• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Epigenetic regulations of hematopoietic stem cells ageing and the regulation of traditional Chinese medicine

    2016-09-14 08:24:20DaoZhengYangXinYuanLuanShuBinWang
    Traditional Medicine Research 2016年2期

    Dao-Zheng Yang*, Xin-Yuan Luan, Shu-Bin Wang

    1 School of Life Science, Shandong University, Jinan, China; 2 Department of Surgery, Tianjin Nankai Hospital,Tianjin, China.

    Introduction

    Adult stem cells play essential roles in tissue self-healing and regeneration. Accumulating evidence shows that ageing is associated with the decrease and dysfunction of adult stem cells, which is thus considered to be one of important hallmarks of mammalian ageing [1]. Hematopoietic stem cells(HSCs), as one of adult stem cells, have been well functionally characterized recently. The capacity of long-term self-renewal and differentiation makes HSCs able to generate all mature lymphoid and myeloid lineages [2], including erythrocytes, granulocytes,platelets, macrophages and B- and T-lymphocytes. In young adults, it was shown that around 1000 active HSCs are responsible for the generation of all blood cell types [3], indicating a powerful self-renewal and differentiation potential. However, functions of HSCs are impaired with age (Figure 1), especially its ability to maintain the balance between self-renewal and differentiation, which is of vital importance to blood system [4, 5]. Compaired with its younger counterparts,aged HSCs show several characteristic phenotypes,including increased number, homing defect, impaired engraftment potential and repopulating capacity, and increased output of myeloid-biased progeny [6-10].

    Figure 1 The characteristics of aged hematopoietic stem cells (HSCs).

    Epigenetic regulations, including DNA methylation,histone modifications and non-coding RNAs interference, encompasses all heritable changes in gene expression that are not due to changes in DNA sequences [11, 12]. Such mechanism controls gene expression mainly via regulating chromatin structure and status, playing an important role in determining cells fate and ontogeny. Various epigenetic alterations has been recognized as another hallmark of mammalian ageing [1]. In the field of HSCs ageing,evidence shows that HSCs are not protected from ageing. Instead, loss of epigenetic regulation at the chromatin level may drive both functional attenuation of cells, as well as other manifestations of ageing,including the increased propensity for neoplastic transformation [5].

    Traditional Chinese medicine (TCM) is a system of theories and therapies that was first documented in ancient Chinese classics dating back 2100 years.Epigenetics, combining genetics and environment,contributes to not only the stability of organisms but also their adaptability to the environment, which is consistent with the theory of human-environmental inter relation of TCM. Recently, epigenetics has been introduced to the area of TCM resulting in the hypothesis of an epigenetic role in the pharmacology of TCM prescriptions. Various traditional Chinese medicine has been shown to be safer and more effective for preventing cancer by targeting epigenetic landscape [13].

    In this review, we aim to conclude that the altered functional potential of HSCs controlled at the epigenome level with age, focusing largely on DNA methylation, histone modifications, the two most characterized epigenetic marks. In addition, we will also talk about the epigenetic role of TCM in the treatment of hematological malignancies.

    Epigenetic regulations and HSCs ageing

    DNA methylation and HSCs ageing

    DNA methylation is a potent epigenetic mark that promotes gene silencing. Methylation occurs at the 5-carbon position of cytosines (resulting in 5-methylcytosine or 5-mC) found in cytosine-phosphate-guanine dinucleotides (CpGs)through the action of the DNA methyltransferase(DNMT) family of proteins, including the de novo methyltransferases Dnmt3A and Dnmt3B and the maintenance methyltransferase Dnmt1.Dnmt1-deficient HSCs show self-renewal defects and decreased ability of multilineage hematopoiesis,indicating functions in both HSC self-renewal and differentiation [14, 15], while loss of Dnmt3A in HSCs impairs their differentiation and increases the number of bone marrow HSCs over serial transplantation [16].Interestingly, loss of Dnmt3B has minimal effects on adult HSCs function. However, a more severe block in differentiation occurred in HSCs when Dnmt3B was ablated combined with Dnmt3A. Furthermore, it was also reported that Dnmt3B has distinct functions, given that Dnmt3B accounts for some HSCs differentiation in the absence of Dnmt3A [17, 18].

    Apart from DNMT family, recently TET2 (the Ten-Eleven-Translocation 2), a member of TET family that encode enzymes modifying DNA by hydroxylating 5-methylcytosine (5mC) [19], has been shown to be essential to HSCs self-renewal and differentiation. Consistent with this, somatic loss-of-function mutations in TET2 are frequently found in patients with myeloid malignancies, for example myelodysplastic syndromes. TET2 loss leads to increased size of HSCs pool and TET2-deficient HSCs were shown to develop enhanced stem cell self-renewal in vivo competitive transplant assays [20,21]. It was found that hypermethylation of Polycomb Repressive Complex 2 (PRC2) targets appears to accompany forced proliferation and ageing, suggesting that DNA methylation plays a critical role in regulating the physiological ageing of HSCs [22, 23].

    Histone modifications and HSCs ageing

    Histone modification is one of the major covalent modifications that occurs at histone tails, including methylation, acetylation, sumoylation, phosphorylation,and ubiquitination, which have a critical role in dynamic modulation of chromatin structure and function, contributing to the regulation of cellular gene expression. These modifications involve in the chromatin remodeling and impact DNA accessibility.By taking advantage of highly purified HSCs,genome-wide comparisons of histone modifications between young and aged mouse HSCs were performed,enabling us to have a comprehensive understanding of the link between histone modification and HSC ageing.Recently, three key regulatory chromatin marks,H3K4me3 (trimethylation of Lys 27 of histone H3),H3K27me3 and H3K36me3, were chosen to assess epigenetic alterations in young and old HSCs [24].Results from ChIP-seq suggest that aged HSCs exhibited broader H3K4me3 (an active mark) peaks,particularly in HSCs identity and self-renewal genes,showing a positive correlation with gene expression alteration. Furthermore, there was a strong positive correlation between changes of H3K4me3 and gene expression with age. Additionally, changes in H3K27me3 (a repressive mark) levels have also been described and similar to H3K4me3, H3K27me3 density around promoters expanded as well.Interestingly, p16INK4a(a tumor suppressor protein encoded by Cdkn2a)is repressed by H3K27me3 both in young and old HSCs, while the increase of Cdkn2a is thought to be a hall mark of ageing for virtually all tissues [1].

    Polycomb group (PcG) proteins are key epigenetic regulators of HSCs fate by maintain and propagate regulatory histone modifications [25]. Two Polycomb repressive complexes (PRCs), PRC1 and PRC2, have been shown to have distinct functions in the control of HSCs self-renewal, with PRC1 crucial to maintain gene repression while PRC2 crucial to initiate gene repression. PRC1 is the main H2A ubiquitin (H2Aub)ligase [26]. Within PRC1, Cbx family members functions in the modulation of the balance between HSCs self-renewal and differentiation [27]. Via H3K27me3 binding, overexpression of Cbx7 enhances HSCs self-renewal,while overexpression of Cbx2,Cbx4 or Cbx8 contributes to differentiation. In addition, overexpression of another member of PRC1,BMI1, in cord blood leads to long-term maintenance of human hematopoietic stem/progenitor cells [28].

    The PRC2 complex is responsible for H3K27me3 through its enzymatic subunits EZH1 and EZH2 [29,30]. PRC2 complex contains either EZH1 or EZH2,which is chromatin-modifying histone lysine methyltransferases [31]. Enforced expression of EZH2 in HSCs prevents their exhaustion during serial transplantations [32] and its conditional loss results in defect of muscle regenerative potential [33]. Much later it was shown that EZH2 in fact is frequently mutated in patients with myeloproliferative diseases.EZH2 deposits the epigenetic trimethyl mark that is recognized by the Cbx proteins contained in the PRC1 complex [27]. Whereas EZH1 and EZH2 have different chromatin binding properties, EZH1 can also provide enzymatic activity for the PRC2 complex. It was demonstrated that EZH1 is an important histone methyltransferase for HSCs maintenance [34]. EZH1 maintains repopulating HSCs in a slow-cycling,undifferentiated state, protecting them from senescence.Furthermore, Epigenetic and gene expression changes resulted from loss of EZH1 in aged HSCs showed that EZH1-mediated PRC2 activity catalyzes monomethylation and dimethylation of H3K27.

    Members of the sirtuin family, NAD+-dependent protein deacetylases, particularly Sir2, have been investigated as potential anti-ageing factors. With seven homologs in mammals, the Sir2 family of histone deacetylases (HDACs) targets H4K16 and other proteins involved in regulating glucose and fatty acid metabolisms [35, 36]. Pharmacological inhibition of Cdc42 activity functionally rejuvenates aged HSCs,increases the percentage of polarized cells in an aged HSCs population, and restores the level and spatial distribution of histone H4 lysine 16 acetylation to a status similar to that seen in young HSCs [37], which leads to the hypothesis that epigenetic regulation by Sir2 family HDACs governed by the Cdc42 activity plays a role in HSC ageing [38]. Sirt3, a mammalian sirtuin, is highly enriched in HSCs [39]. Additionally,Sirt3 is dispensable for HSC maintenance at a young age but is essential at an old age. Importantly, Sirt3 upregulation in aged HSCs improves their regenerative capacity.

    HSCs ageing and traditional Chinese medicine

    HSCs typically show increased incidence of myeloid malignancies with age [40]. As pointed above,epigenetic alterations are considered as a hallmark of ageing and mutations in epigenetic regulator genes occur frequently in most hematological malignancies[41], with 20–22 % of de novo AML (acute myeloid leukemia) patients were found to have mutations in DNMT3A [42]. Simultaneously, epigenetic modifications are potentially reversible in contrast to genetic defects. In this context, remodeling of HSCs epigenome sheds a light on diseases preventive and therapeutic strategies. Indeed, 5-Azacytidine, a DMNT inhibitor, which epigenetically modulates various tumor suppressor genes, has been used for the myelodysplastic syndromes (MDS) and AML [43].Chemopreventive nutritional polyphenols, such as soy,genistein, resveratrol, catechin, curcumin, are currently evaluated for their ability to reverse adverse epigenetic marks in cancer (stem) cells to attenuate tumorigenesis-progression, prevent metastasis or sensitize for drug sensitivity [44].

    Via a bioinformatic study, it was reported that 29.8%of 3294 TCM medicinals are epigenome- and miRNA-modulating by interacting with Polycomb group and methyl CpG-binding proteins [45].Strikingly, within 200 TCM formulas, 99% of them are epigenome- and miRNA-interacting. Some herbal medicines are reported to target epigenetic modifiers and hence contribute to inhibit the proliferation of cancer cells (Table 1). Feijoa sellowiana extract,particularly flavone, exerts anti-cancer activities on hematological cancer cells [46]. Accompanied by p16 overexpression in human myeloid leukemia cells,Feijoa apoptotic activity correlates with the induction of HDAC inhibition.

    Trichosanthin [47], tanshinone IIA [48], arsenic trioxide (ATO) [49, 50], yugan granule [51] and genistein [52] have been reported to have anti-cancer effects by targeting DNMTs in various cancer cells.Within these medicines, western blot and immunohistochemical analysis confirmed that tumor suppressors including p16 were markedly enhanced after treatment with a low concentration of ATO in human liver cancer cells. Additionally, ATO decreased the mRNA expression of DNMT 1 and also dose-dependently inhibited DNMT activity.Collectively, a low concentration of ATO induces demethylation of tumor suppressor genes by inhibition of DNMT and reactivates the partially/fully silenced genes in liver cancer cells [49]. ATO is also considered to be an efficient drug for the treatment of acute promyelocytic leukemia (APL). Researcher showed that the extent of total genomic DNA methylation of HL-60 cell decreased after ATO treatment, which is accompanied by reduced expression of DNMT3B with DNMT1 no significant change [50].

    Curcumin, which is found in turmeric, functions as a strong anticancer agent in human prostate cancer cells through the modulation of HDACs [53-55]. Although the total HDAC activity was decreased upon CUR treatment, such treatment showed different effects on the protein expression of HDACs, increasing the expression of HDAC1, 4, 5, and 8 but decreasing HDAC3. Further analysis showed that CUR decreased the enrichment of H3K27me3 at the Neurog1 (a cancer methylation marker) promoter region as well as at the global level. Triptolide, which is the principal active ingredient of Chinese herb Tripterygium wilfordii Hook.F, has various functions such as antitumor properties. In the field of hematology, triptolide was shown to be able to inhibit the proliferation of multiple myeloma cells in a time- and dose-dependent manner,with induced G0/G1 cell cycle arrest and apoptosis[56]. In addition, the possible anti-myeloma mechanism of triptolide was to decrease histone H3K9 and H3K27 methylation via the downregulation of histone methyltransferase SUV39H1 and EZH2,respectively. Interestingly, by modulating histone H3-Lysine 9 (H3-K9) methylation and deacetylation,genistein is able to activate expression of several aberrantly silenced tumor suppressor genes as well,indicating a broad effect of Chinese herb on epigenetic landscape [58].

    Taken together, these results suggest another mechanism to develop effective therapeutics based on epigenetics, and offer a strong support for the proposition that we can treat hematological malignancies resulting from HSCs ageing by taking advantage of the epigenetic role of TCM pharmacology.

    Table 1 The epigenetic regulations of TCM on tumors

    Conclusion and perspectives

    The role of epigenetic regulation in HSCs ageing is gradually becoming clearer. However, much work remains to be done to decipher the complete picture of epigenetic machineries that regulate HSCs ageing. In addition, HSC ageing is related to hematopoietic system malignancies. Therefore, targeting epigenetic genes may be a promising strategy to treat hematopoietic system malignancies. TCM is attractive to explore drugs targeting epigenetic modifiers.Whereas an increasing amount of TCM have been indentified to be effective in the treatment of various cancers in a epigenetic manner, more studies need to be carried out to assess the role of TCM in treating hematopoietic malignancies and other HSC-ageing-related diseases.

    Competing interests

    The authors declare that they have no competing interests.

    1. Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell 2013, 153(6): 1194-1217.

    2. Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 2006, 169(2): 338-346.

    3. Catlin SN, Busque L, Gale RE, et al. The replication rate of human hematopoietic stem cells in vivo. Blood 2011, 117(17): 4460-4466.

    4. Morrison SJ, Wandycz AM, Akashi K, et al. The aging of hematopoietic stem cells. Nature Medicine 1996, 2(9): 1011-1016.

    5. Chambers SM, Shaw CA, Gatza C, et al. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation PLoS Biol 2007,5(8): e201.

    6. Florian MC, Dorr K, Niebel A, et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 2012, 10(5):520-530.

    7. Dykstra B, Olthof S, Schreuder J, et al. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 2011, 208(13): 2691-2703.

    8. Xing Z, Ryan MA, Daria D, et al. Increased hematopoietic stem cell mobilization in aged mice.Blood 2006, 108(7): 2190-2197.

    9. Geiger H, de Haan G, Florian MC. The ageing haematopoietic stem cell compartment. Nat Rev Immunol. 2013, 13(5): 376-389.

    10. Cho RH, Sieburg HB, Muller-Sieburg CE. A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 2008, 111(12): 5553-5561.

    11. Bannister AJ, Kouzarides T. Reversing histone methylation. Nature 2005, 436(7054): 1103-1106.

    12. Hake SB, Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes:The “H3 barcode hypothesis”. Proc Natl Acad Sci 2006, 103(17): 6428-6435.

    13. Hun Lee J, Shu L, Fuentes F, et al. Cancer chemoprevention by traditional chinese herbal medicine and dietary phytochemicals: targeting Nrf2-mediated oxidative stress/anti-inflammatory responses, epigenetics, and cancer stem cells. J Tradit Complement Med 2013, 3(1): 69-79.

    14. Broske AM, Vockentanz L, Kharazi S, et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 2009, 41(11): 1207-1215.

    15. Trowbridge JJ, Snow JW, Kim J, et al. DNA Methyltransferase 1 is Essential for and Uniquely Regulates Hematopoietic Stem and Progenitor Cells. Cell Stem Cell 2009, 5(4): 442-449.

    16. Challen GA, Sun D, Jeong M, et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2011, 44(1): 23-31.

    17. Mayle A, Sun D, Jeong M, et al. Dnmt3b Has Few Specific Functions In Adult Hematopoietic Stem Cells But Shows Abnormal Activity In The Absence Of Dnmt3a. Blood 2013,122(4): 734.

    18. Challen G, Sun D, Mayle A, et al. Dnmt3a and Dnmt3b Have Overlapping and Distinct Functions in Hematopoietic Stem Cells. Cell Stem Cell 2014,15(3): 350-364.

    19. Myunggon K, Yun H, Jankowska AM, et al.Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010,468(7325): 839-843.

    20. Moran-Crusio K, Reavie L, Shih A, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011, 20(1): 11-24.

    21. Myunggon K, Bandukwala HS, Jungeun A, et al.Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci 2011, 108(35): 14566-14571.

    22. Koide S, Wendt GR, Iwama A. Epigenetic regulation of hematopoietic stem cells. Inflamm Regen 2013, 33(4): 197-202.

    23. Beerman I, Bock C, Garrison BS, et al.Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 2013, 12(4):413-425.

    24. Sun D, Luo M, Jeong M, et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 2014, 14(5): 673-688.

    25. Schuettengruber B, Chourrout D, Vervoort M, et al.Genome Regulation by Polycomb and Trithorax Proteins. Cell 2007, 128(4): 735-745.

    26. Wang H, Wang L, Erdjument-Bromage H, et al.Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004, 431(7010): 873-878.

    27. Klauke K, Radulovi? V, Broekhuis M, et al.Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat Cell Biol 2013, 15(4): 353-362.

    28. Rizo A, Dontje B, Vellenga E, et al. Long-term maintenance of human hematopoietic stem/progenitor cells by expression of BMI1.Blood 2008, 111(5): 2621-2630.

    29. Schuettengruber B, Cavalli G. Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice.Development 2009, 136(21): 3531-3542.

    30. Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 2009, 10(10):697-708.

    31. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature 2011,469(7330): 343-349.

    32. Kamminga LM, Bystrykh LV, Aletta DB, et al.The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 2006,107(5): 2170-2179.

    33. Samuel W, Dhamayanthi P, Patrick B, et al. Ezh2 maintains a key phase of muscle satellite cell expansion but does not regulate terminal differentiation. J Cell Sci 2013, 126(2): 565-579.

    34. Isabel H, Antonio HM, Jose Manuel L, et al. Ezh1 Is Required for Hematopoietic Stem Cell Maintenance and Prevents Senescence-like Cell Cycle Arrest. Cell Stem Cell 2012, 11(5): 649-662.

    35. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 2012, 13(4): 225-238.

    36. Hall JA, Dominy JE, Lee Y, et al. The sirtuin family's role in aging and age-associated pathologies. J Clin Invest 2013, 123(3): 973-979.

    37. Florian MC1, D?rr K, Niebel A et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 2012, 10(5):520-530.

    38. Oshima M, Iwama A. Epigenetics of hematopoietic stem cell aging and disease. Int J Hematol 2014, 100(4): 326-334.

    39. Brown K, Xie S, Qiu X, et al. Sirt3 reverses aging-associated degeneration. Cell Rep 2013,3(2): 319-327.

    40. Pang WW, Price EA, Debashis S, et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci USA 2011, 108(50):20012-20017.

    41. Chung YR, Schatoff E, Abdel-Wahab O.Epigenetic alterations in hematopoietic malignancies. Int J Hematol 2012, 96(4): 413-427.

    42. Yan XJ, Xu J, Gu ZH. et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011, 43(4):309-315.

    43. Müller AM, Florek M. 5-Azacytine/5-Azaci-tidine. Recent Results Cancer Res 2014, 201(2):299-324.

    44. Vanden Berghe W. Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. Pharmacol Res 2012, 65(6): 565-576.

    45. Hsieh HY, Chiu PH, Wang SC. Epigenetics in traditional chinese pharmacy: a bioinformatic study at pharmacopoeia scale. Evid Based Complementary Alternat Med 2011; 2011:816714.

    46. Bontempo P, Mita L, Miceli M, Doto A, et al.Feijoa sellowiana derived natural flavone exerts anti-cancer action displaying hdac inhibitory activities. Int J Biochem Cell Biol, 2007, 39(10):1902-1914.

    47. Hua F, Shan BE, Zhao LM, et al. Trichosanthin inhibited the proliferation of MDA-MB-231 cell and reversed the methylation of sykgene . Cancer 2009, 29(10): 944-949.

    48. Tian XF, Tao YM, Fang Y, et al. Study of salviae Miltiorrhize extract on DNA demethylation in HepG2 cells. J Hunan Univ Tradit Chin Med 2009,29(1): 13-15.

    49. Cui X, Wakai T, Shirai Y, et al. Arsenic trioxide inhibits dna methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol 2006, 37(3): 298–311.

    50. Peng CY. The epigenetic mechanisms of arsenic trioxide anti leukemia. Shantou University 2009.

    51. Lv F, Shao ZY, Xie ZL, et al. Suppressive effect and the mechanism of epigenetics of Yugan granule on liver cancer in rats. Asia-Pac Tradit Med 2008, 4(10): 26-28.

    52. Fang MZ, Chen D, Sun Yet al. Reversal of hypermethylation and reactivation of p16INK4a,RARβ, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 2005,11(19): 7033-7041.

    53. Shu L, Khor TO, Lee JH, et al. Epigenetic cpg demethylation of the promoter and reactivation of the expression of neurog1 by curcumin in prostate lncap cells. AAPS J 2011, 13(4): 606-614.

    54. Wang Y, Hu JB, Chen Y, et al. Curcum in causes histone acetylation enhancement in Raji, HL- 60 and K562 cell lines. Chin Pharm Bull 2006, 22(2):164-167.

    55. Lv BH, Zhang L, Zhu CC, et al. Inhibition of curcumin on histone deacetylase and expression promotion of P21WAF1 /CIP1 in HepG2 cells.China J Chin Mater Med 2007, 32(19): 2051-2055.

    56. Zhao F, Chen Y, Li R, et al. Triptolide alters histone H3K9 and H3K27 methylation state and induces G0/G1 arrest and caspase-dependent apoptosis in multiple myeloma in vitro.Toxicology 2010, 267(1): 70-79.

    57. Lee YH, Kwak J, Choi HK, et al. EGCG suppresses prostate cancer cell growth modulating acetylation of androgen receptor by anti-histone acetyltransferase activity. Int J Mol Med 2012,30(1): 69-74.

    58. Kikuno N1, Shiina H, Urakami S, et al. Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer 2008, 123(3): 552-560.

    成人午夜高清在线视频| 国产伦精品一区二区三区视频9 | 国产麻豆成人av免费视频| 亚洲欧美日韩卡通动漫| 99在线人妻在线中文字幕| 国产乱人视频| 日本熟妇午夜| 亚洲 欧美一区二区三区| 少妇熟女aⅴ在线视频| 国产精品一区二区三区四区久久| 99热6这里只有精品| 国产成人精品久久二区二区91| 日本 av在线| 午夜视频精品福利| 手机成人av网站| 成人一区二区视频在线观看| 亚洲一区高清亚洲精品| 国产精华一区二区三区| 少妇裸体淫交视频免费看高清| 精品国产美女av久久久久小说| 1000部很黄的大片| 国产精品98久久久久久宅男小说| 精品福利观看| 欧美大码av| 国产麻豆成人av免费视频| 欧美黑人巨大hd| 国产精品自产拍在线观看55亚洲| 亚洲精品色激情综合| 欧美在线黄色| 大型黄色视频在线免费观看| 三级男女做爰猛烈吃奶摸视频| 日韩国内少妇激情av| 淫妇啪啪啪对白视频| 美女扒开内裤让男人捅视频| 男人和女人高潮做爰伦理| av在线天堂中文字幕| 亚洲中文av在线| 天堂√8在线中文| 久久99热这里只有精品18| 悠悠久久av| 一级黄色大片毛片| 99久久99久久久精品蜜桃| 老司机深夜福利视频在线观看| 午夜精品一区二区三区免费看| 99国产精品99久久久久| 久久精品亚洲精品国产色婷小说| 九九在线视频观看精品| 日本五十路高清| 国产成人系列免费观看| 日韩精品青青久久久久久| 在线观看免费视频日本深夜| 亚洲午夜精品一区,二区,三区| 成人精品一区二区免费| 欧美一级a爱片免费观看看| 日本在线视频免费播放| 亚洲人成网站在线播放欧美日韩| 99久久99久久久精品蜜桃| 好看av亚洲va欧美ⅴa在| 久久人妻av系列| 少妇的逼水好多| 欧美中文综合在线视频| 又爽又黄无遮挡网站| aaaaa片日本免费| 男人的好看免费观看在线视频| 老鸭窝网址在线观看| 日本免费a在线| 香蕉丝袜av| 亚洲精品粉嫩美女一区| 国产精品一及| 国产91精品成人一区二区三区| 黄片小视频在线播放| 久久精品aⅴ一区二区三区四区| 亚洲 国产 在线| 在线观看66精品国产| 麻豆成人av在线观看| 免费av不卡在线播放| 日韩精品中文字幕看吧| 欧美乱码精品一区二区三区| 99国产精品99久久久久| 欧美大码av| 九色国产91popny在线| 久久久久精品国产欧美久久久| 欧美日韩亚洲国产一区二区在线观看| 国产视频内射| 免费在线观看成人毛片| 精品熟女少妇八av免费久了| 黄色片一级片一级黄色片| 又大又爽又粗| 在线观看免费午夜福利视频| 别揉我奶头~嗯~啊~动态视频| 俺也久久电影网| 久久天躁狠狠躁夜夜2o2o| 黄频高清免费视频| 18禁美女被吸乳视频| 午夜亚洲福利在线播放| 日韩欧美免费精品| 精品国产乱码久久久久久男人| 91av网站免费观看| 亚洲aⅴ乱码一区二区在线播放| 观看美女的网站| 我要搜黄色片| 91久久精品国产一区二区成人 | 在线十欧美十亚洲十日本专区| 国产毛片a区久久久久| 一本综合久久免费| 中文资源天堂在线| 岛国在线观看网站| 婷婷亚洲欧美| 日本成人三级电影网站| 两个人的视频大全免费| 亚洲中文字幕一区二区三区有码在线看 | 亚洲av成人精品一区久久| 一本精品99久久精品77| 国产av一区在线观看免费| 亚洲天堂国产精品一区在线| 可以在线观看毛片的网站| 国产精品亚洲美女久久久| 在线观看66精品国产| 波多野结衣高清无吗| 91av网一区二区| 国产伦精品一区二区三区视频9 | 一本综合久久免费| 久久国产精品影院| 国产精品亚洲一级av第二区| 成年版毛片免费区| 国产精品1区2区在线观看.| 欧美三级亚洲精品| 欧美日韩黄片免| 999久久久精品免费观看国产| 夜夜看夜夜爽夜夜摸| av在线蜜桃| 91字幕亚洲| 国产三级中文精品| 天天躁狠狠躁夜夜躁狠狠躁| 五月伊人婷婷丁香| 男女下面进入的视频免费午夜| av天堂在线播放| 97人妻精品一区二区三区麻豆| 亚洲成人精品中文字幕电影| 美女午夜性视频免费| 国产欧美日韩一区二区三| 一二三四社区在线视频社区8| 国产精品一及| 免费高清视频大片| 淫秽高清视频在线观看| 51午夜福利影视在线观看| 欧美日韩乱码在线| 亚洲黑人精品在线| 日韩av在线大香蕉| 一边摸一边抽搐一进一小说| 欧美黑人巨大hd| cao死你这个sao货| 色视频www国产| 成人永久免费在线观看视频| 亚洲乱码一区二区免费版| 叶爱在线成人免费视频播放| aaaaa片日本免费| 精品久久久久久久人妻蜜臀av| 悠悠久久av| 天堂√8在线中文| 女警被强在线播放| 一区二区三区国产精品乱码| 午夜视频精品福利| 亚洲国产欧美人成| 久久这里只有精品19| 国产亚洲精品av在线| 亚洲熟女毛片儿| 亚洲成人久久性| 亚洲国产精品999在线| 亚洲成人中文字幕在线播放| 国产不卡一卡二| 欧美午夜高清在线| 国产精品九九99| 俄罗斯特黄特色一大片| av视频在线观看入口| 久久久久国内视频| 香蕉国产在线看| 非洲黑人性xxxx精品又粗又长| 性欧美人与动物交配| 午夜久久久久精精品| 国内精品久久久久精免费| 亚洲最大成人中文| 99久久久亚洲精品蜜臀av| 美女高潮喷水抽搐中文字幕| 成在线人永久免费视频| av视频在线观看入口| 国产亚洲av嫩草精品影院| 久久这里只有精品19| 国内久久婷婷六月综合欲色啪| 人妻丰满熟妇av一区二区三区| 一级毛片精品| 少妇熟女aⅴ在线视频| 精品国产超薄肉色丝袜足j| 男人舔奶头视频| 国产伦精品一区二区三区视频9 | 亚洲中文日韩欧美视频| 免费在线观看视频国产中文字幕亚洲| 手机成人av网站| 成人特级黄色片久久久久久久| 午夜免费成人在线视频| 精品国产美女av久久久久小说| 九色成人免费人妻av| 免费大片18禁| 在线观看午夜福利视频| 一进一出抽搐动态| 在线看三级毛片| www.精华液| 中文字幕av在线有码专区| 免费无遮挡裸体视频| 日韩欧美 国产精品| 久久人人精品亚洲av| 国产伦精品一区二区三区视频9 | 熟妇人妻久久中文字幕3abv| 在线观看66精品国产| ponron亚洲| 巨乳人妻的诱惑在线观看| 99在线人妻在线中文字幕| 午夜亚洲福利在线播放| 免费看十八禁软件| 欧美色视频一区免费| 夜夜夜夜夜久久久久| 亚洲av电影不卡..在线观看| 欧美日本视频| 日本黄大片高清| 亚洲美女视频黄频| 变态另类丝袜制服| 日本免费a在线| 国产精华一区二区三区| 欧美丝袜亚洲另类 | 在线观看免费午夜福利视频| 蜜桃久久精品国产亚洲av| 成人一区二区视频在线观看| 天天一区二区日本电影三级| 1000部很黄的大片| 午夜福利欧美成人| 国产蜜桃级精品一区二区三区| 露出奶头的视频| 母亲3免费完整高清在线观看| 美女cb高潮喷水在线观看 | 两个人的视频大全免费| 国产精品久久久av美女十八| 免费高清视频大片| 18禁美女被吸乳视频| 亚洲色图 男人天堂 中文字幕| 女人被狂操c到高潮| 国产高清三级在线| 特级一级黄色大片| 人妻夜夜爽99麻豆av| 少妇丰满av| 欧美日韩中文字幕国产精品一区二区三区| 欧美在线一区亚洲| 黄色片一级片一级黄色片| 欧美国产日韩亚洲一区| 亚洲av成人一区二区三| www日本黄色视频网| 日韩欧美免费精品| 国产视频内射| 亚洲av中文字字幕乱码综合| 午夜福利在线观看免费完整高清在 | www日本在线高清视频| 日韩欧美 国产精品| 99在线人妻在线中文字幕| 亚洲成人久久爱视频| 日本一本二区三区精品| 亚洲精品一卡2卡三卡4卡5卡| 最好的美女福利视频网| 国产av不卡久久| 精品久久久久久久末码| 最新在线观看一区二区三区| 中文字幕最新亚洲高清| 一个人看视频在线观看www免费 | 小说图片视频综合网站| 少妇人妻一区二区三区视频| 国产成人福利小说| 日韩高清综合在线| 免费看日本二区| 国产伦精品一区二区三区四那| 黄色成人免费大全| 97人妻精品一区二区三区麻豆| 久久精品综合一区二区三区| 一边摸一边抽搐一进一小说| 女人被狂操c到高潮| 中文字幕久久专区| 亚洲av五月六月丁香网| 国产精品久久久久久亚洲av鲁大| 国产精品一及| 51午夜福利影视在线观看| 别揉我奶头~嗯~啊~动态视频| 日韩欧美在线二视频| 搡老熟女国产l中国老女人| 色哟哟哟哟哟哟| avwww免费| 香蕉丝袜av| 亚洲成人久久爱视频| 久久午夜综合久久蜜桃| 一本综合久久免费| 日韩免费av在线播放| 五月玫瑰六月丁香| 成人无遮挡网站| 欧美丝袜亚洲另类 | 波多野结衣巨乳人妻| 久久久久久人人人人人| 国产成人福利小说| 亚洲成av人片免费观看| 最近最新中文字幕大全电影3| av福利片在线观看| 一区福利在线观看| 色精品久久人妻99蜜桃| 人妻久久中文字幕网| 搡老熟女国产l中国老女人| 国产乱人视频| 日韩三级视频一区二区三区| 成年人黄色毛片网站| 色av中文字幕| 亚洲无线观看免费| 伊人久久大香线蕉亚洲五| 99在线人妻在线中文字幕| 青草久久国产| 亚洲天堂国产精品一区在线| 99视频精品全部免费 在线 | 色视频www国产| 在线十欧美十亚洲十日本专区| 久久人人精品亚洲av| 午夜福利免费观看在线| 亚洲色图 男人天堂 中文字幕| 精品久久久久久久久久久久久| 亚洲色图av天堂| 国产又色又爽无遮挡免费看| 日日干狠狠操夜夜爽| 首页视频小说图片口味搜索| 91九色精品人成在线观看| 我的老师免费观看完整版| 亚洲激情在线av| 美女cb高潮喷水在线观看 | 宅男免费午夜| 亚洲精品久久国产高清桃花| 丰满人妻熟妇乱又伦精品不卡| 色哟哟哟哟哟哟| 亚洲熟妇中文字幕五十中出| 国产精品美女特级片免费视频播放器 | 日日夜夜操网爽| 日本免费一区二区三区高清不卡| 淫秽高清视频在线观看| 夜夜夜夜夜久久久久| 国产乱人伦免费视频| av国产免费在线观看| 日本免费a在线| 成熟少妇高潮喷水视频| 亚洲国产精品合色在线| 啦啦啦免费观看视频1| 91av网站免费观看| 欧美中文日本在线观看视频| 国产亚洲精品av在线| 亚洲真实伦在线观看| 偷拍熟女少妇极品色| 国产视频内射| 日韩欧美在线乱码| 男女午夜视频在线观看| 午夜亚洲福利在线播放| 欧美中文日本在线观看视频| 国产精品亚洲美女久久久| 亚洲欧美日韩无卡精品| 少妇裸体淫交视频免费看高清| 最新在线观看一区二区三区| 久久久久免费精品人妻一区二区| 亚洲美女黄片视频| 国产精品精品国产色婷婷| av片东京热男人的天堂| 91九色精品人成在线观看| 最好的美女福利视频网| 国内毛片毛片毛片毛片毛片| 亚洲成a人片在线一区二区| 亚洲国产日韩欧美精品在线观看 | 亚洲电影在线观看av| 欧美黄色片欧美黄色片| 免费观看的影片在线观看| 淫妇啪啪啪对白视频| 一进一出抽搐gif免费好疼| 黄片小视频在线播放| 午夜精品在线福利| 亚洲 欧美一区二区三区| 国产野战对白在线观看| 制服丝袜大香蕉在线| 老司机午夜福利在线观看视频| 成人高潮视频无遮挡免费网站| 亚洲成av人片在线播放无| 2021天堂中文幕一二区在线观| 一个人免费在线观看电影 | 国内精品美女久久久久久| 哪里可以看免费的av片| 久99久视频精品免费| 人人妻人人看人人澡| 99国产极品粉嫩在线观看| 香蕉丝袜av| 成熟少妇高潮喷水视频| 亚洲专区国产一区二区| 国产91精品成人一区二区三区| 俺也久久电影网| 一级毛片女人18水好多| 国产毛片a区久久久久| 人人妻,人人澡人人爽秒播| 日韩三级视频一区二区三区| 亚洲欧美一区二区三区黑人| www.精华液| 夜夜看夜夜爽夜夜摸| 国产一区二区激情短视频| 日本撒尿小便嘘嘘汇集6| 老司机深夜福利视频在线观看| 巨乳人妻的诱惑在线观看| 亚洲国产欧美一区二区综合| a级毛片在线看网站| 观看免费一级毛片| 1000部很黄的大片| 噜噜噜噜噜久久久久久91| 亚洲第一欧美日韩一区二区三区| 成年版毛片免费区| 久久久久久久久久黄片| 国产美女午夜福利| 国产成+人综合+亚洲专区| 午夜福利欧美成人| 十八禁人妻一区二区| 窝窝影院91人妻| 无遮挡黄片免费观看| 天天躁日日操中文字幕| 精品一区二区三区av网在线观看| 亚洲一区二区三区色噜噜| 久久久久久久午夜电影| 成年女人毛片免费观看观看9| 免费av不卡在线播放| 国产欧美日韩精品亚洲av| av片东京热男人的天堂| 网址你懂的国产日韩在线| 男女床上黄色一级片免费看| 国产69精品久久久久777片 | 每晚都被弄得嗷嗷叫到高潮| 国产精品av久久久久免费| av黄色大香蕉| 精品电影一区二区在线| 亚洲七黄色美女视频| 天堂网av新在线| 美女大奶头视频| 亚洲色图 男人天堂 中文字幕| 中文资源天堂在线| 日本 av在线| 中文字幕精品亚洲无线码一区| 在线a可以看的网站| 国产精品爽爽va在线观看网站| 熟女少妇亚洲综合色aaa.| 亚洲成人免费电影在线观看| 亚洲av熟女| 国产激情偷乱视频一区二区| 国产一区二区在线观看日韩 | 国产精品久久久久久精品电影| 亚洲欧美日韩高清专用| 韩国av一区二区三区四区| 国产精品久久久久久精品电影| 国产亚洲精品av在线| 又黄又粗又硬又大视频| 亚洲av美国av| 女人被狂操c到高潮| 精品国产亚洲在线| 最近视频中文字幕2019在线8| av黄色大香蕉| 国产三级在线视频| 黄片大片在线免费观看| 欧美乱码精品一区二区三区| 国产私拍福利视频在线观看| 精品无人区乱码1区二区| 国产精品99久久99久久久不卡| 淫秽高清视频在线观看| 久久伊人香网站| 人人妻,人人澡人人爽秒播| 久久午夜亚洲精品久久| 免费看光身美女| 色综合站精品国产| 一本精品99久久精品77| 女人高潮潮喷娇喘18禁视频| 俺也久久电影网| 国产免费男女视频| 日韩三级视频一区二区三区| 美女扒开内裤让男人捅视频| 日本免费一区二区三区高清不卡| 亚洲国产精品成人综合色| 亚洲av成人一区二区三| 精品乱码久久久久久99久播| 久久草成人影院| 免费在线观看影片大全网站| 免费搜索国产男女视频| 国产激情偷乱视频一区二区| 他把我摸到了高潮在线观看| 女人被狂操c到高潮| 国产高潮美女av| 亚洲国产欧美一区二区综合| 人人妻人人看人人澡| 久久精品国产清高在天天线| 精品久久蜜臀av无| 18禁观看日本| 日韩高清综合在线| 欧美乱码精品一区二区三区| 国产一区二区激情短视频| av黄色大香蕉| av国产免费在线观看| 国产69精品久久久久777片 | 少妇人妻一区二区三区视频| 好男人在线观看高清免费视频| 免费av不卡在线播放| 男女之事视频高清在线观看| 亚洲 欧美一区二区三区| avwww免费| 两人在一起打扑克的视频| 成年女人看的毛片在线观看| 老鸭窝网址在线观看| 亚洲专区字幕在线| 淫秽高清视频在线观看| 精品一区二区三区av网在线观看| 在线永久观看黄色视频| 国产精品亚洲av一区麻豆| 午夜视频精品福利| 男人的好看免费观看在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 中文字幕熟女人妻在线| 亚洲人成网站高清观看| 国产精品久久久人人做人人爽| 色av中文字幕| 亚洲成人精品中文字幕电影| 亚洲人成电影免费在线| 夜夜看夜夜爽夜夜摸| 久久精品91无色码中文字幕| 不卡av一区二区三区| 成在线人永久免费视频| 日日夜夜操网爽| 日韩欧美三级三区| 丰满人妻熟妇乱又伦精品不卡| 国产真人三级小视频在线观看| 桃色一区二区三区在线观看| 男人舔奶头视频| 在线免费观看不下载黄p国产 | 午夜福利在线观看免费完整高清在 | 无遮挡黄片免费观看| 老司机午夜福利在线观看视频| 村上凉子中文字幕在线| 无人区码免费观看不卡| 国产一区二区三区视频了| 久久久久九九精品影院| 免费av不卡在线播放| 日韩欧美免费精品| 亚洲午夜理论影院| 九九热线精品视视频播放| 91老司机精品| 宅男免费午夜| 国内久久婷婷六月综合欲色啪| 18禁黄网站禁片免费观看直播| 免费在线观看亚洲国产| 18禁观看日本| 欧美日韩一级在线毛片| 三级国产精品欧美在线观看 | 一本综合久久免费| 亚洲无线在线观看| 黑人欧美特级aaaaaa片| 国产蜜桃级精品一区二区三区| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| av片东京热男人的天堂| 日韩人妻高清精品专区| 欧美色视频一区免费| 日韩中文字幕欧美一区二区| 亚洲精品久久国产高清桃花| 亚洲av五月六月丁香网| 狠狠狠狠99中文字幕| 免费在线观看视频国产中文字幕亚洲| 亚洲狠狠婷婷综合久久图片| 国产激情偷乱视频一区二区| 99在线人妻在线中文字幕| 淫妇啪啪啪对白视频| 国产精品免费一区二区三区在线| 成人18禁在线播放| 国产伦精品一区二区三区视频9 | 99国产综合亚洲精品| 午夜日韩欧美国产| 90打野战视频偷拍视频| 少妇的逼水好多| 九九热线精品视视频播放| 国产1区2区3区精品| 国产三级黄色录像| 国产伦精品一区二区三区四那| 日韩三级视频一区二区三区| 啦啦啦韩国在线观看视频| 久久中文字幕人妻熟女| 欧美高清成人免费视频www| 欧美一区二区国产精品久久精品| 窝窝影院91人妻| 床上黄色一级片| 日日摸夜夜添夜夜添小说| 国产成人福利小说| 99久久精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 窝窝影院91人妻| 久久久久久国产a免费观看| 亚洲av中文字字幕乱码综合| 久久久久久大精品| 国产亚洲精品av在线| 偷拍熟女少妇极品色| 成人永久免费在线观看视频| 观看美女的网站| 欧美日韩瑟瑟在线播放| 亚洲aⅴ乱码一区二区在线播放| 亚洲午夜精品一区,二区,三区| 亚洲黑人精品在线| 亚洲欧美精品综合一区二区三区| 最近最新免费中文字幕在线| 1000部很黄的大片| 18禁黄网站禁片午夜丰满| 国产精品影院久久| 国产v大片淫在线免费观看| 最新中文字幕久久久久 |