精品久久久久久亚洲av鲁大| 18禁黄网站禁片午夜丰满| 国产欧美日韩一区二区三区在线| 在线观看午夜福利视频| 女人被狂操c到高潮| 无遮挡黄片免费观看| 中出人妻视频一区二区| av欧美777| 制服人妻中文乱码| 国产成年人精品一区二区| 真人做人爱边吃奶动态| 国产一级毛片七仙女欲春2 | av超薄肉色丝袜交足视频| 久久青草综合色| 老熟妇乱子伦视频在线观看| 亚洲精品美女久久久久99蜜臀| 女警被强在线播放| 精品久久久久久久人妻蜜臀av | 88av欧美| 日本在线视频免费播放| 亚洲精品久久成人aⅴ小说| 女人精品久久久久毛片| 天天躁夜夜躁狠狠躁躁| 波多野结衣一区麻豆| 久久婷婷成人综合色麻豆| 91国产中文字幕| 不卡一级毛片| 久99久视频精品免费| 国产精品99久久99久久久不卡| 国产亚洲精品第一综合不卡| 两人在一起打扑克的视频| 国产午夜福利久久久久久| 午夜精品久久久久久毛片777| 18禁观看日本| 久久这里只有精品19| 久久久久精品国产欧美久久久| 欧美+亚洲+日韩+国产| 日本一区二区免费在线视频| 91字幕亚洲| 国产成人av教育| 可以在线观看毛片的网站| 成人av一区二区三区在线看| 国产成人av教育| 国产三级在线视频| 日本一区二区免费在线视频| 欧美中文综合在线视频| 夜夜看夜夜爽夜夜摸| 青草久久国产| 亚洲全国av大片| 亚洲欧美激情综合另类| 女人高潮潮喷娇喘18禁视频| 欧美中文日本在线观看视频| 日韩精品免费视频一区二区三区| 黄色丝袜av网址大全| 亚洲熟妇中文字幕五十中出| 咕卡用的链子| 亚洲五月天丁香| 黄色 视频免费看| 日本撒尿小便嘘嘘汇集6| 国产主播在线观看一区二区| 久久久久久久久免费视频了| 亚洲av电影在线进入| 亚洲一区二区三区不卡视频| 精品国产乱码久久久久久男人| 亚洲专区字幕在线| 亚洲狠狠婷婷综合久久图片| 午夜日韩欧美国产| а√天堂www在线а√下载| 亚洲欧美日韩另类电影网站| 波多野结衣一区麻豆| 伊人久久大香线蕉亚洲五| 亚洲欧美激情综合另类| 国产真人三级小视频在线观看| 在线播放国产精品三级| 美女高潮喷水抽搐中文字幕| 国产精品电影一区二区三区| 亚洲无线在线观看| 欧美日本视频| 亚洲精品中文字幕一二三四区| 曰老女人黄片| 久久九九热精品免费| 村上凉子中文字幕在线| 成人18禁在线播放| 日韩三级视频一区二区三区| 亚洲av成人一区二区三| 99国产综合亚洲精品| 老司机在亚洲福利影院| 欧美成狂野欧美在线观看| 国产精品影院久久| 午夜福利成人在线免费观看| 午夜免费观看网址| 黄色毛片三级朝国网站| 免费看美女性在线毛片视频| 国产精品免费视频内射| 麻豆国产av国片精品| 国产亚洲精品第一综合不卡| 午夜成年电影在线免费观看| 日本精品一区二区三区蜜桃| netflix在线观看网站| 母亲3免费完整高清在线观看| 999久久久精品免费观看国产| 精品国产一区二区久久| 日韩 欧美 亚洲 中文字幕| 最近最新中文字幕大全电影3 | 久久香蕉精品热| 无人区码免费观看不卡| 国产一区在线观看成人免费|