朱秀委, 蔣云峰, 余溫雷, 陳亮亮, 盧路瑤
(溫州醫(yī)科大學(xué) 生物醫(yī)學(xué)工程系, 浙江 溫州 325035)
?
造血系統(tǒng)建模仿真的研究進(jìn)展
朱秀委, 蔣云峰, 余溫雷, 陳亮亮, 盧路瑤
(溫州醫(yī)科大學(xué) 生物醫(yī)學(xué)工程系, 浙江 溫州325035)
將造血系統(tǒng)數(shù)學(xué)建模研究做一綜述,介紹各種模型的基本結(jié)構(gòu)、數(shù)學(xué)特點(diǎn)及最新應(yīng)用,對(duì)比分析它們的優(yōu)缺點(diǎn),并展望未來的發(fā)展方向.
造血系統(tǒng); 數(shù)學(xué)建模; 種群模型; 個(gè)體模型; 血液病
造血系統(tǒng)是由造血器官、各種細(xì)胞和非細(xì)胞成分組成的復(fù)雜系統(tǒng).造血干細(xì)胞可自我更新或分化成各種血細(xì)胞,每天大約生成1011~1012個(gè)血細(xì)胞來維持造血系統(tǒng)的生理平衡[1].造血干細(xì)胞存在休眠狀態(tài)和增殖狀態(tài),而各種血細(xì)胞經(jīng)歷原始、幼稚、成熟等多個(gè)年齡階段.多種調(diào)控因子(集落形成刺激因子、促紅細(xì)胞生成素及促血小板生成素等)促進(jìn)各系造血過程,而成熟細(xì)胞對(duì)該過程進(jìn)行負(fù)反饋調(diào)節(jié)[2].在病理?xiàng)l件下,可出現(xiàn)周期性白細(xì)胞減少癥、周期性自免疫溶血性貧血和周期性血小板減少癥等動(dòng)態(tài)血液病[3],也可能產(chǎn)生骨髓增生異常綜合征、各類白血病及淋巴瘤等原發(fā)性造血系統(tǒng)疾病[4].
臨床和實(shí)驗(yàn)研究加速了人們對(duì)造血系統(tǒng)的理解,但受到系統(tǒng)復(fù)雜性、實(shí)驗(yàn)條件及倫理道德等諸多因素的限制.近年來,數(shù)學(xué)方法和計(jì)算機(jī)技術(shù)的發(fā)展推動(dòng)了數(shù)學(xué)建模方法在造血系統(tǒng)研究中的應(yīng)用.經(jīng)過臨床或?qū)嶒?yàn)數(shù)據(jù)驗(yàn)證后,這些模型可用于解釋臨床現(xiàn)象、闡述發(fā)病機(jī)制或預(yù)測(cè)疾病發(fā)展,具有重要的實(shí)際意義.
造血系統(tǒng)涉及不同的時(shí)間、空間、細(xì)胞和非細(xì)胞成分,數(shù)學(xué)模型描述的就是這些細(xì)胞和非細(xì)胞成分的時(shí)空變化過程.圖1給出了造血系統(tǒng)的一般結(jié)構(gòu)圖,包括干細(xì)胞、各階段前體細(xì)胞和成熟細(xì)胞,其中,成熟細(xì)胞處于外周血,其他細(xì)胞處于骨髓中.干細(xì)胞和前體細(xì)胞可通過自我更新維持自身數(shù)量,也可分化為下級(jí)細(xì)胞,所有細(xì)胞都可能存在凋亡過程.成熟細(xì)胞數(shù)量的變化可引起各種細(xì)胞因子濃度的改變,從而對(duì)上級(jí)細(xì)胞的自我更新或分化過程進(jìn)行調(diào)節(jié)[5].
圖1 造血系統(tǒng)數(shù)學(xué)模型的結(jié)構(gòu)示意圖Fig.1 Schematic of the mathematical model of the hematopoiesis system
造血系統(tǒng)數(shù)學(xué)建模的一般步驟如下:
(1) 基于生物學(xué)知識(shí)和臨床實(shí)驗(yàn)數(shù)據(jù),針對(duì)特定問題畫出造血系統(tǒng)示意圖;
(2) 用變量和參數(shù)組成的數(shù)學(xué)方程來定義各成分的變化,求出模型的解析解或數(shù)值解;
(3) 利用分岔分析、穩(wěn)定性分析和數(shù)值模擬等方法研究各種解的特性;
(4) 將數(shù)學(xué)結(jié)論用于解釋臨床或?qū)嶒?yàn)觀察到的現(xiàn)象.
目前已有的造血系統(tǒng)模型數(shù)量眾多,本文將這些模型分為兩類來討論:一類基于單個(gè)細(xì)胞特性,被稱為個(gè)體模型;另一類以細(xì)胞群體變化為基礎(chǔ),被稱為種群模型.
2.1種群模型
種群模型以細(xì)胞種群為研究對(duì)象,描述的是大量細(xì)胞的平均行為特性.種群模型通??汕蟮媒馕鼋饣驍?shù)值解,計(jì)算效率不受細(xì)胞數(shù)量的影響,因此可用于數(shù)量龐大的細(xì)胞體系.2.1.1常微分方程(ordinary differential equations,ODE)模型
ODE模型把造血細(xì)胞根據(jù)年齡不同分成若干種群,但每個(gè)種群的變化只是關(guān)于時(shí)間的函數(shù),而不是關(guān)于細(xì)胞年齡的函數(shù).一般地,某個(gè)細(xì)胞種群的變化可描述為
(1)
ODE模型的結(jié)構(gòu)和分析過程相對(duì)簡(jiǎn)單,在造血系統(tǒng)研究中應(yīng)用較廣泛.例如,結(jié)合成熟細(xì)胞及細(xì)胞因子對(duì)前體細(xì)胞分化的反饋?zhàn)饔?ODE模型被用于研究造血細(xì)胞生成過程[6];考慮微環(huán)境對(duì)干細(xì)胞分裂方式的作用,ODE模型被用于研究骨髓增生異常綜合征[7-8];ODE模型還被用于白血病的產(chǎn)生[9]、藥物治療反應(yīng)[10]及病人存活預(yù)測(cè)[11]等.
2.1.2偏微分方程(partialdifferentialequations,PDE)模型
PDE模型將細(xì)胞成熟過程看作一個(gè)連續(xù)事件,因此細(xì)胞種群的變化不僅是關(guān)于時(shí)間也是關(guān)于細(xì)胞年齡的函數(shù).將細(xì)胞年齡作為其中一個(gè)自變量的PDE模型也被稱為年齡結(jié)構(gòu)模型[3].某個(gè)種群的變化通常用以下方程表示:
(2)
式中,X表示某種細(xì)胞種群密度,t≥0和a≥0分別表示時(shí)間和細(xì)胞年齡,函數(shù)G表示引起種群數(shù)量變化的各種因素,包括分化、凋亡或狀態(tài)轉(zhuǎn)換(休眠或增殖)等過程.年齡結(jié)構(gòu)模型與造血系統(tǒng)結(jié)構(gòu)更接近,是其他很多造血數(shù)學(xué)模型的基礎(chǔ).但這類模型的數(shù)學(xué)分析比較復(fù)雜,實(shí)際應(yīng)用時(shí)常需簡(jiǎn)化為時(shí)滯微分方程模型[12].
2.1.3時(shí)滯微分方程(delay differential equations,DDE)模型
在各種細(xì)胞凋亡和成熟速率為常數(shù)、細(xì)胞在一定時(shí)間內(nèi)呈指數(shù)增長(zhǎng)、系統(tǒng)時(shí)間足夠長(zhǎng)等假設(shè)下[2],上述PDE模型可簡(jiǎn)化為DDE模型.在給定初始條件和邊界條件后,利用特征線法對(duì)PDE模型中的年齡變量進(jìn)行積分,可得到細(xì)胞數(shù)量變化的DDE方程[2,12]:
(3)
式中:X和t的意義同PDE模型;τ和τ0是系統(tǒng)中的延時(shí)項(xiàng);γ是細(xì)胞死亡系數(shù).式(3)右邊第一項(xiàng)是細(xì)胞隨機(jī)死亡過程,第二項(xiàng)是增殖/成熟階段的細(xì)胞增加項(xiàng),第三項(xiàng)是完全成熟細(xì)胞的凋亡過程.
Mackey等最早將DDE模型用于研究造血干細(xì)胞的動(dòng)態(tài)變化,其中干細(xì)胞包括增殖和非增殖狀態(tài)[13].非增殖干細(xì)胞可進(jìn)入增殖狀態(tài)或分化為下游細(xì)胞,增殖干細(xì)胞在固定細(xì)胞周期(時(shí)間延遲項(xiàng))后分裂或凋亡.模型研究發(fā)現(xiàn),改變干細(xì)胞的分化速率或凋亡速率,能重現(xiàn)貧血現(xiàn)象或血細(xì)胞周期性振蕩現(xiàn)象.將干細(xì)胞分裂周期描述為分布式或狀態(tài)依賴的延時(shí)項(xiàng),則DDE模型具有振蕩性質(zhì)不同的周期性解[14].基于此,研究人員建立了單系血細(xì)胞生成的獨(dú)立模型[15]或包含各系血細(xì)胞的完整模型[16].此外,DDE模型在白血病相關(guān)研究中也具有廣泛應(yīng)用[17-18].
2.2個(gè)體模型
個(gè)體模型以單個(gè)細(xì)胞特性為基礎(chǔ),可結(jié)合基因突變、細(xì)胞分裂等隨機(jī)過程.在某種程度上,個(gè)體模型比種群模型更能反映造血系統(tǒng)的特性.但個(gè)體模型的計(jì)算效率隨著細(xì)胞數(shù)量的增加而明顯下降,因此通常用來描述那些涉及少量細(xì)胞的現(xiàn)象或種群.
2.2.1基于主體的模型(agent-based model,ABM)
在ABM模型中,每個(gè)細(xì)胞都被定義成一個(gè)自治主體,它們具有特定的行為規(guī)則.根據(jù)自身狀態(tài)(年齡、基因突變等)和所處環(huán)境,每個(gè)細(xì)胞具有特定行為(分裂、分化或死亡等).Roeder等[19]提出了一個(gè)關(guān)于造血系統(tǒng)的ABM模型.在該模型中,造血干細(xì)胞具有年齡和親和力兩個(gè)屬性,干細(xì)胞在年齡達(dá)到某個(gè)閾值時(shí)發(fā)生分裂,在親和力下降到某個(gè)閾值時(shí)發(fā)生分化.通過模型仿真得到了干細(xì)胞動(dòng)力學(xué)、種群競(jìng)爭(zhēng)等諸多與實(shí)驗(yàn)觀察相符的結(jié)果.此外,ABM模型還用于追蹤單個(gè)細(xì)胞的變化和解釋造血細(xì)胞的異質(zhì)性[20].考慮干細(xì)胞分化的差異性,ABM模型被用于大劑量照射后造血系統(tǒng)的重建過程[21].關(guān)于ABM模型的更多應(yīng)用可參見文獻(xiàn)[22].
2.2.2莫蘭(Moran)模型
莫蘭模型也叫莫蘭隨機(jī)過程,它用來描述等容系統(tǒng)中各個(gè)成分之間的競(jìng)爭(zhēng)關(guān)系,主要用于研究基因突變和自然選擇等.造血系統(tǒng)在生理?xiàng)l件下細(xì)胞數(shù)量相對(duì)穩(wěn)定,而病理狀態(tài)多與基因突變相關(guān),因此莫蘭模型得到廣泛應(yīng)用.例如,Shahriyari等[23]描述了一個(gè)由造血干細(xì)胞和分化細(xì)胞組成的系統(tǒng).模型假設(shè)所有細(xì)胞的總和為常數(shù),每次選擇一個(gè)細(xì)胞發(fā)生分裂或死亡,其概率與細(xì)胞種類相關(guān).細(xì)胞分裂時(shí)可產(chǎn)生基因突變,從而獲得單基因突變或雙基因突變的細(xì)胞.研究發(fā)現(xiàn),提高對(duì)稱分裂概率可抑制雙基因突變細(xì)胞的生成,這與臨床發(fā)現(xiàn)的正常干細(xì)胞傾向于對(duì)稱分裂的現(xiàn)象相符[23].此外,莫蘭模型還用于研究中性突變與慢性粒細(xì)胞白血病的關(guān)系[24]、骨髓增生異常綜合征與基因突變的聯(lián)系[25]等.
2.2.3分支(branching)模型
基于分支過程的模型是一種馬爾科夫模型,適用于像造血系統(tǒng)這樣的層級(jí)系統(tǒng).造血系統(tǒng)內(nèi)存在典型的分支過程,例如:干細(xì)胞的分裂存在三種可能,即對(duì)稱分裂為兩個(gè)干細(xì)胞或兩個(gè)分化細(xì)胞,也可不對(duì)稱分裂生成一個(gè)干細(xì)胞和一個(gè)分化細(xì)胞[26].與莫蘭模型相比,分支模型也是基于對(duì)細(xì)胞分裂后隨機(jī)事件的描述,但不要求細(xì)胞數(shù)量總和是常數(shù).考慮環(huán)境信號(hào)的反饋?zhàn)饔?分支模型被用于研究造血干細(xì)胞微環(huán)境與各細(xì)胞種群穩(wěn)定性之間的關(guān)系[27];考慮外界因素的擾動(dòng)作用(例如放療損傷),分支模型也被用于研究紅細(xì)胞再生過程[28]等.
2.3雜合模型
由于上述模型各有優(yōu)缺點(diǎn),在研究更復(fù)雜的造血系統(tǒng)問題時(shí)就需要建立結(jié)合不同建模方法的雜合模型.例如,結(jié)合ODE與PDE的雜合模型用于多尺度的造血細(xì)胞生成過程研究[29],其中與年齡相關(guān)的細(xì)胞成分用PDE來描述,與年齡無關(guān)的成分(例如細(xì)胞因子等)用ODE來描述.還有學(xué)者將種群模型和個(gè)體模型相結(jié)合來研究各種治療方法對(duì)造血系統(tǒng)的影響[30],其中數(shù)量較少的造血干細(xì)胞變化用ABM模型來描述,而數(shù)量較大的粒細(xì)胞生成用ODE模型來描述.
根據(jù)研究問題的不同,各種數(shù)學(xué)方法和模型結(jié)構(gòu)等細(xì)節(jié)方面存在諸多差異.總體上說,種群模型用來描述造血系統(tǒng)的整體動(dòng)力學(xué)情況,其優(yōu)勢(shì)在于細(xì)胞數(shù)量規(guī)模龐大的系統(tǒng)研究.但隨著自變量及方程數(shù)量的增多,這類模型的數(shù)學(xué)分析難度快速增大,有時(shí)只能得到數(shù)值解[31].個(gè)體模型從單個(gè)細(xì)胞的特性出發(fā),通過反復(fù)更新所有細(xì)胞的狀態(tài)來考察系統(tǒng)行為.其優(yōu)勢(shì)在于結(jié)合隨機(jī)過程更好地反應(yīng)細(xì)胞層次的生物特性,有的模型(如ABM模型)還能擴(kuò)展到二維或三維場(chǎng)景[32].但隨著細(xì)胞數(shù)量的增加,個(gè)體模型的仿真效率大大降低,因此一般用于細(xì)胞數(shù)量較少的場(chǎng)景.雜合模型結(jié)合了各類模型的優(yōu)點(diǎn),可同時(shí)考察某種特定細(xì)胞的個(gè)體行為和其他類型細(xì)胞的群體表現(xiàn),但模型間的耦合過程較復(fù)雜,可用于中規(guī)模細(xì)胞數(shù)量的研究.表1給出了上述幾種模型之間的比較情況.
表1 各種模型的比較
注: *細(xì)胞數(shù)大:106~109[7,15];中:105~107[24-25];小:102~105[22].
本文綜述了關(guān)于造血系統(tǒng)的不同數(shù)學(xué)建模方法,分析并對(duì)比了一些經(jīng)典模型及最新模型.數(shù)學(xué)建模方法是一個(gè)研究造血系統(tǒng)的有力工具,并具有廣闊的應(yīng)用前景.目前,各種數(shù)學(xué)模型已被廣泛應(yīng)用于造血系統(tǒng)各個(gè)方面的研究,加速了人們對(duì)造血系統(tǒng)及其相關(guān)病癥的底層機(jī)制的理解.尤其在造血系統(tǒng)動(dòng)力學(xué)研究、相關(guān)疾病的藥物治療和預(yù)后等方面,取得了眾多研究成果.
造血系統(tǒng)數(shù)學(xué)建模研究也面臨著一些問題與挑戰(zhàn),其中包括但不限于:①實(shí)驗(yàn)數(shù)據(jù)的獲取和分析問題.實(shí)驗(yàn)數(shù)據(jù)是數(shù)學(xué)模型的基礎(chǔ),但相關(guān)實(shí)驗(yàn)或臨床數(shù)據(jù)往往是樣本不統(tǒng)一的大噪聲數(shù)據(jù),需要進(jìn)行仔細(xì)分析才可使用.②造血系統(tǒng)的多穩(wěn)態(tài)和非穩(wěn)態(tài)問題.造血系統(tǒng)模型不僅存在多個(gè)穩(wěn)態(tài)解,也存在著非穩(wěn)態(tài)解,它們的產(chǎn)生條件、動(dòng)力學(xué)特性、與生理狀態(tài)的關(guān)系等問題,都值得進(jìn)一步研究.③多尺度數(shù)學(xué)模型的構(gòu)建問題.造血系統(tǒng)是一個(gè)包括分子層次、細(xì)胞層次及組織層次的跨尺度復(fù)雜系統(tǒng),但除了少數(shù)工作外[33],目前的造血系統(tǒng)數(shù)學(xué)模型以細(xì)胞或組織層次為主.結(jié)合各種數(shù)學(xué)建模方法的優(yōu)勢(shì),以系統(tǒng)生物學(xué)的角度去研究造血系統(tǒng)是未來的研究熱點(diǎn).
致謝本文作者感謝溫州醫(yī)科大學(xué)科研啟動(dòng)項(xiàng)目(QTJ14010)的部分資助.
[ 1 ] CHRISTIAN K,MAREN G. Genetic and epigenetic mechanisms that maintain hematopoietic stem cell function[J]. Stem Cells International, 2016(12):1-14.
[ 2 ] 雷錦誌. 血細(xì)胞生成的系統(tǒng)動(dòng)力學(xué)研究進(jìn)展[J]. 力學(xué)進(jìn)展, 2012,42(3):294-313.
(LEI J Z. Recent progresses in hematological dynamics[J]. Advances in Mechanics, 2012,42(3):294-313.
[ 3 ] LEI J,MACKEY M C. Understanding and treating cytopenia through mathematical modeling[J]. Advances in Experimental Medicine and Biology, 2014(844):279-302.
[ 4 ] LAM C,CURTIS R E,DORES G M,et al. Risk factors for second acute myeloid leukemia/myelodysplastic syndrome among survivors of non-Hodgkin lymphoma[J]. Leukemia, 2015,30(5).
[ 5 ] SHEN H,STORAN M,HEAZLEWOOD C,et al. Factors released by megakaryocytes thrombin cleave osteopontin to negatively regulate hematopoietic stem cells[J]. Experimental Hematology, 2015,43(9):S84.
[ 6 ] STIEHL T,HO A D,MARCINIAK-CZOCHRA A. The impact of CD34+Cell dose on engraftment after SCTs:personalized estimates based on mathematical modeling[J]. Bone Marrow Transplantation, 2014,49(1):30-37.
[ 7 ] WALENDA T,STIEHL T,BRAUN H,et al. Feedback signals in myelodysplastic syndromes:increased self-renewal of the malignant clone suppresses normal hematopoiesis[J]. PLos Computational Biology, 2014,10(4):e1003599.
[ 8 ] ZHU X,XIA L,LU L. A mathematical model of myelodysplastic syndromes:the effect of stem cell niches[C]∥Life System Modeling and Intelligent Computing. Berlin:Heidelberg, 2010:395-403.
[ 9 ] STIEHL T,BARAN N,HO A D,et al. Clonalselection and therapy resistance in acute leukaemias:mathematical modelling explains different proliferation patterns at diagnosis and relapse[J]. Journal of the Royal Society Interface, 2014,11(94):20140079.
[10] WODARZ D,GARY N,KOMAROVA N L,et al. Kinetics of CLL cells in tissues and blood during therapy with the BTK inhibitor ibrutinib[J]. Blood, 2014,123(26):4132-4135.
[11] STIEHL T,BARAN N,HO A D,et al. Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course:a model to predict patient survival[J]. Cancer Research, 2015,75(6):940-949.
[12] ADIMY M,CHEKROUN A,TOUAOULA T M. Age-structured and delay differential-difference model of hematopoietic stem cell dynamics[J]. Discrete Continuous Dynamical Systems-Series B, 2015,20(9):1-27.
[13] DALE D C,MACKEY M C. Understanding,treating and avoiding hematological disease:better medicine through mathematics?[J]. Bulletin of Mathematical Biology, 2014,77(5):739-757.
[14] CLAPP G,LEVY D. A review of mathematical models for leukemia and lymphoma[J]. Drug Discovery Today Disease Models, 2015,16:1-6.
[15] CRAIG M,HUMPHRIES A R,MACKEY M C. A mathematical model of granulopoiesis incorporating the negative feedback dynamics and kinetics of G-CSF/neutrophil binding and internalisation[J]. Bulletin of Quantitative Biology, 2016,78(6):1-54.
[16] ADIMY M,ANGULO O,MARQUET C,et al. A mathematical model of multistage hematopoietic cell lineages[J]. Discrete and Continuous Dynamical System-Series B, 2014,1(1):1-26.
[17] BUSSE J E,GWIAZDA P,MARCINIAK-CZOCHRA A. Mass concentration in a nonlocal model of clonal selection[J]. Journal of Mathematical Biology, 2014(1):1-33.
[18] RADULESCU I,CANDEA D,HALANAY A. Optimal control analysis of a leukemia model under imatinib treatment[J]. Mathematics & Computers in Simulation, 2016,121:1-11.
[19] ROEDER I,LOEFFLER M. A novel dynamic model of hematopoietic stem cell organization based on the concept of within-tissue plasticity[J]. Experimental Hematology, 2002,30(8):853-861.
[20] BACH E,ZERJATKE T,HERKLOTZ M,et al. Elucidating functional heterogeneity in hematopoietic progenitor cells:a combined experimental and modeling approach[J]. Experimental Hematology, 2014,42(9):1-17.
[21] EMA H,UCHINOMIYA K,MORITA Y,et al. Repopulation dynamics of single hematopoietic stem cells in mouse transplantation experiments:importance of stem cell composition in competitor cells[J]. Environmental Pollution, 2016,192(2):305-414.
[22] VAN LIEDEKERKE P,PALM M,JAGIELLA N,et al. Simulating tissue mechanics with agent-based models:concepts,perspectives and some novel results[J]. Computational Particle Mechanics, 2015,2(4):401-444.
[23] SHAHRIYARI L,KOMAROVA N L. Symmetric vs. asymmetric stem cell divisions:an adaptation against cancer?[J]. PLoS One, 2013,8(10):e76195.
[24] TRAULSEN A,LENAERTS T,PACHECO J M,et al. On the dynamics of neutral mutations in a mathematical model for a homogeneous stem cell population[J]. Journal of the Royal Society Interface, 2013,10(79):142.
[25] WOJDYLA T,GLAUBACH T,COREY S,et al. Application of the stochastic moran model of population genetics to understanding the timing of a driver mutation in myelodysplastic syndrome (MDS)[C]∥Proceedings of the 19th IFAC World Congress, 2014:763-764.
[26] BONORA M,PINTON P,ITO K. Mitochondrial control of hematopoietic stem cell balance and hematopoiesis[J]. Frontiers in Biology, 2015,10(2):117-124.
[27] MACLEAN A L,KIRK P D,STUMPF M P. Cellular population dynamics control the robustness of the stem cell niche[J]. Biology Open, 2015,4(11):1420-1426.
[28] HYRIEN O,PESLAK S,YANEV N,et al. Stochastic modeling of stress erythropoiesis using a two-type age-dependent branching process with immigration[J]. Journal of Methematical Biology, 2015,70(7):1485-1521.
[29] EYMARD N,KURBATOVA P. Hybrid models in erythropoiesis and in megakaryopoiesis[J]. Mathematical Model of Natural Phenomena, 2015,10(1):48-63.
[30] KRINNER A,ROEDER I,LOEFFLER M,et al. Merging concepts-coupling an agent-based model of hematopoietic stem cells with an ODE model of granulopoiesis[J]. BMC Systems Biology, 2013,7(1):2068-2078.
[31] MEI Y,ABEDI V,CARBO A,et al. Multiscale modeling of mucosal immune responses[J]. BMC Bioinformatics, 2015,16(z12):S2.
[32] WANG Z,BUTNER J D,CRISTINI V,et al. Integrated PK-PD and agent-based modeling in oncology[J]. Journal of Pharmacokinetics & Pharmacodynamics, 2015,42(2):179-189.
[33] LEI J,LEVIN S A,NIE Q. Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation[J]. Proceedings of the National Academy of Science of the United States of America, 2014,111(10):E880-887.
【責(zé)任編輯: 李艷】
Research Progress on Modeling and Simulation of Hematopoietic System
ZhuXiuwei,JiangYunfeng,YuWenlei,ChenLiangliang,LuLuyao
(Department of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China)
A review of the research on mathematical modeling of hematopoietic system is presented, introducing the basic structure, mathematical features and the latest applications of various models, comparing their advantages and disadvantages, and discussing the future development trend as well.
hematopoietic system; mathematical modeling; population based models; individual based models; blood diseases
2016-05-13
國(guó)家自然科學(xué)基金資助項(xiàng)目(61302130); 浙江省教育廳科技計(jì)劃資助項(xiàng)目(Y201431901); 溫州市公益性科技計(jì)劃項(xiàng)目(G20150022).
朱秀委(1982-),男,浙江義烏人,溫州醫(yī)科大學(xué)講師,博士.
2095-5456(2016)04-0272-05
R 552
A