趙輝,李琦
(1.水利部水土保持監(jiān)測(cè)中心,100055,北京;2.北京水保生態(tài)工程咨詢有限公司,100055,北京)
?
區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)評(píng)價(jià)的大數(shù)據(jù)分析基礎(chǔ)與對(duì)策
趙輝1,李琦2
(1.水利部水土保持監(jiān)測(cè)中心,100055,北京;2.北京水保生態(tài)工程咨詢有限公司,100055,北京)
區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)評(píng)價(jià)的目的是掌握水土流失狀況及其防治成效,建成并運(yùn)用大數(shù)據(jù)進(jìn)行分析,可充分利用數(shù)據(jù)資源,提高監(jiān)測(cè)成果的科學(xué)性、完整性和時(shí)效性。通過大數(shù)據(jù)采集與知識(shí)挖掘,構(gòu)建區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)評(píng)價(jià)數(shù)據(jù)集(或集合),再利用云網(wǎng)絡(luò)計(jì)算平臺(tái),實(shí)現(xiàn)基于大數(shù)據(jù)的動(dòng)態(tài)監(jiān)測(cè)與分析評(píng)價(jià)。文章針對(duì)區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià)的方法和數(shù)據(jù)基礎(chǔ),從完善頂層設(shè)計(jì)入手,實(shí)現(xiàn)大數(shù)據(jù)融合與共享,推進(jìn)數(shù)據(jù)標(biāo)準(zhǔn)化建設(shè),創(chuàng)新大數(shù)據(jù)和云網(wǎng)絡(luò)服務(wù)方式,完善監(jiān)測(cè)站網(wǎng)信息采集和大數(shù)據(jù)網(wǎng)絡(luò)基礎(chǔ)設(shè)施建設(shè),探索基于大數(shù)據(jù)的區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)評(píng)價(jià)方法和實(shí)現(xiàn)途徑,并提出其大數(shù)據(jù)構(gòu)成與分析流程,以及應(yīng)用大數(shù)據(jù)分析的對(duì)策與建議。
水土流失; 動(dòng)態(tài)監(jiān)測(cè); 分析評(píng)價(jià); 大數(shù)據(jù); 區(qū)域
當(dāng)前,中國(guó)已進(jìn)入“互聯(lián)網(wǎng)+”時(shí)代,國(guó)家大力推進(jìn)基礎(chǔ)信息資源、大數(shù)據(jù)中心以及基于互聯(lián)網(wǎng)的“云計(jì)算網(wǎng)絡(luò)”建設(shè),信息化與大數(shù)據(jù)分析已成為實(shí)現(xiàn)國(guó)家戰(zhàn)略轉(zhuǎn)型發(fā)展的重要手段。水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià)是一項(xiàng)基礎(chǔ)性工作,目的是及時(shí)掌握區(qū)域或國(guó)家水土流失狀況及其防治成效,為生態(tài)文明建設(shè)與政府宏觀決策以及社會(huì)公眾服務(wù)[1]。中國(guó)區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià)工作起步較晚,受投入經(jīng)費(fèi)不足、基礎(chǔ)數(shù)據(jù)獲取周期長(zhǎng)以及分析評(píng)價(jià)方法有待完善等因素影響,監(jiān)測(cè)成果時(shí)效性、完整性和科學(xué)性較差,難已滿足新時(shí)期水土保持行業(yè)管理與社會(huì)經(jīng)濟(jì)發(fā)展需要。
截至2015年,中國(guó)先后開展了4次土壤侵蝕普查,各地也開展了一些重點(diǎn)區(qū)域或支流的水土流失動(dòng)態(tài)監(jiān)測(cè),積累了大量基礎(chǔ)信息。當(dāng)前,國(guó)土、氣象、環(huán)保、水利水文和林業(yè)等部門都在發(fā)展基于行業(yè)的大數(shù)據(jù)或云數(shù)據(jù),相關(guān)科研院校也積累了海量基礎(chǔ)信息或研究成果[2-4];但大都各自為政,分別存儲(chǔ)和使用,未實(shí)現(xiàn)有效的資源共享與挖掘利用,造成重復(fù)建設(shè)或資源浪費(fèi)。一些學(xué)者也開始探索大數(shù)據(jù)在水土保持監(jiān)測(cè)中的應(yīng)用[5-6]。新時(shí)期,如何推進(jìn)大數(shù)據(jù)分析在區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià)中的應(yīng)用,是實(shí)現(xiàn)基礎(chǔ)數(shù)據(jù)或資源有效共享,提升監(jiān)測(cè)評(píng)價(jià)的快速反應(yīng)能力和成果科學(xué)性的有效途徑。本文針對(duì)區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià)的方法與數(shù)據(jù)基礎(chǔ),提出其大數(shù)據(jù)構(gòu)成與分析流程,以及應(yīng)用大數(shù)據(jù)分析的對(duì)策與建議。
1.1定性分析的監(jiān)測(cè)評(píng)價(jià)方法及其數(shù)據(jù)基礎(chǔ)[7-8]
定性分析的監(jiān)測(cè)評(píng)價(jià)方法,可用于水力、風(fēng)力侵蝕地區(qū)監(jiān)測(cè)評(píng)價(jià)。
E=f(x1,x2,x3…xn)。
(1)
式中:E為土壤侵蝕強(qiáng)度,按土壤侵蝕分類分級(jí)標(biāo)準(zhǔn)[9]定性判斷;xn為土壤侵蝕影響判別因子,如土地利用、植被覆蓋、坡度和土壤等?;A(chǔ)數(shù)據(jù)包括土地利用類型與面積、坡度及植被覆蓋度等,可通過資料收集、遙感監(jiān)測(cè)、調(diào)查等途徑獲得。1.2抽樣統(tǒng)計(jì)分析監(jiān)測(cè)評(píng)價(jià)方法及其數(shù)據(jù)基礎(chǔ)[8]
在水蝕地區(qū),采用中國(guó)土壤流失方程計(jì)算[10-11],基礎(chǔ)數(shù)據(jù)包括降雨侵蝕力、土壤可蝕性、坡長(zhǎng)和坡度、植被覆蓋與生物措施、工程措施和耕作措施等因子監(jiān)測(cè)數(shù)據(jù)或賦值;在風(fēng)蝕地區(qū),主要采用耕地、草(灌)地和沙地風(fēng)力侵蝕模型計(jì)算[12],基礎(chǔ)數(shù)據(jù)包括風(fēng)力等級(jí)或風(fēng)速、表土濕度、風(fēng)速累積時(shí)間、地表粗糙度和植被蓋度等;在凍融侵蝕地區(qū),主要采用影響因子綜合評(píng)價(jià)法進(jìn)行評(píng)價(jià)[13],基礎(chǔ)數(shù)據(jù)包括年凍融日循環(huán)時(shí)間、日均凍融相變水量、年均降水量、坡度、坡向和植被蓋度等,一般可通過資料收集、調(diào)查統(tǒng)計(jì)、實(shí)地觀測(cè)和遙感監(jiān)測(cè)等途徑獲取。
1.3綜合指數(shù)法的監(jiān)測(cè)評(píng)價(jià)方法及其數(shù)據(jù)基礎(chǔ)[7]
綜合指數(shù)法是基于監(jiān)測(cè)評(píng)價(jià)指標(biāo)體系,計(jì)算水土保持綜合指數(shù),通過指數(shù)消長(zhǎng)、動(dòng)態(tài)評(píng)價(jià)區(qū)域水土流失狀況及其防治效果的監(jiān)測(cè)方法。目前,有學(xué)者提出,可用于地方政府水土保持目標(biāo)考核[14]。
C =Σ(x1,x2,x3,…,xn)。
(2)
式中:C為水土保持綜合指數(shù),介于0~100;xn分別為水土流失狀況、綜合治理、預(yù)防保護(hù)、生態(tài)環(huán)境和社會(huì)經(jīng)濟(jì)狀況等指標(biāo)項(xiàng)得分,依據(jù)指標(biāo)體系及其權(quán)重賦分?;A(chǔ)數(shù)據(jù)為上述指標(biāo)監(jiān)測(cè)或統(tǒng)計(jì)數(shù)據(jù),可通過資料收集、調(diào)查統(tǒng)計(jì)和遙感監(jiān)測(cè)等途徑獲取。
1.4遙感和統(tǒng)計(jì)的監(jiān)測(cè)評(píng)價(jià)方法及其數(shù)據(jù)基礎(chǔ)[7]
該方法可彌補(bǔ)傳統(tǒng)抽樣方法對(duì)下墊面簡(jiǎn)單概化的不足。國(guó)內(nèi)已有學(xué)者運(yùn)用該方法,統(tǒng)計(jì)分析區(qū)域水土流失[15-17],但鮮有區(qū)域監(jiān)測(cè)評(píng)價(jià)的研究成果發(fā)表?;A(chǔ)數(shù)據(jù)包括遙感影像、植被覆蓋度、坡度以及用于動(dòng)態(tài)評(píng)價(jià)的抽樣單元或樣區(qū)調(diào)查監(jiān)測(cè)數(shù)據(jù)等,可通過資料收集、遙感監(jiān)測(cè)和調(diào)查統(tǒng)計(jì)等途徑獲取。
1.5分布式模型的監(jiān)測(cè)評(píng)價(jià)方法及其數(shù)據(jù)基礎(chǔ)[7]
通過構(gòu)建具有物理基礎(chǔ)的分布式模型,定量評(píng)價(jià)水土流失狀況的監(jiān)測(cè)方法。目前,中國(guó)引進(jìn)了大量分布式模型,應(yīng)用于流域、區(qū)域水土流失或產(chǎn)流產(chǎn)沙研究[18-19]?;A(chǔ)數(shù)據(jù)可分為用于建模的長(zhǎng)序列觀測(cè)數(shù)據(jù)和用于分析評(píng)價(jià)的動(dòng)態(tài)更新數(shù)據(jù),包括降雨與徑流等侵蝕外營(yíng)力因子值及其過程特征、地形地貌特征、土地利用類型與面積、植被構(gòu)成及覆蓋狀況,以及流域產(chǎn)流產(chǎn)沙等,涉及面廣、量大,對(duì)象復(fù)雜,可通過地面觀測(cè)、遙感監(jiān)測(cè)和調(diào)查等途徑獲取。
2.1基礎(chǔ)數(shù)據(jù)分類
監(jiān)測(cè)評(píng)價(jià)方法不同,基礎(chǔ)數(shù)據(jù)不盡相同。依據(jù)數(shù)據(jù)屬性和獲取手段,可分為基礎(chǔ)靜態(tài)數(shù)據(jù)、動(dòng)態(tài)更新數(shù)據(jù)和分析評(píng)價(jià)數(shù)據(jù)?;A(chǔ)數(shù)據(jù)分類見表1。
2.1.1基礎(chǔ)靜態(tài)數(shù)據(jù)指反映區(qū)域基本特征,且在較長(zhǎng)時(shí)間尺度內(nèi)保持相對(duì)穩(wěn)定,或滿足監(jiān)測(cè)評(píng)價(jià)要求、無需動(dòng)態(tài)更新的數(shù)據(jù)。包括反映區(qū)域基本特征的基本屬性數(shù)據(jù),基于長(zhǎng)序列觀測(cè)數(shù)據(jù)的序列統(tǒng)計(jì)數(shù)據(jù),以及一定時(shí)間尺度內(nèi)變幅較小且可滿足監(jiān)測(cè)評(píng)價(jià)要求的靜態(tài)相對(duì)穩(wěn)定數(shù)據(jù)。
2.1.2動(dòng)態(tài)更新數(shù)據(jù)是對(duì)應(yīng)不同監(jiān)測(cè)評(píng)價(jià)方法實(shí)時(shí)獲取或動(dòng)態(tài)更新的數(shù)據(jù)。可分為利用儀器或設(shè)施觀測(cè)或調(diào)查獲取的實(shí)時(shí)觀測(cè)數(shù)據(jù),根據(jù)實(shí)時(shí)觀測(cè)數(shù)據(jù),對(duì)序列統(tǒng)計(jì)數(shù)據(jù)進(jìn)行序列延伸的統(tǒng)計(jì)更新數(shù)據(jù),以及1年或更長(zhǎng)時(shí)間段內(nèi)、適時(shí)更新即可滿足監(jiān)測(cè)評(píng)價(jià)需要的狀態(tài)更新數(shù)據(jù)。
2.1.3分析評(píng)價(jià)數(shù)據(jù)指通過分析計(jì)算或綜合評(píng)價(jià)獲取的數(shù)據(jù)??煞譃槔糜^測(cè)數(shù)據(jù)和模型計(jì)算得到的因子計(jì)算數(shù)據(jù),基于模型或指標(biāo)體系,分析計(jì)算反映總體特征的綜合評(píng)價(jià)數(shù)據(jù),以及對(duì)特定時(shí)間段、水土流失狀況及其防治效果進(jìn)行動(dòng)態(tài)對(duì)比,獲取的動(dòng)態(tài)分析數(shù)據(jù)。
2.2大數(shù)據(jù)構(gòu)成與動(dòng)態(tài)監(jiān)測(cè)評(píng)價(jià)應(yīng)用
大數(shù)據(jù)具有海量、高增長(zhǎng)率和多樣化特性。作為決策支撐,區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)評(píng)價(jià)要求快速、全面和準(zhǔn)確,并適應(yīng)不同層級(jí)的管理需求,利用已建成的大數(shù)據(jù)是關(guān)鍵。
表1(續(xù))
1)要充分利用已有相關(guān)行業(yè)大數(shù)據(jù),通過數(shù)據(jù)采集、管理、挖掘與共享等手段,并結(jié)合水土保持監(jiān)測(cè),獲取區(qū)域監(jiān)測(cè)評(píng)價(jià)的基礎(chǔ)數(shù)據(jù);針對(duì)監(jiān)測(cè)評(píng)價(jià) “云數(shù)據(jù)”的多源異構(gòu)性、動(dòng)態(tài)性和無限增長(zhǎng)性特征,實(shí)施數(shù)據(jù)非結(jié)構(gòu)化存儲(chǔ)和有效管理,為數(shù)據(jù)檢索、調(diào)用奠定基礎(chǔ)。
2)應(yīng)利用大數(shù)據(jù)或“云”共享平臺(tái),運(yùn)用科學(xué)方法和手段,通過采集、共享或挖掘,建立區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)評(píng)價(jià)基礎(chǔ)數(shù)據(jù)與成果共享平臺(tái),與相關(guān)行業(yè)大數(shù)據(jù)或“云數(shù)據(jù)”實(shí)現(xiàn)相互融合與共享,建成區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)評(píng)價(jià)的虛擬或?qū)嶓w基礎(chǔ)數(shù)據(jù)集(或集合),以及大數(shù)據(jù)共享云,做好數(shù)據(jù)準(zhǔn)備。
3)要基于網(wǎng)絡(luò)或數(shù)據(jù)庫(kù)中間件工具,構(gòu)建區(qū)域水土流失監(jiān)測(cè)評(píng)價(jià)的云計(jì)算模式或流程,通過降維、標(biāo)準(zhǔn)化處理與實(shí)時(shí)抽取等,實(shí)現(xiàn)大數(shù)據(jù)的瞬時(shí)調(diào)用,并根據(jù)動(dòng)態(tài)監(jiān)測(cè)評(píng)價(jià)方法與定性或定量模型,利用網(wǎng)絡(luò)或本地虛擬工作站,進(jìn)行云網(wǎng)絡(luò)計(jì)算,獲取分析評(píng)價(jià)成果。
圖1 區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià)的大數(shù)據(jù)構(gòu)成與分析流程圖Fig.1 Big data composition and analysis process for dynamic monitoring and evaluation of regional soil and water loss
4)構(gòu)建區(qū)域動(dòng)態(tài)監(jiān)測(cè)評(píng)價(jià)的云數(shù)據(jù)存儲(chǔ)平臺(tái),實(shí)施云數(shù)據(jù)的編目、管理、查詢、動(dòng)態(tài)更新與維護(hù)、反饋、共享與發(fā)布,實(shí)現(xiàn)監(jiān)測(cè)評(píng)價(jià)成果的輸出與本地可視化,并與區(qū)域、政府水土保持、生態(tài)環(huán)境智能化決策系統(tǒng)或平臺(tái)對(duì)接,快捷服務(wù)于行業(yè)管理與政府宏觀決策。構(gòu)建大數(shù)據(jù),進(jìn)行知識(shí)挖掘,并創(chuàng)新大數(shù)據(jù)處理模式,將有效提高監(jiān)測(cè)評(píng)價(jià)的科學(xué)性和時(shí)效性。
區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià)的大數(shù)據(jù)構(gòu)成與分析流程見圖1。
3.1整合大數(shù)據(jù),建設(shè)大數(shù)據(jù)中心和共享服務(wù)平臺(tái)
要加快并完善國(guó)家大數(shù)據(jù)頂層設(shè)計(jì),基于分布式架構(gòu),實(shí)現(xiàn)國(guó)家、區(qū)域或大流域、地區(qū)分層級(jí)的統(tǒng)籌與規(guī)劃,明確各行業(yè)大數(shù)據(jù)的建設(shè)重點(diǎn)內(nèi)容,以及與大數(shù)據(jù)中心的接入或共享機(jī)制,實(shí)現(xiàn)行業(yè)整合、區(qū)域整合。同步建成國(guó)家、區(qū)域或地方大數(shù)據(jù)中心,并明確行業(yè)中間件標(biāo)準(zhǔn)接口配置或定制方案,實(shí)現(xiàn)公共數(shù)據(jù)與專屬數(shù)據(jù)的無縫對(duì)接,避免各自為政、封閉運(yùn)行和重復(fù)建設(shè),提高大數(shù)據(jù)資源使用效率。區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià),要充分利用大數(shù)據(jù)資源,逐步提高大數(shù)據(jù)采集與知識(shí)挖掘能力,快捷有效地推進(jìn)大數(shù)據(jù)應(yīng)用與共享服務(wù)。
3.2推進(jìn)數(shù)據(jù)標(biāo)準(zhǔn)化建設(shè),創(chuàng)新大數(shù)據(jù)云網(wǎng)絡(luò)服務(wù)方式
區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)評(píng)價(jià)涉及水利水保、國(guó)土、氣象、水文、林業(yè)和資源環(huán)境等領(lǐng)域,對(duì)象復(fù)雜。要利用大數(shù)據(jù),首先要對(duì)基礎(chǔ)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化建設(shè),建立基礎(chǔ)數(shù)據(jù)的元數(shù)據(jù)標(biāo)準(zhǔn),并實(shí)現(xiàn)與大數(shù)據(jù)元數(shù)據(jù)標(biāo)準(zhǔn)的統(tǒng)一和融合,增強(qiáng)大數(shù)據(jù)檢索、降維存儲(chǔ)與實(shí)時(shí)抽取調(diào)用功能,實(shí)現(xiàn)與大數(shù)據(jù)共享平臺(tái)的無縫對(duì)接。同時(shí),創(chuàng)新大數(shù)據(jù)和云網(wǎng)絡(luò)服務(wù)方式,主動(dòng)適應(yīng)大數(shù)據(jù)的分布式架構(gòu)或云計(jì)算服務(wù)方式,充分利用部門、行業(yè)或綜合大數(shù)據(jù)共享信息及服務(wù)平臺(tái),增強(qiáng)大數(shù)據(jù)挖掘能力,完善數(shù)據(jù)采集、處理、分析、存儲(chǔ)管理、動(dòng)態(tài)更新與共享發(fā)布等云網(wǎng)絡(luò)計(jì)算流程或工作模式,開放、務(wù)實(shí)地融入大數(shù)據(jù)時(shí)代。
3.3完善基于大數(shù)據(jù)的區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià)方法
1)基于大數(shù)據(jù),完善數(shù)據(jù)采集、挖掘和利用的手段與方法,實(shí)現(xiàn)基礎(chǔ)數(shù)據(jù)的資源共享利用與快速調(diào)取。
2)研究適用于多層級(jí)、分布式云計(jì)算網(wǎng)絡(luò)或平臺(tái)的監(jiān)測(cè)評(píng)價(jià)方法,完善并優(yōu)化監(jiān)測(cè)評(píng)價(jià)技術(shù)流程與工作模式,并適應(yīng)大數(shù)據(jù)快速更新和高增長(zhǎng)率的特點(diǎn),提高監(jiān)測(cè)評(píng)價(jià)的快速反應(yīng)能力。
3)要加強(qiáng)監(jiān)測(cè)評(píng)價(jià)的智能化分析能力建設(shè),通過專家智庫(kù)的系統(tǒng)后臺(tái)支持,提高動(dòng)態(tài)監(jiān)測(cè)的科學(xué)性、完整性和時(shí)效性。
4)提高監(jiān)測(cè)評(píng)價(jià)成果的決策支撐與云應(yīng)用服務(wù)能力,通過云共享模式,與各級(jí)政府大數(shù)據(jù)與決策支持系統(tǒng)對(duì)接,實(shí)現(xiàn)決策服務(wù)、信息共享與對(duì)外發(fā)布。
3.4完善監(jiān)測(cè)站網(wǎng)信息采集和大數(shù)據(jù)網(wǎng)絡(luò)基礎(chǔ)能力建設(shè)
完善水土保持監(jiān)測(cè)站網(wǎng)是區(qū)域水土流失監(jiān)測(cè)評(píng)價(jià)工作的基礎(chǔ),也是基礎(chǔ)數(shù)據(jù)的重要來源。
1)完善水土保持監(jiān)測(cè)站網(wǎng)布局,提升建設(shè)標(biāo)準(zhǔn)和監(jiān)測(cè)能力,實(shí)現(xiàn)數(shù)據(jù)采集自動(dòng)化、標(biāo)準(zhǔn)化和信息化。
2)實(shí)現(xiàn)站網(wǎng)監(jiān)測(cè)信息與大數(shù)據(jù)中心的上傳對(duì)接與融合共享,革新信息獲取的途徑與挖掘方式。
3)要大力推進(jìn)大數(shù)據(jù)中心與云計(jì)算網(wǎng)絡(luò)基礎(chǔ)設(shè)施建設(shè),開發(fā)中間件,完善數(shù)據(jù)庫(kù)與系統(tǒng)接口定制,提高各級(jí)水土保持監(jiān)測(cè)機(jī)構(gòu)的大數(shù)據(jù)應(yīng)用能力。
4)要培養(yǎng)鍛煉一支精干、高效的技術(shù)隊(duì)伍,充分掌握大數(shù)據(jù)應(yīng)用知識(shí),創(chuàng)新工作方法,促進(jìn)大數(shù)據(jù)與云計(jì)算在區(qū)域水土流失監(jiān)測(cè)評(píng)價(jià)和水土保持行業(yè)中的應(yīng)用。
區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià)的基本目的是掌握水土流失狀況及其防治成效,建成并運(yùn)用大數(shù)據(jù)進(jìn)行分析,充分利用數(shù)據(jù)資源,提高監(jiān)測(cè)成果的科學(xué)性、完整性和時(shí)效性。通過大數(shù)據(jù)采集與知識(shí)挖掘,構(gòu)建區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià)數(shù)據(jù)集(或集合),再利用云網(wǎng)絡(luò)計(jì)算平臺(tái),可實(shí)現(xiàn)基于大數(shù)據(jù)的動(dòng)態(tài)監(jiān)測(cè)與分析評(píng)價(jià)。近期,應(yīng)完善頂層設(shè)計(jì),實(shí)現(xiàn)大數(shù)據(jù)融合與共享,推進(jìn)數(shù)據(jù)標(biāo)準(zhǔn)化建設(shè),創(chuàng)新大數(shù)據(jù)和云網(wǎng)絡(luò)服務(wù)方式,完善監(jiān)測(cè)站網(wǎng)信息采集和大數(shù)據(jù)網(wǎng)絡(luò)基礎(chǔ)設(shè)施建設(shè),探索并完善基于大數(shù)據(jù)的區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià)方法和實(shí)現(xiàn)途徑。
大數(shù)據(jù)建成與運(yùn)用是一個(gè)漸進(jìn)過程,也是互聯(lián)網(wǎng)+和信息化發(fā)展的必然趨勢(shì),要求實(shí)現(xiàn)國(guó)家、行業(yè)、區(qū)域統(tǒng)籌規(guī)劃與協(xié)調(diào)發(fā)展。當(dāng)前,可利用業(yè)已成熟的方法,逐步對(duì)接大數(shù)據(jù)中心,充分利用大數(shù)據(jù)資源和云計(jì)算網(wǎng)絡(luò),構(gòu)建大數(shù)據(jù)管理、應(yīng)用和共享平臺(tái),試點(diǎn)開展特定區(qū)域的水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià),并借此完善基礎(chǔ)設(shè)施,優(yōu)化基于大數(shù)據(jù)的區(qū)域水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià)的技術(shù)流程和工作模式。在此基礎(chǔ)上,規(guī)范并推廣應(yīng)用。同時(shí),要進(jìn)一步開放思維,充分借助行政和經(jīng)濟(jì)的手段,輔之以基礎(chǔ)研究,共同推進(jìn)大數(shù)據(jù)在區(qū)域水土流失監(jiān)測(cè)評(píng)價(jià)和水土保持行業(yè)中的應(yīng)用。
[1]郭索彥,李智廣.我國(guó)水土保持監(jiān)測(cè)的發(fā)展歷程與成就[J].中國(guó)水土保持科學(xué),2009,7(5):19.
Guo Suoyan,Li Zhiguang.Development and achievements of soil and water conservation monitoring in China[J].Science of Soil and Water Conservation,2009,7(5):19.(in Chinese)
[2]沈利強(qiáng),都金康,胡裕軍.大數(shù)據(jù)量三維地形實(shí)時(shí)可視化的擴(kuò)展算法[J].南京大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,44(3):297.
Shen Liqiang,Du Jinkang,Hu Yujun.Extended algorithm of real-time rendering for 3D terrain in the large volume of data[J].Journal of Nanjing University (Natural Sciences),2008,44(3):297.(in Chinese)
[3]李永生,劉修偉,楊玉紅.氣象大數(shù)據(jù)跨平臺(tái)分析與應(yīng)用技術(shù)研究[J].電腦知識(shí)與技術(shù),2013,9(31):6943.
Li Yongsheng,Liu Xiuwei,Yang Yuhong.The research of cross-platform analysis and application technology for big meteorological Data[J].Computer Knowledge and Technology,2013,9(31):6943.(in Chinese)
[4]夏潤(rùn)亮,馮興凱,何明民,等.基于模型標(biāo)準(zhǔn)化的水利數(shù)值模擬云服務(wù)平臺(tái)研究[J].水利信息化,2015,(6):1.
Xia Runliang,Feng Xingkai,He Mingmin,et al.Research on cloud service platform for hydraulic numerical stimulation based on model standardization[J].Water Resources Informatization,2015,(6):1.(in Chinese)
[5]朱清科,馬歡.我國(guó)智慧水土保持體系初探[J].中國(guó)水土保持科學(xué),2015,13(4):117.
Zhu Qingke,Ma Huan.Preliminary study on smart soil and water conservation in China[J].Science of Soil and Water Conservation,2015,13(4):117.(in Chinese)
[6]衣強(qiáng).大數(shù)據(jù)與水土保持監(jiān)測(cè)[J].中國(guó)水土保持科學(xué),2015,13(4):123.
Yi Qiang.Big data and soil and water conservation monitoring[J].Science of Soil and Water Conservation,2015,13(4):123.(in Chinese)
[7]趙輝,黎家作,李晶晶.中國(guó)水土流失動(dòng)態(tài)監(jiān)測(cè)與評(píng)價(jià)的現(xiàn)狀與對(duì)策[J].水土保持通報(bào),2016,36(1):115.
Zhao Hui,Li Jiazuo,Li Jingjing.Present situation and countermeasures of dynamic monitoring and evaluation of soil and water loss in China[J].Bulletin of Soil and Water Conservation,2016,36(1):115.(in Chinese)
[8]水利部水土保持監(jiān)測(cè)中心.水土流失動(dòng)態(tài)監(jiān)測(cè)方法研究[M].北京:中國(guó)水利水電出版社,2011:50-61.
Monitoring center of soil and water conservation,Ministry of Water Resources.Study on dynamic monitoring method of soil and water loss[M].Beijing:China Water & Power Press,2011:50-61.(in Chinese)
[9]中華人民共和國(guó)水利部.土壤侵蝕分類分級(jí)標(biāo)準(zhǔn):SL190—2007[S].北京:中國(guó)水利水電出版社,2008:8.
Ministry of Water Resources.SL 190-2007 Standards for classification and gradation of soil erosion[S].Beijing:China Water & Power Press,2018:8.(in Chinese)
[10] 李智廣,符素華,劉寶元.我國(guó)水力侵蝕抽樣調(diào)查方法[J].中國(guó)水土保持科學(xué),2012,10(1):77.
Li Zhiguang,Fu Suhua,Liu Baoyuan.Sampling program of water erosion inventory in the first national water resource survey[J].Science of Soil and Water Conservation,2012,10(1):77.(in Chinese)
[11] 劉寶元,郭索彥,李智廣,等.中國(guó)水力侵蝕抽樣調(diào)查[J].中國(guó)水土保持,2013,(10):26.
Liu Baoyuan,Guo Suoyan,Li Zhiguang,et al.Sampling survey of water erosion in China[J].Soil and Water Conservation in China,2013,(10):26.(in Chinese)
[12] 李智廣,鄒學(xué)勇,程宏.我國(guó)風(fēng)力侵蝕抽樣調(diào)查方法[J].中國(guó)水土保持科學(xué),2013,11(4):17.
Li Zhiguang,Zou Xueyong,Cheng Hong.Method of wind erosion sampling survey in China[J].Science of Soil and Water Conservation,2013,11(4):17.(in Chinese)
[13] 李智廣,劉淑珍,張建國(guó),等.我國(guó)凍融侵蝕的調(diào)查方法[J].中國(guó)水土保持科學(xué),2012,10(4):1.
Li Zhiguang,Liu Shuzhen,Zhang Jianguo,et al.Survey method of freeze-thaw erosion in China[J].Science of Soil and Water Conservation,2012,10(4):1.(in Chinese)
[14] 姜德文.水土保持公報(bào)的改革方向與內(nèi)容趨向[J].中國(guó)水土保持,2015,(7):1.
Jiang Dewen.Reform direction and content trend of water and soil conservation bulletin[J].Soil and Water Conservation in China,2015,(7):1.(in Chinese)
[15] 馬馳,盧玉東.地統(tǒng)計(jì)方法在土石山區(qū)土壤侵蝕空間變異性研究的應(yīng)用[J].水土保持研究,2006,13(4):72.
Ma Chi,Lu Yudong.Advance in spatial variability of soil erosion in mountainous area by using geostatistics[J].Research of Soil and Water Conservation,2006,13(4):72.(in Chinese)
[16] 陳志強(qiáng),陳志彪,陳明華.福建省水土流失強(qiáng)度的地統(tǒng)計(jì)分析[J].自然資源學(xué)報(bào),2011,26(8):1394.
Chen Zhiqiang,Chen Zhibiao,Chen Minghua.Geostatistical analysis on soil and water loss in Fujian province [J].Journal of Natural Resources,2011,26(8):1394.(in Chinese)
[17] 傅伯杰,趙文武,陳利頂,等.多尺度土壤侵蝕評(píng)價(jià)指數(shù)[J].科學(xué)通報(bào),2006,51(16):1936.
Fu Bojie,Zhao Wenwu,Chen Liding,et al.Assessment index of multi-scale soil erosion[J].Science Bulletin,2006,51(16):1936.(in Chinese)
[18] Arnold J G,Srinivasan R,Muttiah R S,et al.Large-area hydrologic modeling and assessment (part I):Model development[J].Jawra Journal of American Water Resources Association,1998,34(1):73.
[19] 祁偉,曹文洪,郭慶超,等.小流域侵蝕產(chǎn)沙分布式數(shù)學(xué)模型的研究[J].中國(guó)水土保持科學(xué),2004,2(1):16.
Qi Wei,Cao Wenhong,Guo Qingchao,et al.Study on a distributed model for soil erosion and sediment yield in small watersheds[J].Science of Soil and Water Conservation,2004,2(1):16.(in Chinese)
Foundations and countermeasures on big data analysis for dynamic monitoring and evaluation of regional soil and water loss
Zhao Hui1,Li Qi2
(1.Monitoring Center of Soil and Water Conservation,Ministry of Water Resources,100055,Beijing,China;2.Beijing Soil and Water Conservation Eco-Engineering Consultation Co.,Ltd.,100055,Beijing,China)
[Background] Well-managing the current status of soil erosion and the achievements of prevention,are the purposes of dynamic monitoring and evaluation of regional soil and water loss.The methods of dynamic monitoring and evaluation of regional soil and water loss in China can be divided into five categories as following:qualitative analysis method,sampling statistical analysis method,the method based on composite index,the method based on geostatistical analysis and remote sensing monitoring,and the method based on distributed models.All these methods require tremendous amount of basic data and the support of big data technique.While the big data is built up and analyzed sufficiently,the data resources can be fully mined,and the scientificity,integrity and timeliness of the dynamic monitoring can be improved significantly.[Methods] The big data for dynamic monitoring and evaluation of regional soil and water loss are consisted of basic and static data,dynamic and updated data,and analysis and evaluation data.Most of these data,beside monitoring and observation of soil and water conservation,can be collected and mined from water resources and hydrology big data,territorial resources big data,meteorology big data,forestry and agriculture big data and so on.Dynamic monitoring and evaluation based on big data can be achieved by collecting and mining data,building data assembles of dynamic monitoring and evaluation of regional soil and water loss,and utilizing the calculation platform of cloud-based network.[Results] In the near term,the top-level design should be improved:to build the centers of big data,to implement the integration and sharing of big data,to promote the standardization of data,to innovate the mode of big data and cloud network services,to improve the information collection from monitoring network and infrastructure construction of data network,and finally to explore and improve the methods of regional soil and water loss dynamic monitoring and evaluation based on big data.[Conclusions] We should promote big data co-ordination on national,industry and regional levels gradually,unify the big data standards; and then utilize the existing resources of big data sufficiently such as water resources and hydrology big data,territorial resources big data,meteorology big data,forestry and agriculture big data and so on.We also should establish the management,application and sharing platform of big data,use the administrative and economic measures—accompanied by the necessary basic research and the construction of professional teams—so as to jointly promote the application of big data in the fields of regional soil erosion monitoring and evaluation and soil and water conservation industry,and to assist governmental decision-making for economic and social development.
soil and water loss; dynamic monitoring; analysis and evaluation; big data; region
2016-04-29
2016-06-07
項(xiàng)目名稱:水利部財(cái)政預(yù)算項(xiàng)目“全國(guó)水土流失動(dòng)態(tài)監(jiān)測(cè)與公告項(xiàng)目”(1261521610273)
趙輝(1971—),男,博士,教授級(jí)高級(jí)工程師。主要研究方向:土壤侵蝕與水土保持監(jiān)測(cè)技術(shù)。E-mail:7166zhaohui@163.com
S157.1
A
1672-3007(2016)04-0068-07
10.16843/j.sswc.2016.04.009