• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Uncertainty profile for NIR analysis of tanshinone Icontent in tanshinone extract powders

    2016-09-14 08:47:52ZhongXueBingXuChanYangXinWangFeiSunXinYuanShiYanJiangQiao
    Traditional Medicine Research 2016年3期

    Zhong Xue,Bing Xu,2,Chan Yang,Xin Wang,Fei Sun,Xin-Yuan Shi,2,Yan-Jiang Qiao,2*

    1Beijing University of Chinese Medicine,Beijing,100029,China.2 Beijing Key Laboratory of TCM Manufacturing Process Control and Quality Evaluation,Beijing Municipal Science&Technology Commission,Beijing,100029,China.

    Introduction

    Since 2004,the United States Food and Drug Administration (FDA) has encouraged the pharmaceutical industry to apply process analytical technology(PAT)tools to strengthen the understanding of the manufacture processes and to obtain the quality information of drug products[1].The near infrared(NIR)spectroscopy as a fast and non-destructive PAT technique has gained more and more attention in recent years.And many studies had been reported about NIRS successfully applied in quality control of Chinese herbal medicines(CHMs)[2-4].

    With the development of modern analytical technology,tremendous amount of chemical and physical data generated by near infrared was calling for multivariate data analysis methods.Variable selection techniques have played a key role in data-driven approaches.Liang and his co-workers confirmed the importance and significance of variable selection in complex analytical systems[5,6].Variable selection can improve the prediction performance of the NIR analytical method,provide faster and more cost-effective predictors by reducing the model complexity and computation load and provide a better understanding and insight into the relationship between the NIR spectra and the interested quality attributes of the CHMs[7,8].

    However,except for the advantage of NIR method for CHMs,it has high detection limit and low sensitivity[9,10].And CHMs have low active pharmaceutical ingredients(API).So,a robust NIR model should be developed and validated for determination of API in a pharmaceutical intermediate or product.Conventionally,a NIR analysis model was evaluated according to traditional chemometrics criteria,such as the correlation coefficients(r)of calibration and validation,the root mean square error of calibration(RMSEC),the root mean square error of cross validation(RMSECV)and the root mean square error of prediction(RMSEP),etc.However,there is no information about the suitability of these criteria for achieving the method’s intended purpose and no evaluation of the reliability of the analytical results that will be produced by them in the method’s future routine applications.In addition,it does not give information about the range of concentration over which the method is providing results of acceptable accuracy.Thus in 2004,the accuracy profile(AP)was brought forward by the SFSTP(La Societé Francaise des Sciences et Techniques Pharmaceutiques)[11-13],and was used in the many NIR analysis method[14-16].

    The AP method is based on the combination in the same graph of the tolerance interval and the acceptable limits,and circumvents some of drawbacks of the traditional validation procedures.Compared with the traditional approach,the AP approach not only simplifies the validation process of an NIR analytical procedure,but also allows monitoring the utilization risk for CHMs.

    In order to guarantee the quality of the results of the analytical method for CHMs,the measurement uncertainty becomes an important parameter for assessing the performance of an analytical method so as to be considered as the analytical validation.In 2013,Saffaj introduced a novel method to estimate the measurement uncertainty [17]. Meanwhile the uncertainty profile (UP) was recommend for assessment of the validity of analytical procedures as well as estimation of the uncertainty of chemical measurements without any extra effort.The assessment of measurement uncertainty was achieved by the β-content tolerance interval,and then the uncertainty profile was built to validate each investigated concentration level of the analytical method.The UP approach that gathered validation and uncertainty in the same time allows the analyst to control the risk of the analytical method in routine use and to have full information about its performance.

    Salvia miltiorrhiza is one of the most popular CHMs and has a huge consumer market for the pharmaceutical and health care products in China.Tanshinone I is one of the main contents in tanshinone extract of Salvia miltiorrhiza.To the best of our knowledge, there are no studies about the determination of tanshinone I in Salvia miltiorrhiza extract by NIRS.In the present study,the tanshinone I content in Salvia miltiorrhiza extract was determined by NIR method combined with different variable selection methods.And the UP approach was applied for the evaluation and quality control of the NIR analytical method for tanshinone I content in tanshinone extract.

    Theory

    Uncertainty computation

    In accordance with the LGC/VAM protocol[18]and recommendations form the ISO/DTS 21748 guide[19],a basic model for the uncertainty estimation of the measured Y,can be expressed by Eq.(1):

    Whereis the reproducibility standard deviation;)is the uncertainty associated with the bias of the method;andis the sum of all of the effects due to other deviations.

    When Feinberg[20]has used the concept of accuracy profile and validation data to estimate the measurement uncertainty,he has ignored the third term of Eq.(1).Well,uncertainty can be expressed by the following equation:

    The accuracy profile can be built using the tolerance interval(Feinberg,2007).This interval is equal to:

    Where,k is a coverage factor.The value of the factor k is based on the level of confidence desired.For the confidence level of 95%,k approximates 2.t(ν)is the(1+γ)/2 quantile of the Student’s t distribution with νdegrees of freedom.For balanced data set,νcan be estimated by the Satterthwaite formula[22].Thus it can be easily verified that:

    And the mathematical model that brings the uncertainty and the tolerance interval is given by:

    Note that:

    By virtue of Eq.(5),we can write that

    Finally,the uncertainty can be expressed as

    h is the higher limit of the tolerance interval,and l is the lower limit of the tolerance interval.

    β-content tolerance intervals calculation by the Hoffman-Kringle approach

    To calculate the uncertainty limits expressed in Eq.(8),the β-content tolerance intervals via the Hoffman-Kringle approach were used.This strategy was based on the Modified Large Simple(MLS)procedure[23].

    To illustrate this methodology in balanced one-way random model,it is defined that:

    is the between conditions variance andis the within conditions variance(repeatability).They can be easily got by ANOVA analysis through the validation data.m isthe number of series,n is the number of independent replicates per series.

    Wecan write

    The MLS upper confidence limit foris given by:

    A tolerance interval at the confidence levelγis thus given by:

    Where Z(1+β)/2 is(1+β)/2 quantile of the standard normal distribution.

    Uncertainty profile building procedure

    After calculating the uncertainty through Eq.(1),we have used the following formula to build the uncertainty profile.

    is the estimate of the mean results.lis the acceptance limits.

    The overall uncertainty limits can be written as follows:

    is the true value or the reference value.H is higher uncertainty limit.L is lower the uncertainty limit.

    The proposed uncertainty profile building procedures are as follows:

    1)Set acceptance limits(-λ,+λ).

    2) Determination of the uncertainty for each concentration level using Eq.(1).

    3)Construct the uncertainty limits according to Eq.(14)and make 2D-graphical representation results for the acceptability and uncertainty limits.

    4)Compare the interval of uncertainty(L,U)to the acceptance limits(-λ,+λ)

    5)If(L,U)falls completely within(-λ,+λ),the method is accepted;otherwise,the method is not accepted.

    Experimental

    Materials

    The Salvia miltiorrhiza extracts were purchased from Xi’an Honson Biotechnology Co.,Ltd.(Xi’an,China),Xi’an Changyue Phytochemistry Co.,Ltd(Xi’an,China)and Shanxi Undersun Bimedtech Co.,Ltd,and others were self-produced.The tanshinone I standard(lot number:150105)was purchased from Beijing Fang Cheng Biological Technology Co.,Ltd.(Beijing,China).HPLC grade acetonitrile and phosphoric acid were purchased from Fisher Scientific(USA).And the pure water was purchased from Wahaha Co.,Ltd.(Hangzhou,China).

    Spectroscopic data

    The NIR spectra were collected in integrating sphere diffuse mode with an Antaris Nicolet FT-NIR system(Thermo Fisher Scientific Inc.,USA).Each sample spectrum was the result of average 64 scans with the resolution 8 cm-1 between 10000 and 4000 cm-1 at ambient temperature.A background spectrum was taken daily in air.All NIR spectra were collected and archived using the Thermo Scientific Result software.

    HPLC analysis

    The reference method used for the tanshinone I determination was HPLC assay recommended by the Chinese Pharmacopoeia(Ch.P.,2010 Edition).An Agilent 1100 HPLC apparatus equipped with a quaternary solvent delivery system,a DAD detector,an auto sampler and the HP workstation for data processing was used.The separation was performed by the reverse phase chromatography on an Agilent XDB C18 column(4.6× 250 mm,5μm)with gradient elution at 25?C.The mobile phase A is acetonitrile and the mobile phase B is phosphoric acid water(0.026%).The elution procedures are as follows:0~25min,60%~90%A; 25~30min,90%~90%A;30~31min,90%~60%A;31~40min,60%~60%A.The flow rate was 1.2 mL·min-1 and the detection wavelength was 270 nm.

    The samples after NIR scanning were dissolved by methanol properly.Then the solution was filtered through a Millipore membrane filter with an average pore diameter of 0.45μm before being injected into the HPLC system.

    Calibration and validation protocols

    4 g of tanshinone powder extract sample was weighed and was then directly measured by NIR under the conditions specified in Section 3.2.And a total of 102 samples were used in the calibration set.

    The validation protocol used the“6×3×3” full factorial experimental design. Six different concentration levels for tanshinone I,i.e.1.18%,2.55%,5.02%,9.40%,15.16%and 19.84%(w/w),were investigated.And each concentration level was performed in 3 replicates on 3 different days,resulting in 54 samples in the validation set.And all the validation samples were from different batches of tanshinone extract in the calibration set.

    Data Processing

    Different spectra pre-processing methods were used and compared to build the PLS model.Multiplicative signal correction(MSC)and standard normal variate(SNV)were used to eliminate the impact of light scattering generated by the uneven distribution of the particles size.The first derivative(1st)and second derivative(2nd)treatments for spectral data were to eliminate the spectral baseline drift,strengthen band characteristics and overcome overlapping bands.The Savitzky-Golay (S-G) smoothing and wavelet de-nosing of spectra(WDS)were used to effectively smooth the high frequency noise,improve the signal to noise ratio and reduce the noise impact.

    After spectroscopy pretreatment,different variable selection methods such as interval partial least square(iPLS)[24],synergy interval partial least square(SiPLS),uninformative variables elimination(UVE)[25],successive projections algorithm(SPA)[26,27]and competitive adaptive reweighted sampling(CARS)[28]were used to select sensitive variables.

    Software

    SIMCA-P 11.5(Umetrics,US)and Unscrambler 7.0(CAMO,Norway)softwares were used to perform spectral pretreatments.The calibration models based on PLS (Partial Least Squares)regression were developed on Matlab 7.0(Mathwork,USA)with PLS Toolbox 2.1(Eigenvector Research Inc.,USA).The iToolbox used to run iPLS and SiPLS was downloaded from http://www.models.kvl.dk/.The codes for both UVE and CARS algorithms are publicly available at http://code.google.com/p/carspls.A graphical user interface for SPA is available at http://www.ele.ita.br/~kawakami/spa/.The uncertainty calculation was realized using homemade programs based on Matlab 7.0.These programs were compiled in the form of Matlab function files according to the principles and steps described in Section 2.The inputs are the NIR predicted values and reference analysis values at each concentration of the validation experiments,and the outputs are directly the uncertainty limits.

    Results and discussion

    Quantitative analysis of tanshinone I by HPLC method

    For quantitative consideration,calibration curves based on the concentration range from 0.18 to 39.58(%,w/w)for tanshinone I were established upon 9 consecutive injections of different concentrations.Regression equation calibrated was y=241.94 x+6.0117(r=0.9999,n=9)with y being the peak area in mAU and x being the concentration.

    NIR method development

    The 102 samples from the calibration protocol described in Section 3.5 were divided into the calibration set(68 samples)and the validation set(34 samples)by the Kennard-Stone(K-S)method.The following parameters were calculated to evaluate the success of model performance:the r for both calibration and validation sets,RMSEC,RMSECV,RMSEP and RPD.When the r value is closer to 1,the model developed is better.And the smaller values of RMSEC,RMSECV and RMSEPalso indicated that theNIRS method had good quantitative performance.In addition,for quantitative considerations,the RPD value needs to be greater than 3.

    Table 1 Comparison of different spectra data preprocessing methods

    Spectra pretreatment

    Different spectral pretreatment methods were investigated in order to improve the prediction ability of NIR method.As seen in Table 1,the NIR spectra with SNV preprocessing are found to bear the good capability in both calibration and validation.

    Variable selection

    After spectroscopy pretreatment,iPLS,SiPLS,UVE,SPA,CARS algorithms were used to select sensitive variables, eliminate the redundant information,extracting useful information about the tanshinone I and improve the PLS model performance.

    The iPLS algorithm was applied to calibration data,the raw spectrum was divided equally into different numbers of sub-intervals from 5 to 40.The optimal interval number was chosen according to the lowest RMSECV.As seen in Fig.1,the favorite number of interval is 16,and the corresponding sub-interval selected is 1699-1814 nm.

    Figure 1 Results of the iPLS and SiPLS with different sub-interval numbers.

    For the SiPLSalgorithm,the number of combination of intervals was set to 2 and 3,respectively.And the result is shown in Fig.1.We can see that the optimal interval number was 35 when the number of combination was set at 3.The selected variables corresponded to 1113-1134 nm,1283-1310 nm and 1693-1743 nm.

    As for the CARS method,the group number for cross validation was set at 5,and the number of Monte Carlo sampling runs was set at 50,and the pretreatment method was mean centering.Result of the CARS method for tanshinone I related variables selection is displayed in Fig.2.Fig.2(a)indicates that the changes of spectral variables are selected in the process of variable selection.Fig.2(b)shows the trend of RMSECV values during the process of variable selection.It could be seen that with the increasing of the numbers of sampling, the selected spectral variables were decreased gradually,while the RMSECV values decreased first and then increased,indicating that the variables selection process eliminated useless or redundant variables first and then gradually eliminated useful variables.Fig.2(c)reveals the changes of the spectral regression coefficients during the process of variables selection and the different colorful lines are different variables for selection.The position of“★”corresponds to 35 sampling runs as shown in the Fig.2(c).And a total of 15 spectral variables are retained for 35 sampling runs as shown in the Fig.2(a).

    The result of SPA for tanshinone I related variables selection is displayed in Fig.3.When the numbers of variables for model increased from 2 to 21,the root mean square error(RMSE)values of tanshinone I content decreased rapidly,suggesting that the PLS model should contain at least 21 useful spectral variables.When modeling variables number continued to increase,the RMSE values changed smoothly.Therefore,using the SPA variable selection method,a total of 21 spectral variables was finally retained.

    Figure 2 Results of the CARS method on tanshinone Ispectra.

    Figure3 Results of the SPA method on tanshinone Ispectra.

    As for the UVE,1557 random noise variables were added to the spectral matrix,where the number of noise variables was the same as the number of variables in the raw spectrum.And 99%of the largest absolute value of random noise variable stability was selected as the threshold of variables selection.Fig.4 shows the result of UVE for tanshinone I related variables selection on spectrum.The left side of this graph represented spectral variables,and random noise variables were put in the right side,where the vertical line was the dividing line.The horizontal medium dashed lines were the upper and lower thresholds for UVE variables selection.Variable stability values of spectral variables beyond the horizontal medium dashed lines would be as useful information and the corresponding variables was retained. While the spectral variables between the two horizontal medium dashed lines would be useless or redundant information to be removed.After UVE variables selection,a total of 473 spectral variables were retained.

    Models building and selection

    After tanshinone I related variables selection on the SNV preprocessed NIR spectra,PLS models were established for different variables selection methods.As seen from Table 2,the UVE method is superior to other variables selection methods and is used for building the PLS models.

    Figure 4 Results of the UVE method on tanshinone Ispectra.

    Uncertainty assessment and method validation

    The results of predicted concentrations of validation samples and the uncertainty were shown in Table 3.To compute the β-content, γ-confidence tolerance intervals and build the uncertainty profile,we opted for the 4-6-λrule proposed by the FDA for the validation of bioanalytical methods[29].And Hoffman and Kringle had translated this rule intoβ=66.7%andγ=90%[24,30,31].Due to the quality control of Chinese herbal medicines is similar to that of biological products,the acceptance limits(-λ,+λ)were set at±20% for the validation of the NIR analysis of tanshinone Icontent in the tanshinone extract[32,33].

    As shown in the Table 3,with the decrease of tanshinone I concentrations,the expanded uncertainty and the uncertainty limits become larger.This coincided with fact that the total error(i.e.the systematic error and random error)was often large at the relatively low concentrations.However,the uncertainty limits did not exceed the acceptance limits settled at±20%for all concentration levels,including the lowest one(1.18%)as exposed in the Fig.5.That indicated that the accuracy and uncertainty of the developed NIR method were accepted over the concentration range studied.In other words,the NIR method for analyzing tanshinone I content in tanshinone extract can be considered as valid and reliable within the investigated concentration range.

    Figure 5 Uncertainty profile for NIR determination of tanshinone I content.

    Table 2 PLS results for different variables selection methods after data preprocessing

    Table 3 Uncertainty evaluation for the validation results

    Table 4 Uncertainty evaluation for the validation results without UVE

    The uncertainty without UVE

    To prove the advancement of the UVE variable selection for the NIR method,the uncertainty and UP without UVE variables selection of the NIR method completed.The result was shown in table 4 and Fig.6.As shown in the table 4,the uncertainty limits in the level 1.18(%)was beyond the acceptable limit,so the decision of the method at the level 1.18(%)was invalid and that result will indicate the method at the level 1.18 (%)was not acceptable.From the comparison of Fig.6 and Fig.5,marked differences were visualized.The uncertainty at the level 5.02(%)in the Fig.6 was much larger than the Fig.5.All this showed that the NIR data after UVE variables selection become more effective,and the NIR method after UVE selection variables become more accurate and reliable.

    Figure 6 Uncertainty profile without UVE.

    Conclusion

    The development, uncertainty assessment and validation of the NIR method for quantification of tanshinone Icontent in Salvia miltiorrhiza extract were successfully accomplished. Different variables selection methods were compared to eliminate the redundant information,extract useful features of tanshinone I and improve the model performance.Finally,PLSalgorithms coupled with the UVE method showed the outstanding calibration and prediction performance.Then a global strategy based on the β-content tolerance interval was applied for estimation of measurement uncertainty.After that,the UP approach was constructed to evaluate the performance of NIR method.Results demonstrated the accuracy and reliability of the established NIR method for determination of tanshinone Icontent over the range of all concentration levels studied.

    Conflict of Interests

    The authors declare that there is no conflict of interests regarding the publication of this paper.

    Acknowledgement

    This work is supported by Beijing Natural Science Foundation(No.7154217)the Scientific Research Program of Beijing University of Chinese Medicine(No.2015-JYB-XS103)and the Joint Development Program Supported by Beijing Municipal Education Commission-Key Laboratory Construction Project(Study on the Integrated Modeling and Optimization Technology of the Chained Pharmaceutical Process of Chinese Medicine Products.

    1.FDA(Food and Drug Administration),Guidance for industry:PAT—A Framework for Innovative Pharmaceutical Development,Manufacturing and Quality Assurance,2004.

    2.Jiang Y,David B,Tu PF,et al. Recent analytical approaches in quality control of traditional Chinese medicines—A review,Anal Chim Acta 2010,657(1):9-18.

    3.Wu ZS,Xu B,Du M,et al.Fourier transform mid-infrared (MIR) and near-infrared (NIR)spectroscopy for rapid quality assessment of Chinese medicine preparation Honghua Oil,J Pharm Biomed Anal 2008,46(3):498-504.

    4.Xu B,Wu ZS,Lin ZZ,et al.NIR analysis for batch process of ethanol precipitation coupled with a new calibration model updating strategy,Anal Chim Acta 2012,720(1):22-28.

    5.Li HD,Liang YZ,Long XX,et al.The continuity of sample complexity and its relationship to multivariate calibration:a general perspective on first-order calibration of spectral data in analytical chemistry,Chemometr Intell Lab Syst 2013,122(5):23-30.

    6.Yun YH,Liang YZ,Xie GX,et al.A perspective demonstration on the importance of variable selection in inverse calibration for complex analytical systems, Analyst 2013, 138(21):6412-6421.

    7.Lorber A, Kowalski BR. The effect of interferences and calbiration design on accuracy:implications for sensor and sample selection,J Chemometr 1988,2(1):67-79.

    8.Guyon I,Elisseeff A.An introduction to variable and feature selection,JMach Learn Res 2003,3(6):1157-1182.

    9.Swarbrick B,Process analytical technology:a strategy for keeping manufacturing viable in Australia,Vib Spectrosc 2007,44(1):171-178.

    10.Luypaert J,Massart DL,Heyden YV.Heyden,Near-infrared spectroscopy applications in pharmaceutical analysis,Talanta 2007,72(3):865-883.

    11.Hubert Ph,Nguyen-Huu JJ,Boulanger B,et al.Harmonization of strategies for the validation of quantitative analytical procedures:A SFSTP proposal—part I,J Pharm Biomed Anal 2004,36(3):579-586.

    12.Hubert Ph,Nguyen-Huu JJ,Boulanger B,et al.Harmonization of strategies for the validation of quantitative analytical procedures A SFSTP proposal–Part II,J Pharm Biomed Anal 2007,45(1):70-81.

    13.Hubert Ph,Nguyen-Huu JJ,Boulanger B,et al.Harmonization of strategies for the validation of quantitative analytical procedures A SFSTP proposal–Part III,J Pharm Biomed Anal 2007,45(1):82-96.

    14.Schaefer C,Clicq D,Lecomte C,et al.A Process Analytical Technology(PAT)approach to control a new API manufacturing process:Development,validation and implementation.Talanta 2014,120(4):114-125.

    15.Tomuta I, Rus L, Iovanov R, et al.High-throughput NIR-chemometric methods for determination of drug content and pharmaceutical properties of indapamide tablets.JPharm Biomed Anal 2013,84(5):285-292

    16.Fonteyne M,Arruabarrena J,de Beer J,et al.NIR spectroscopic method for the in-line moisture assessment duringdrying in a six-segmented fluid bed dryer of a continuous tablet production line:Validation of quantifying abilities and uncertainty assessment,JPharm Biomed Anal 2014,100c(21):21-27.

    17.Saffaj T,Ihssane B,Jhilal F,et al.An overall uncertainty approach for the validation of analytical separation methods,Analyst 2013,38(16):4677-4691.

    18.Barwick VJ,Ellison LR.VAM Project 3.2.1,Development and Harmonization of Measurement Uncertainty Principles. Part D: Protocol Uncertainty for Evaluation from Validation Data,January 2000.Report No.:LGC/VAM/1998/088.

    19.ISO/DTS 21748,Guide to the use of repeatability,reproducibility and trueness estimates in measurement uncertainty estimation,ISO,Geneva,2004.

    20.Feinberg M,Boulanger B,DewéW,et al.New advances in method validation and measurement uncertainty aimed at improving the quality of chemical data,Anal Bioanal Chem 2004,380(3):502-514.

    21.Feinberg M.Validation of analytical methods based on accuracy profiles,JChromatogr A 2007,1158(1-2):174-183.

    22.Mee R, β-Expectation and β-Content Tolerance Limits for Balanced One-Way ANOVA Random Model,Technometrics 1984,26(26):251-254.

    23.Hoffman D,Kringle R.Two-sided tolerance intervals for balanced and unbalanced random effects models,J.Biopharm Stat 2005,15(2):283-293.

    24.Norgaard L,Saudland A,Wagner J,et al.Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy,Appl Spectrosc 2000,54(3):413-419.

    25.Centner V,Massart DL,deNoord OE,et al.Elimination of uninformative variables for multivariate calibration.Anal Chem 1996,68(21):3851-3858.

    26.Araújo MCU,Saldanha TCB,Galvāo RKH,et al.The successive projections algorithm for variable selection in spectroscopic multicomponent analysis,Chemometr Intell Lab Syst.2001,57(2):65-73.

    27.Galvāo RHK,Araújo MCU,Fragoso WD,et al.A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm,Chemometr Intell Lab Syst 2008,92(1):83-91.

    28.Li H,Liang Y,Xu Q,et al,Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration,Anal Chim Acta 2009,648(1):77-84

    29.Food and Drug Administration,Guidance for Industry,Bioanalytical Methods Validation,2001.

    30.Hoffman D,Kringle R.A Total Error Approach for the Validation of Quantitative Analytical Methods,Pharma Research 2007,24(6):1157-1164.

    31.Hoffman D. Statistical Considerations for Assessment of Bioanalytical Incurred Sample Reproducibility,AAPSJ2009,11(3):570-580.

    32.International Conference on Harmonization(ICH),Validation of analytical procedures:text and methodology,Q2(R1),2005.

    33.Saffaj T,Ihssane B.Uncertainty profiles for the validation of analytical methods,Talanta 2011,85(3):1535-1542.

    村上凉子中文字幕在线| 搡女人真爽免费视频火全软件 | 国产探花在线观看一区二区| 狂野欧美激情性xxxx| 成年免费大片在线观看| aaaaa片日本免费| 夜夜夜夜夜久久久久| 成年女人毛片免费观看观看9| 欧美黄色淫秽网站| 99久久精品国产亚洲精品| 日本撒尿小便嘘嘘汇集6| 色视频www国产| 法律面前人人平等表现在哪些方面| 欧美大码av| h日本视频在线播放| 搡老岳熟女国产| 99国产综合亚洲精品| 亚洲欧美日韩高清专用| a级一级毛片免费在线观看| 国内精品久久久久久久电影| 免费av观看视频| 久久久久久人人人人人| 亚洲av日韩精品久久久久久密| 久久久久国内视频| 亚洲av成人精品一区久久| 在线观看66精品国产| 在线观看一区二区三区| 精品久久久久久久末码| 精品99又大又爽又粗少妇毛片 | 国产探花在线观看一区二区| 97碰自拍视频| 少妇裸体淫交视频免费看高清| 美女 人体艺术 gogo| 成人欧美大片| av中文乱码字幕在线| 成人特级av手机在线观看| 麻豆成人午夜福利视频| 日韩大尺度精品在线看网址| 成人av一区二区三区在线看| 九九热线精品视视频播放| 久久久国产成人免费| 久久久精品大字幕| 日本黄大片高清| 88av欧美| 麻豆成人午夜福利视频| 久久精品国产综合久久久| 成人永久免费在线观看视频| 日韩精品中文字幕看吧| 欧美在线一区亚洲| 丁香欧美五月| 日韩欧美 国产精品| ponron亚洲| 国产三级在线视频| 美女高潮喷水抽搐中文字幕| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩卡通动漫| 午夜激情福利司机影院| 尤物成人国产欧美一区二区三区| 香蕉久久夜色| 欧美三级亚洲精品| 色在线成人网| 亚洲精品美女久久久久99蜜臀| 国产伦人伦偷精品视频| 麻豆成人午夜福利视频| 国产久久久一区二区三区| 怎么达到女性高潮| 91九色精品人成在线观看| 国产黄片美女视频| 国产精品久久久久久亚洲av鲁大| 亚洲av成人av| 男女视频在线观看网站免费| 啪啪无遮挡十八禁网站| 国产精品久久久久久人妻精品电影| 亚洲最大成人手机在线| 亚洲午夜理论影院| 国产一区在线观看成人免费| 亚洲七黄色美女视频| 精品午夜福利视频在线观看一区| 国产视频一区二区在线看| 精品国产美女av久久久久小说| 18禁裸乳无遮挡免费网站照片| 国产aⅴ精品一区二区三区波| 日韩中文字幕欧美一区二区| www.999成人在线观看| 99在线视频只有这里精品首页| 国产av麻豆久久久久久久| 日韩免费av在线播放| 久久久久久大精品| 人妻久久中文字幕网| 成年版毛片免费区| 88av欧美| 成年免费大片在线观看| 日韩精品中文字幕看吧| 亚洲激情在线av| 男人的好看免费观看在线视频| 国产在线精品亚洲第一网站| 嫩草影视91久久| 免费大片18禁| 99久久成人亚洲精品观看| 午夜两性在线视频| 90打野战视频偷拍视频| 亚洲久久久久久中文字幕| 亚洲专区国产一区二区| 久久久久久国产a免费观看| 一级黄片播放器| 一本综合久久免费| 精品国产美女av久久久久小说| 免费观看的影片在线观看| 国产色婷婷99| 欧美日本亚洲视频在线播放| 欧美激情在线99| 日本黄色片子视频| a在线观看视频网站| 又粗又爽又猛毛片免费看| 99国产极品粉嫩在线观看| 亚洲美女视频黄频| 亚洲av电影在线进入| 国产亚洲av嫩草精品影院| 亚洲不卡免费看| 亚洲最大成人中文| 国产男靠女视频免费网站| 国产黄a三级三级三级人| 亚洲精品久久国产高清桃花| 欧美一级毛片孕妇| 99久久99久久久精品蜜桃| 两个人的视频大全免费| 一进一出好大好爽视频| 搡老妇女老女人老熟妇| 国产成人影院久久av| 可以在线观看的亚洲视频| 亚洲在线观看片| 日韩免费av在线播放| 丰满乱子伦码专区| 日本免费a在线| 免费大片18禁| 国产精品美女特级片免费视频播放器| 好男人在线观看高清免费视频| 国产v大片淫在线免费观看| 在线播放无遮挡| 中文字幕av成人在线电影| 男女床上黄色一级片免费看| 免费看十八禁软件| 亚洲av五月六月丁香网| 久久久久久人人人人人| 88av欧美| 桃红色精品国产亚洲av| xxxwww97欧美| 国产在线精品亚洲第一网站| 老司机深夜福利视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 成年女人看的毛片在线观看| 波多野结衣高清无吗| 日韩欧美一区二区三区在线观看| 99国产综合亚洲精品| 一级作爱视频免费观看| 最新美女视频免费是黄的| 欧美激情久久久久久爽电影| 国产男靠女视频免费网站| 成年女人永久免费观看视频| 亚洲成av人片免费观看| 亚洲精品乱码久久久v下载方式 | eeuss影院久久| 亚洲性夜色夜夜综合| 少妇人妻精品综合一区二区 | 老司机福利观看| svipshipincom国产片| 午夜视频国产福利| 老汉色∧v一级毛片| 国产精品av视频在线免费观看| 亚洲国产精品sss在线观看| 国产精品久久久久久精品电影| 男女之事视频高清在线观看| 日韩有码中文字幕| 午夜福利成人在线免费观看| 亚洲欧美精品综合久久99| 久久国产精品人妻蜜桃| 两性午夜刺激爽爽歪歪视频在线观看| 精品人妻1区二区| 欧美日韩中文字幕国产精品一区二区三区| 禁无遮挡网站| 色尼玛亚洲综合影院| 久久久久国产精品人妻aⅴ院| 亚洲精品一区av在线观看| 成人特级av手机在线观看| 成人av在线播放网站| 国产精品一区二区免费欧美| 欧美区成人在线视频| 午夜免费观看网址| 在线观看日韩欧美| www日本在线高清视频| 国产精品,欧美在线| 在线免费观看不下载黄p国产 | 午夜视频国产福利| 日韩欧美三级三区| 午夜福利成人在线免费观看| 精品一区二区三区人妻视频| 嫩草影院入口| 欧美乱码精品一区二区三区| 精品乱码久久久久久99久播| 最新在线观看一区二区三区| 12—13女人毛片做爰片一| 一个人免费在线观看电影| 淫妇啪啪啪对白视频| 村上凉子中文字幕在线| 熟女人妻精品中文字幕| 一区二区三区激情视频| 免费人成视频x8x8入口观看| 在线观看舔阴道视频| 国产蜜桃级精品一区二区三区| 热99re8久久精品国产| 欧美不卡视频在线免费观看| 亚洲性夜色夜夜综合| 中文在线观看免费www的网站| 亚洲av成人不卡在线观看播放网| 亚洲成av人片免费观看| 一个人看视频在线观看www免费 | 国产探花极品一区二区| 国产一区二区亚洲精品在线观看| 亚洲天堂国产精品一区在线| 男人舔女人下体高潮全视频| 亚洲一区高清亚洲精品| 日本免费一区二区三区高清不卡| 男人的好看免费观看在线视频| 久久精品亚洲精品国产色婷小说| 麻豆国产97在线/欧美| 日韩欧美在线二视频| 国产精品久久久久久亚洲av鲁大| 麻豆国产av国片精品| 99久久九九国产精品国产免费| 国产三级黄色录像| 真实男女啪啪啪动态图| 国内揄拍国产精品人妻在线| 国产单亲对白刺激| 一进一出抽搐gif免费好疼| 99国产精品一区二区蜜桃av| 韩国av一区二区三区四区| 国产欧美日韩一区二区三| xxxwww97欧美| 成人国产一区最新在线观看| 最近在线观看免费完整版| 欧美精品啪啪一区二区三区| 99国产综合亚洲精品| 亚洲在线观看片| 国内揄拍国产精品人妻在线| 久久精品国产99精品国产亚洲性色| 午夜福利在线观看免费完整高清在 | 男女下面进入的视频免费午夜| 可以在线观看的亚洲视频| av福利片在线观看| 日日干狠狠操夜夜爽| 99精品在免费线老司机午夜| 日韩欧美三级三区| 校园春色视频在线观看| 亚洲国产精品999在线| 在线观看免费午夜福利视频| 久久精品91蜜桃| 日本a在线网址| av专区在线播放| 91麻豆精品激情在线观看国产| 欧美中文日本在线观看视频| 国产精品久久久久久亚洲av鲁大| 亚洲人成电影免费在线| 亚洲精品在线美女| 欧美成人一区二区免费高清观看| 国产伦一二天堂av在线观看| 嫩草影院精品99| 国内精品久久久久精免费| 一区福利在线观看| 亚洲欧美精品综合久久99| 国产三级中文精品| 一进一出抽搐动态| 动漫黄色视频在线观看| 日本 欧美在线| 亚洲无线观看免费| a级毛片a级免费在线| 淫妇啪啪啪对白视频| 久久这里只有精品中国| 亚洲avbb在线观看| 3wmmmm亚洲av在线观看| 欧美一级毛片孕妇| 91av网一区二区| bbb黄色大片| 香蕉丝袜av| 日韩欧美国产在线观看| 男女做爰动态图高潮gif福利片| 国产精品美女特级片免费视频播放器| 99久久久亚洲精品蜜臀av| 性色avwww在线观看| 欧美激情久久久久久爽电影| 欧美性猛交╳xxx乱大交人| 久久久精品大字幕| 国产高清视频在线观看网站| 久久人妻av系列| 国产一区二区在线观看日韩 | 国产精品综合久久久久久久免费| 午夜精品在线福利| 一区二区三区激情视频| 午夜免费激情av| 亚洲色图av天堂| 国产精品精品国产色婷婷| 脱女人内裤的视频| 亚洲熟妇中文字幕五十中出| 天堂网av新在线| 搡女人真爽免费视频火全软件 | 国产精品影院久久| 国产麻豆成人av免费视频| 三级男女做爰猛烈吃奶摸视频| 观看美女的网站| 波多野结衣巨乳人妻| 一二三四社区在线视频社区8| 国产精品永久免费网站| 久久婷婷人人爽人人干人人爱| 欧美一级毛片孕妇| 亚洲自拍偷在线| x7x7x7水蜜桃| 波多野结衣高清无吗| 在线观看日韩欧美| 精品人妻偷拍中文字幕| 国产美女午夜福利| 少妇高潮的动态图| 久久精品综合一区二区三区| 九色国产91popny在线| 97人妻精品一区二区三区麻豆| 啪啪无遮挡十八禁网站| 久久精品亚洲精品国产色婷小说| 日本免费a在线| 亚洲成av人片在线播放无| 亚洲国产欧美人成| 人人妻人人看人人澡| 国产国拍精品亚洲av在线观看 | 精品国产亚洲在线| 午夜老司机福利剧场| 国产免费男女视频| 中文字幕熟女人妻在线| 日日摸夜夜添夜夜添小说| 精品国产三级普通话版| 99久久综合精品五月天人人| 午夜福利高清视频| 国产成人aa在线观看| 国产老妇女一区| av视频在线观看入口| 9191精品国产免费久久| 亚洲内射少妇av| 国产 一区 欧美 日韩| 亚洲国产精品sss在线观看| 51国产日韩欧美| 国产精品亚洲一级av第二区| 免费搜索国产男女视频| 熟妇人妻久久中文字幕3abv| 久久精品综合一区二区三区| 日日夜夜操网爽| avwww免费| 最新在线观看一区二区三区| 国产男靠女视频免费网站| 操出白浆在线播放| 老熟妇仑乱视频hdxx| 久久久久国内视频| 亚洲专区国产一区二区| 最近最新免费中文字幕在线| 国产探花极品一区二区| 极品教师在线免费播放| 精品久久久久久久人妻蜜臀av| 天堂动漫精品| 高潮久久久久久久久久久不卡| 香蕉av资源在线| 精品99又大又爽又粗少妇毛片 | 国产av麻豆久久久久久久| 色吧在线观看| 亚洲天堂国产精品一区在线| 热99在线观看视频| 欧美极品一区二区三区四区| 中文字幕人成人乱码亚洲影| 久久精品国产99精品国产亚洲性色| 日韩欧美国产一区二区入口| 一进一出抽搐动态| 又粗又爽又猛毛片免费看| 久久久国产成人免费| 动漫黄色视频在线观看| 免费观看的影片在线观看| 三级男女做爰猛烈吃奶摸视频| 91久久精品国产一区二区成人 | 精品国产三级普通话版| 国产精品久久电影中文字幕| 国产高清激情床上av| 亚洲精品456在线播放app | 一个人看视频在线观看www免费 | 亚洲av二区三区四区| 国产高清有码在线观看视频| 国产探花极品一区二区| 日日干狠狠操夜夜爽| 欧美精品啪啪一区二区三区| 日本免费a在线| 欧美高清成人免费视频www| 琪琪午夜伦伦电影理论片6080| 成人一区二区视频在线观看| 国产成人福利小说| 可以在线观看毛片的网站| 岛国视频午夜一区免费看| 久久久久精品国产欧美久久久| 丰满的人妻完整版| 精品久久久久久久久久免费视频| 成年女人永久免费观看视频| 亚洲一区二区三区不卡视频| 最近最新中文字幕大全免费视频| 久久国产精品影院| 亚洲最大成人手机在线| 免费在线观看影片大全网站| 亚洲人成电影免费在线| 嫩草影视91久久| 一级作爱视频免费观看| 国产乱人视频| 国内精品久久久久久久电影| 亚洲国产精品sss在线观看| 免费在线观看亚洲国产| 国产精品影院久久| 色视频www国产| 2021天堂中文幕一二区在线观| bbb黄色大片| 又粗又爽又猛毛片免费看| 麻豆国产av国片精品| 1000部很黄的大片| 国产欧美日韩一区二区精品| 老汉色∧v一级毛片| 最近在线观看免费完整版| 1000部很黄的大片| 51国产日韩欧美| 成人国产一区最新在线观看| 亚洲成a人片在线一区二区| 成人国产一区最新在线观看| 欧美丝袜亚洲另类 | 99国产极品粉嫩在线观看| 国产精品亚洲av一区麻豆| www日本黄色视频网| 亚洲第一电影网av| 岛国视频午夜一区免费看| 丁香六月欧美| 18禁美女被吸乳视频| 国产精品1区2区在线观看.| 午夜免费激情av| 99久久久亚洲精品蜜臀av| 免费在线观看成人毛片| 欧美bdsm另类| 国产久久久一区二区三区| 久久欧美精品欧美久久欧美| 在线看三级毛片| 亚洲欧美日韩无卡精品| 亚洲第一电影网av| 床上黄色一级片| 欧美国产日韩亚洲一区| 亚洲国产欧洲综合997久久,| 欧美日本视频| 夜夜爽天天搞| 亚洲中文字幕一区二区三区有码在线看| 国产麻豆成人av免费视频| 无遮挡黄片免费观看| 亚洲av电影不卡..在线观看| 久久中文看片网| 真人做人爱边吃奶动态| 亚洲av第一区精品v没综合| 变态另类成人亚洲欧美熟女| 99在线视频只有这里精品首页| av天堂在线播放| 91麻豆av在线| 欧美黑人欧美精品刺激| 欧美乱码精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 999久久久精品免费观看国产| 国产中年淑女户外野战色| 精华霜和精华液先用哪个| 级片在线观看| 午夜福利免费观看在线| 白带黄色成豆腐渣| 国产淫片久久久久久久久 | 少妇丰满av| 欧美大码av| 久久久久久久午夜电影| 婷婷亚洲欧美| 麻豆成人午夜福利视频| 亚洲精品日韩av片在线观看 | 精品人妻1区二区| 精品久久久久久成人av| 久久精品影院6| 国产伦一二天堂av在线观看| 性色avwww在线观看| 好男人电影高清在线观看| 特大巨黑吊av在线直播| 波多野结衣高清作品| 国产午夜精品论理片| 一区二区三区免费毛片| 97碰自拍视频| 在线看三级毛片| av天堂在线播放| 麻豆国产97在线/欧美| 一边摸一边抽搐一进一小说| 搡老熟女国产l中国老女人| 国产成人福利小说| 免费人成在线观看视频色| 国产精品香港三级国产av潘金莲| 少妇的丰满在线观看| 国产爱豆传媒在线观看| 免费观看的影片在线观看| 在线观看免费视频日本深夜| 91在线精品国自产拍蜜月 | 国产91精品成人一区二区三区| 在线播放国产精品三级| 一a级毛片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品成人久久久久久| 久久精品国产99精品国产亚洲性色| 日韩成人在线观看一区二区三区| 国产69精品久久久久777片| 人人妻人人澡欧美一区二区| 精品无人区乱码1区二区| 欧美又色又爽又黄视频| 非洲黑人性xxxx精品又粗又长| 99国产极品粉嫩在线观看| aaaaa片日本免费| 亚洲乱码一区二区免费版| 国产69精品久久久久777片| 无遮挡黄片免费观看| 国产v大片淫在线免费观看| 欧美在线黄色| 尤物成人国产欧美一区二区三区| or卡值多少钱| 小说图片视频综合网站| 国产视频内射| 国产91精品成人一区二区三区| 91在线观看av| 嫁个100分男人电影在线观看| 午夜免费成人在线视频| 国产又黄又爽又无遮挡在线| 免费大片18禁| 国内精品美女久久久久久| 国产精品久久久久久久久免 | 少妇裸体淫交视频免费看高清| 亚洲中文字幕日韩| 欧美中文日本在线观看视频| 国产精品一区二区三区四区久久| 在线十欧美十亚洲十日本专区| 1024手机看黄色片| avwww免费| 麻豆一二三区av精品| 亚洲精华国产精华精| 亚洲 国产 在线| 色尼玛亚洲综合影院| or卡值多少钱| 亚洲 欧美 日韩 在线 免费| 美女高潮的动态| 国产精品一区二区三区四区久久| www日本在线高清视频| av女优亚洲男人天堂| 在线观看一区二区三区| 中文字幕高清在线视频| 十八禁人妻一区二区| 国产午夜精品久久久久久一区二区三区 | h日本视频在线播放| 午夜激情福利司机影院| 免费电影在线观看免费观看| 久久精品国产亚洲av涩爱 | 午夜视频国产福利| 亚洲精品久久国产高清桃花| 国产午夜精品久久久久久一区二区三区 | 欧美日韩黄片免| 成年女人毛片免费观看观看9| 国产av不卡久久| 一个人看的www免费观看视频| x7x7x7水蜜桃| 深夜精品福利| 少妇高潮的动态图| 国内精品久久久久久久电影| 岛国视频午夜一区免费看| 欧美日韩瑟瑟在线播放| 国产美女午夜福利| 国产精品一及| 欧美精品啪啪一区二区三区| 熟女人妻精品中文字幕| 亚洲激情在线av| 两性午夜刺激爽爽歪歪视频在线观看| 最近最新免费中文字幕在线| 国产一区二区三区视频了| 中亚洲国语对白在线视频| 亚洲成a人片在线一区二区| 精品人妻偷拍中文字幕| 黄色片一级片一级黄色片| 亚洲真实伦在线观看| 成熟少妇高潮喷水视频| 亚洲片人在线观看| 成人18禁在线播放| 长腿黑丝高跟| 丁香六月欧美| 淫秽高清视频在线观看| 国产成+人综合+亚洲专区| 免费人成视频x8x8入口观看| 亚洲人成网站在线播放欧美日韩| 精品一区二区三区视频在线 | 精品久久久久久久末码| 国产午夜福利久久久久久| 51国产日韩欧美| 丁香欧美五月| 亚洲天堂国产精品一区在线| 亚洲国产欧美人成| 一个人看视频在线观看www免费 | 女同久久另类99精品国产91| 日韩有码中文字幕| 美女免费视频网站| 两个人看的免费小视频| 淫秽高清视频在线观看| 激情在线观看视频在线高清| 亚洲av免费高清在线观看| 此物有八面人人有两片| 特大巨黑吊av在线直播| 97超视频在线观看视频| 色综合婷婷激情| 成年人黄色毛片网站| 国内揄拍国产精品人妻在线|