• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chemical constituents, cytotoxic, antifungal and antimicrobial properties of Centaurea diluta Ait. subsp. algeriensis (Coss. & Dur.) Maire

    2016-09-12 02:22:21HanneZaterJolleHuetroniqueFontaineSamirBenayacheCarolineStvignyPierreDuezFadilaBenayacheUnitderechercheValorisationdesRessourcesNaturellesMolculesBioactivesetAnalysesPhysicochimiquesetBiologiquesVARENBIOMOLFacultdesScienc

    Hanne Zater, Jo?lle Huet, Véronique Fontaine, Samir Benayache, Caroline Stévigny,Pierre Duez,6*, Fadila Benayache*Unité de recherche : Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques (VARENBIOMOL), Faculté des Sciences Exactes, Université Frères Mentouri Constantine , 2000 Constantine, Algérie

    2Université Ziane Achour, Cité du 5 Juillet, Route Moudjbara BP : 3117, 17000 Djelfa, Algérie

    3Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique

    4Laboratoire de Biopolymère et nanomatériaux supramoléculaire, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique

    5Unité de Microbiologie Pharmaceutique et Hygiène, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique

    6Service de Chimie Thérapeutique et de Pharmacognosie, Université de Mons (UMONS), 7000 Mons, Belgique

    ?

    Chemical constituents, cytotoxic, antifungal and antimicrobial properties of Centaurea diluta Ait. subsp. algeriensis (Coss. & Dur.) Maire

    2Université Ziane Achour, Cité du 5 Juillet, Route Moudjbara BP : 3117, 17000 Djelfa, Algérie

    3Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique

    4Laboratoire de Biopolymère et nanomatériaux supramoléculaire, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique

    5Unité de Microbiologie Pharmaceutique et Hygiène, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique

    6Service de Chimie Thérapeutique et de Pharmacognosie, Université de Mons (UMONS), 7000 Mons, Belgique

    ARTICLE INFO ABSTRACT

    Article history:

    in revised form 16 March 2016 Accepted 15 April 2016

    Available online 20 June 2016

    Flavonoids

    Lignans

    Centaurea diluta

    Asteraceae

    Cytotoxic activity

    Direct and indirect antimicrobial activity

    MRSA

    Objective: To investigate the chemical composition of a moderately polar extract (CHCl3soluble part of the MeOH-H2O extract) obtained from the aerial parts (leaves and flowers) of Centaurea diluta Ait. subsp. algeriensis (Coss. & Dur.) Maire, a species endemic to Algeria and Morocco on which no reports are available to date. To evaluate in vitro the cytotoxic, antifungal and antimicrobial activities of this extract and the cytotoxic and antimicrobial activities of its isolated secondary metabolites. Methods: The cytotoxic effects of the extract were investigated on 3 human cancer cell lines i.e. the A549 non-small-cell lung carcinoma (NSCLC), the MCF7 breast adenocarcinoma and the U373 glioblastoma using a MTT colorimetric assay. Biological data allowed to guide the fractionation of the extract by separation and purification on silica gel 60 (CC and TLC). The isolated compounds which were characterized by spectral analysis, mainly HR-ESIMS, HR-EIMS,UV and NMR experiments (1H,13C, COSY, ROESY, HSQC and HMBC) and comparison of their spectroscopic data with those reported in the literature, were evaluated for cytotoxic activities on six cancer cell lines (A549, MCF7, U373, Hs683 human glioma, PC3 human prostate and B16-F10 murine melanoma). The direct and indirect antibacterial and antifungal activities were determined using microdilution methods for the raw extract and TLC-bioautography and microdilution methods against standard and clinical strains for the isolated compounds. Results: The raw extract reduced cell viability with IC50s of 27, 25 and 21 μg/mL on A549, MCF7 and U373, respectively. Five secondary metabolites: two phenolic compounds (vanillin 1, paridol 3), a lignan [(-)-arctigenin 2]and two flavonoid aglycones (eupatilin 4 and jaceosidin 5), were then isolated from this extract. Moderate cytotoxic effects were observed for (-)-arctigenin 2 (IC50s: 28 and 33 μM on Hs683 and B16-F10, respectively), eupatilin 4 (IC50s: 33 and 47 μM on B16-F10 and PC3, respectively) and jaceosidin 5 (IC50s: 32 and 40 μM on PC3 and B16-F10, respectively). Conclusions: All the isolated compounds were described for the first time from this species. Although inactive against 7 tested microorganisms (fungi, bacteria and yeast, human or plant pathogens), the raw extract was able to potentiate the effect of beta-lactam antibiotics on methicillin-resistant Staphylococcus aureus (MRSA),reducing the minimal inhibitory concentrations (MICs) by a factor of 2-32-fold. No synergy was found between the extract and streptomycin. From the five isolated compounds only jaseosidin 5 showed a moderate antimicrobial activity.

    1. Introduction

    The genus Centaurea (tribe Cynareae, family Asteraceae) is one of the most widely distributed plant genera in the world. Centaurea includes more than 500 species, 45 of which grow spontaneouslyin Algeria, with 7 species localized in the Sahara[1, 2]. Although, to our best knowledge, no traditional uses or pharmacological studies are reported so far for the species Centaurea diluta (C. diluta), many other Centaurea species are well known in traditherapy. For example,in Turkey, dried flowers of Centaurea cyanus are used in infusion to relieve diarrhea, gain energy, increase appetite, and to relieve chest tightness; Centaurea calcitrapa is used (infusion) as a febrifuge;Centaurea jacea is used to reduce fever, to start menstruation, to relieve constipation and increase appetite[3, 4]. In Tunisia, Centaurea furfuracea, an endemic species from the desert regions of the North of Africa[5], is used as astringent and diuretic[6], while, in Algeria,the roots of Centaurea incana are used in the area of Aurès for the treatment of liver diseases[7] and Centaurea pullata is used in the preparation of a local traditional dish called “El Hammama”[8]. Various studies have shown medicinal properties of Centaurea species, mainly as analgesic[9], cytotoxic[10], antibacterial[11] and antifungal[12].

    Centaurea typically present high structural diversity in major bioactive compounds, including triterpenes, flavonoids, lignans and sesquiterpene lactones[13-21]. In specimens of C. diluta, cultivated in the botanical garden of the Technical University of Braunschweig,Germany, polyacetylenic compounds have been reported[22-24]. In the essential oil of C. diluta Aiton aerial parts, collected from Sicily, Italy[25], the most abundant compounds were fatty acids and derivatives, notably hexadecanoic acid (21.3%) and (Z,Z)-9,12-octadecadienoic acid methyl ester (12.2%), followed by hydrocarbons (15.3%), terpenoids being present in low amounts(2.8 %).

    Given the interest of Centaurea pharmacology and phytochemistry,the present paper concentrates on a relatively unknown subspecies,C. diluta Ait. subsp. algeriensis (Coss. & Durieu) Maire[26], endemic to Algeria and Morocco[2].

    2. Material and methods

    2.1. Chemicals, reagents and general

    Solvents were analytical grade. Trypsin 0.5% in EDTA, RPMI1640 red phenol and fetal bovine serum (FBS) were purchased from Gibco? Invitrogen (Merelbeke, Belgium). 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide (MTT) was obtained from Sigma Aldrich?(Bornem, Belgium). Dimethyl sulfoxide(DMSO) was obtained from Merck?(Overijse, Belgium). RNAsefree water was from Braun?(Machelen, Belgium). The Penicillin V was purchased from Certa SA ACA Pharma NV, the ampicillin,amoxicillin and oxacillin were purchased from Sigma-Aldrich.

    The absorbance of the reaction mixture of MTT test was measured by spectrophotometer microplate reader Model 680XR, Bio-Rad?,Nazareth Eke (Belgium). The cells were counted by Cells Culture Counter, Beckman (Analis?, Suarlée, Belgium). The following apparatus were also used: optical microscope PCM-type Axiovert S100 (Zeiss, Nederlands) and laminar flow hood class II (IKS?,Leerdam, Nederlands).

    Melting points were determined on a SMP10 Büchi B-540 Stuart Biocote apparatus and are uncorrected. Plant material powdering: Mill: Culatti, CZ13 model, Reference DCFH48. TLC: pre-coated aluminium foil silica gel 60F254& TLC silica gel 60F254Plastic roll 500×20 cm (Merck KGaA, Germany), visualized using UV lamp(CAMAG 254 nm & 366 nm) and by detection with a spraying reagent (vanillin-sulfuric at 10% and/or anisaldehyde) followed by heating at 100 ℃ for 3-5 minutes. Column chromatography (CC): silica gel 60 (Merck KGaA, Germany, 230-400 mesh ASTM). Routine Preparative thin-layer chromatography (PLC): silica gel plates (20×20 cm Silica gel 60 PF254, Merck), Optical rotation: Perkin-Elmer 241 polarimeter atλNa589 nm.

    UV spectra were recorded using a Thermo Electron Corporation evolution 300 spectrophotometer.1H NMR and13C NMR spectra were recorded on Bruker Avance 300, 400 MHz and Varian 600 MHz; 2D-NMR experiments (COSY, HSQC, HMBC, NOESY and ROESY) were performed on Bruker Avance 400 MHz or Varian 600 MHz spectrometers. Spectra of compounds 1, 2 and 3 were recorded in CDCl3, compound 4 in DMSO-d6and compound 5 in CD3OD. A Shigemi tube was used for compound 2.

    High resolution mass spectra in positive mode were recorded by direct infusion using a 6520 series quadrupole time-of-flight(Q-TOF) mass spectrometer (Agilent, Palo Alto, CA, USA) fitted with an electrospray ionization (ESI) source in positive mode. The error between the observed and calculated masses is expressed in ppm; below 5 ppm, the compounds were considered to correspond to predicted formula.

    2.2. Plant material

    The aerial parts of C. diluta Ait. subsp. algeriensis (Coss. & Dur.)were collected in the flowering stage in the area of Djelfa (1 038 m, 34o53′39.6′′N, 3o3′56.3′′E) in June 2012. The plant was authenticated by Professor Mohamed Kaabache, specialist in the identification of Algerian Centaurea species (Ferhat Abbas University,Setif, Algeria). A voucher specimen has been deposited in the National Herbarium of Belgium (National Botanical Garden of Meise) under the number BR0000013666187.

    2.3. Extraction and isolation

    Air-dried aerial parts (leaves and flowers, 1.5 kg) of C. diluta Ait. subsp. algeriensis (Coss. & Dur.) were powdered (slight grinding with controlled temperature, up to 35 ℃) and macerated at room temperature with MeOH-H2O (77:23, v/v) (25 L) for 48 h, four times. The filtrates were combined, concentrated under reduced pressure, diluted in H2O (600 mL) under magnetic stirring and maintained at 4 ℃for one night to precipitate a maximum of chlorophylls. After filtration, the resulting solution was successively extracted with solvents with increasing polarities (petroleum ether,chloroform, ethyl acetate and n-butanol) [27,28]. The present study focused on the chloroform soluble part which was dried with anhydrous Na2SO4, filtered and concentrated under vacuum at room temperature to yield the CHCl3extract (4.0 g, yield: 0.27%, w/w). The chloroform extract was fractionated by column chromatography(120 g of silica gel; CH2Cl2/EtOAc/MeOH step gradients) to yield 23 fractions (F1-F23), combined according to their TLC profiles.

    Fraction F3 (26.2 mg) (CH2Cl2/EtOAc 98:2) was subjected to preparative TLC on silica gel; eluting with petroleum ether/EtOAc /acetone (6:3:1) yielded vanillin 1 as white crystals (3.5 mg) [29,30]. Fractions F4 (12.2 mg) (CH2Cl2/EtOAc 98:2), F5 (13.0 mg)(CH2Cl2/EtOAc 98:2) and F6 (28.5 mg) (CH2Cl2/EtOAc 95:5) were combined and rechromatographed by CC (600 mg of silica gel;cyclohexane/EtOAc/acetone step gradients) to yield 21 subfractions(F’1-F’21) according to TLC profiles. Subtraction F’3 (cyclohexane/ EtOAc/acetone 6:6:2) yielded (-)-arctigenin 2 (3.2 mg) [17, 31] and Subtraction F’4 (cyclohexane/EtOAc/acetone 5:2.5:2.5) gave paridol 3 (4.5 mg) [32, 33]. Fraction F8 (CH2Cl2/EtOAc 95:5) (44.4 mg) yielded up on concentration a yellowish compound which was washed with MeOH to obtain eupatilin 4 (7.5 mg) as needles [11, 34]. Fraction F10 (CH2Cl2/EtOAc 87.5:12.5) (19.60 mg) was chromatographed on preparative plates of silica gel eluted with CH2Cl2/EtOAc (4:1) to give jaceosidin 5 as a yellowish powder (5.0 mg) [35, 36].

    2.4. Cell cultures

    The human cancer cell lines included the A549 (Deutsche Sammlung von Mikroorganismen und Zellkulturen, DSMZ code ACC107), NSCLC carcinoma, the U373 (European Collection of Cell Culture, ECACC 08061901) glioblastoma, the PC3 prostate carcinoma (DSMZ code ACC465), the Hs683 glioma (American Type Culture Collection, ATCC code HTB-138) and the MCF7(DSMZ code ACC115) breast adenocarcinoma. The murine tumor cell line included the B16-F10 (American Type Culture Collection ATCC code CRL-6475) melanoma.

    2.4.1. Viability assay

    The cytotoxic properties of the raw chloroform extract and isolated compounds were assessed, using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay [37,38]. Briefly, this test is based on the capability of living cells to reduce the yellow MTT to a blue formazan compound, a reaction mediated by the mitochondrial succinate dehydrogenase. Cells were seeded (cells per well, A549: 1 500; B16F10: 1 000; Hs683:1 500; MCF7:2 800; PC3:3 000;U373:1 800) and allowed to adhere for 24 h before adding test compounds (100 μL; final concentrations from 10-4M to 10-8M). In the same condition, for the chloroform extract, cells were seeded(cells per well, A549: 1 200; MCF7: 2 500; U373: 1 800); 100 μL;final concentrations from 100 μg/mL to 10-2μg/mL). The cells in medium alone without drug were considered as a negative control. After 72 h contact, the culture medium was replaced by a 0.5 mg/mL MTT solution in RPMI medium without phenol red (100 μL/well). After 3 h incubation, the formazan crystals were centrifuged and dissolved in 100 μL/well of DMSO. The absorbance of each well was then measured at 570 nm and 690 nm (reference) wavelength. The IC50values were calculated as follows:

    IC50= [(X2 - X1) x (50 - Y1) / ( Y2 - Y1)]+ X1, where

    X1 and X2: are the higher and lower concentrations that border the concentration that reduces the global cell growth by the value closest to 50 %.

    Y1 and Y2: are the mean percentages of viable cells at the X1 and X2 concentrations.

    2.5. Antimicrobial and antifungal assays

    2.5.1. Microorganisms

    The microorganisms used in the antimicrobial tests were: (1)Gram-positive bacteria: Staphylococcus aureus ATCC 6538 (S. aureus ATCC6538 ), Staphylococcus aureus C98506 (S. aureus C98506), Staphylococcus aureus C100459 (S. aureus C100459)and Staphylococcus aureus ATCC 33591(S. aureus ATCC 33591);(2) Gram-negative bacteria: Escherichia coli ATCC 25922 (E. coli ATCC 25922) and a plant pathogen, Pseudomonas syringae DC 3000; (3) plant pathogen fungi: Fusarium oxysporum, Fusarium oxysporum sporulent, Cladosporium cucumerinum, Botrytis cinerea,Colletotrichum lagenarium and Pythium aphanidermatum; and (4)a plant pathogen yeast: Rhodotorula aurantiaca. The ATCC strains were obtained from the American Type Culture Collection; strains C98506 and C100459 were clinical isolates, a generous gift from the Centre Hospitalier Universitaire of Charleroi, Belgium (Mr. Lerson). Strains C98506, C100459 and ATCC 33591 are methicillin-resistant S. aureus (MRSA). The different plant pathogens were provided by the Centre Wallon de Biologie Industrielle, Bio-Industrie Unité Gembloux Agro-Bio Tech, Université de Liège, 5030 Gembloux,Belgique (Dr. Ongena).

    2.5.2. Direct and indirect antimicrobial effects

    Direct and indirect antibacterial effects were evaluated by a broth microdilution method[39]. The raw extract and isolated compounds,dissolved in DMSO, were further diluted in Mueller Hinton broth(MHB), the final DMSO concentration being maximum 4%. These solutions were transferred into 96-wells plates and serially diluted using MHB. The bacterial inoculum prepared from an overnight culture, diluted in 0.85 % NaCl to achieve 0.5 Mc Farland (108cells/mL), was further diluted 1/100 to be inoculated in the 96-wells plates (100 μL/well). The plates were incubated at 37 ℃for 24 h, added with an aqueous solution of MTT (0.8 mg/mL)and reincubated for 4 h. The minimum inhibitory concentrations(MIC) were the lowest concentrations that completely inhibited the growth of microorganisms, detected by unaided eyes using the MTT staining.

    2.5.3. Direct and indirect antibacterial bioautography

    TLC was performed for the extract and the purified compounds on precoated silica gel 60 F254glass plates (Merck, Darmstadt,Germany). Plates were thoroughly dried at room temperature. One mL of 0.5 Mc Farland microorganism suspension was added to 9 mL MH agar (107CFU/mL) at 37 ℃ and poured on the TLC plates. After solidification, the plates were incubated overnight at 37 ℃. The bioautography was subsequently visualized by spraying MTT(0.8 mg/mL) followed by an additional incubation at 37 ℃ for 4 h[40].

    To study indirect antibacterial activity against MRSA, a subinhibitory concentration of penicillin V (1 μg/mL) was incorporated in the mixture of MHB and agar; products with no direct antibacterial activity were selected, chromatographed, and bioautographed with this medium as described above.

    3. Results

    3.1. Structural elucidation of compounds 1-5

    The structures of the isolated compounds were established by spectral analysis, mainly UV-Vis, HRESI-MS,1H-,13C-, and 2DNMR (COSY, ROESY, HSQC and HMBC) as well as by comparing their spectroscopic data with those reported in the literature.

    Vanillin 1: White crystals; MP = 82 ℃;UV (MeOH)λmax(nm): 230,279, 309; HRESI-QTOF -MS (positive mode) m/z: 153.0545 [M+H]+(calculated for C8H9O3: 153.0546), 175. 0372 [M+Na]+(calculated for C8H8O3Na: 175.0366), 191.0216 [M+K]+(calculated for C8H8O3K: 191.0105), measured exact mass: 152.0471 (calculated for C8H8O3: 152.0473), molecular formula C8H8O3;1H NMR (300 MHz, CDCl3)δ(ppm, J /Hz): 9.83 (1H, s, H-7) ,7.44 (1H, d, J = 1.8 Hz, H-2),7.41 (1H, dd, J = 9.0, 1.8 Hz, H-6), 7.03, 1H, d, J = 9.0 Hz, H-5),6.62 (1H, brs, 4-OH) , 3.98 (3H, s, OCH3-3);13C NMR (75 MHz,CDCl3)δ (ppm): 190.86 (C, C-7), 151.62 (C, C-4), 147.05 (C, C-3),130.33 (C, C-1), 127.45 (CH, C-6), 114.04 (CH, C-5), 108.75 (CH,C-2), 56.40 (CH3, OCH3-3).

    (-)-Arctigenin 2: White powder; MP = 103 ℃; [α]20D= -17.27o(EtOH, c, 0.145); HRESI-QTOF-MS (positive mode) m/z: 373.1655 [M+H]+(calculated for C21H25O6: 373.1646), 395.1478[M+Na]+(calculated for C21H24O6Na: 395.1467), measured exact mass:372.1569 (calculated for C21H24O6: 372.1577). These data led to the molecular formula C21H24O6; HRESI-QTOF-MS/MS: m/z: 355.1556 [M+H-H2O]+(C21H23O5) which confirm the presence of a hydroxyl group;1HNMR (600 MHz, CDCl3)δ(ppm, J /Hz): 6.80(1H, d, J = 7.9 Hz, H-5’), 6.72 (1H, d, J = 8.1 Hz, H-5), 6.62 (1H,d, J= 1.7 Hz, H-2’), 6.59 (1H, dd, J = 7.9, 1.7 Hz, H-6’), 6.53 (1H,dd, J = 8.1, 1.7 Hz, H-6), 6.44 (1H, d, J = 1.7 Hz, H-2), 5.50 (1H,brs, 4’-OH), 4.12 (1H, dd, J=9.0, 7.4 Hz, H-9α), 3.87 (1H, dd, J = 9.0, 7.6 Hz, H-9β), 3.83 (3H, s, OCH3-3’), 3.80 (3H, s, OCH3-4),3.79 (3H, s, OCH3-3), 2.92 (1H, dd, J = 14.1, 5.3 Hz, H-7’a), 2.89(1H, dd, J = 14.1, 7.1 Hz, H-7’b), 2.61(1H, dd, J = 14.7, 7.4 Hz,H-7a), 2.54 (1H, m, H-8’), 2.52 (1H, m*, H-7b), 2.47 (1H, m, H-8),*: partially overlapped by the signal of H-8’;13C NMR (150 MHz,CDCl3) δ (ppm): 178.96 (C, C-9’), 149.24 (C, C-3), 148.05 (C, C-3’),146.91 (C, C-4), 144.76 (C, C-4’), 130.65 (C, C-1), 129.72 (C, C-1’),122.32 (CH, C-6’), 120.80 (CH, C-6), 114.31 (CH, C-5’), 111.97(CH, C-2’), 111.71 (CH, C-2), 111.48 (CH, C-5), 71.53 (CH2, C-9),56.12 (CH3, OCH3-4), 56.07 (CH3, OCH3-3’), 56.02 (CH3, OCH3-3),46.82 (CH, C-8’), 41.14 (CH, C-8), 38.42 (CH2, C-7), 34.74 (CH2,C-7’). Our results which were confirmed by the analysis of the ROESY spectrum experiment complete the spectroscopic data previously reported for this molecule [31, 41].

    Paridol 3: White powder; MP = 128 ℃; HRESI-QTOF-MS(positive mode) m/z: 153.0544 [M+H]+(calculated for C8H9O3: 153.0546), 175.0369 [M+Na]+(calculated for C8H8O3Na: 175.0369),343.0543 [2M+K]+(calculated for C16H16O6K: 343.0546), measured exact mass: 152.0472, (calculated for C8H8O3: 152.0473), molecular formula C8H8O3.

    HRESI-QTOF-MS/MS of [M+H]+: 153.0547 [M+H]+, 135.0239[M+H-H2O]+, 121.0289 [M+H- CH3OH]+, these two last ions confirmed the presence of the hydroxyl and methoxyl groups in the molecule;1H NMR (300 MHz, CDCl3)δ(ppm, J /Hz): 7.95 (2H, d,J = 8.9 Hz, H-2 & H-6), 6.86 (2H, d, J= 8.9 Hz, H-3 & H-5), 5.98(1H, brs, 4-OH), 3.88 (3H, s, OCH3-7) ;13C NMR (75 MHz, CDCl3) δ167.08 (C, C-7), 159.90 (C, C-4), 132.06 (CH, C-2 & C-6),122.93 (C, C-1), 115.33 (CH, C-3 & C-5), 52.08 (CH3, OCH3-7). Eupatilin 4: Yellow crystals; MP = 236 ℃; UV (MeOH)λmax(nm):276, 340; +NaOH: 276, 320, 360 (with hypochromic effect);+AlCl3: 282, 368; + AlCl3+ HCl: 283, 361; + NaOAc: 276, 366;+NaOAc +H3BO3: 276, 357; HRESI-QTOF-MS (positive mode)m/z:345.0968 [M+H]+(calculated for C18H17O7: 345.0969), 367.0788[M+Na]+(calculated for C18H16O7Na: 367. 0788), 383.0537[M+K]+(calculated for C18H16O7K: 383.0528), 689.1736 [2M+H]+(calculated for C36H33O14: 689.1865), 712.1717 [2M+Na]+(calculated for C36H32O14Na: 712.1718), 727.1077 [2M+K]+(calculated for C36H32O14K: 712.1424), measured exact mass: 344.0888 (calculated for C18H16O7: 344.0896), molecular formula C18H16O7;1H NMR (400 MHz, DMSO-d6)δ(ppm, J/Hz): 13.04 (1H, s, OH-5), 7.68 (1H,dd, J = 8.5, 2.0 Hz, H-6’), 7.56 (1H, d, J = 2.0 Hz, H-2’), 7.13 (1H,d, J = 8.5 Hz, H-5’), 6.97 (1H, s, H-3), 6.64, (1H, s, H-8), 3.88(3H,s, 3’-OCH3), 3.85, (3H, s, 4’-OCH3) 3.75, (3H, s, 6-OCH3) ;13C NMR (100 MHz, DMSO-d6); δ (ppm): 182.01 (C, C-4), 163.26 (C,C-2),157.12 (C, C-7), 152.83 (C, C-5), 151.96 (C, C-9), 149.06 (C,C-4’), 148.84 (C, C-3’), 131.11 (C, C-6), 122.83 (C, C-1’), 120.10(CH, C-6’), 111.55 (CH, C-5’), 109.26 (CH, C-2’), 104.22 (C,C-10), 103.36 (CH, C-3), 94.33 (CH, C-8), 59.97 (CH3, OCH3-6),55.88 (CH3, OCH3-4’), 55.76 (CH3, OCH3-3’).

    Jaceosidin 5: Yellowish powder; MP = 237 C, UV (MeOH)λmax:276,346; + NaOH: 276, 314, 360 (with hyperchromic effect); + AlCl3: 282, 368; + AlCl3+ HCl: 283, 361; + NaOAc: 278, 366; + NaOAc + H3BO3: 276, 357; HRESI-QTOF-MS (positive mode) m/z: 331.0811(calculated for C17H15O7: 331.0812), 353.0625 [M+Na]+(calculated for C17H14O7Na: 353.0632), 661.1542 [2M+H]+(calculated for C34H29O14: 661.1552), 683.1485 [2M+Na]+(calculated for C34H28O14Na: 683.1371),701.0942 [2M+K]+(calculated for C34H28O14K: 701.1137), 991.2454 [3M+H]+(calculated for C51H43O21: 991.2291), measured exact mass: 330.0744, (calculated for C17H14O7: 330.0740), molecular formula C17H14O7;1H NMR (400 MHz, CH3OH-d4)δ(ppm, J /Hz): 7.52 (1H, dd, J = 8.5, 2.0 Hz,H-6’), 7.50 (1H, d, J = 1.9 Hz, H-2’), 7.48 (1H, d, J = 8.5 Hz, H-5’),6.94 (1H, s, H-8), 6.64 (1H, s, H-3), 3.96 (3H, s, OCH3-3’), 3.88(3H, s, OCH3-6).13C NMR (75 MHz, CH3OH-d4)δ(ppm): 184.21(C, C-4), 166.36 (C, C-2), 158.92 (C, C-7), 154.83 (C, C-5), 154.70(C, C-9), 151.70 (C, C-4’), 149.44 (C, C-3’), 132.92 (C, C- 6),123.90 (C, C-1’), 121.64 (C, C-6’), 116.91 (CH, C-5’), 110.34 (CH,C-2’), 105.58 (C, C-10), 103.59 (CH, C-3), 95.65 (CH, C- 8), 61.04(CH3, OCH3-6), 56.50 (CH3, OCH3-3’).

    3.2. Biological activities

    3.2.1. Cytotoxic effects

    The CHCl3extract showed cell growth inhibitory activity against all 3 tested cell lines in the μg/mL range (Figure 1). These results are in agreement with previous data from an Algerian Centaurea species;the raw chloroformic extract of Centaurea musimomum (musimonum)Maire showed on KB cells, cytotoxic activity with growth inhibition of 89% at 10 μg/mL and 26% at 1 μg/mL[10].

    The evaluation of the isolated compounds 1 to 5 indicated moderate growth inhibitory/cytotoxic activities for eupatilin 4 (33 - 85 μM),jaceosidin 5 (32 - 49 μM), and (-)-arctigenin 2 (28 - 82 μM) (Figure 1).

    Figure 1. Cytotoxic effects (IC50) of the chloroform extract and the isolated compounds on different tumor cell lines.

    Our results showed that the chloroformic extract displayed more significant cytotoxic effects on cancer cells A549, MCF7 and U373 than the isolated pure compounds. This could be attributed to the synergetic interactions, more especially as this extract contains flavonoids for which it is thought that they may have a role to play in increasing the biological activity of other compounds by synergistic or other mechanisms[42].

    3.2.2. Antifungal and antimicrobial activities

    Although inactive against 7 tested microorganisms (fungi,bacteria and yeast, human or plant pathogens, Table 1), the raw extract was able to potentiate the effect of beta-lactam antibiotics on methicillin-resistant S. aureus (MRSA), reducing the minimal inhibitory concentrations (MICs) by a factor of 2-32-fold (Table 2). In a direct antibacterial TLC-bioautography assay, compound 5(jaceosidin), showed the highest activity (Tables 3 and 4). This was further investigated in a direct antibacterial assay, but the activity was relatively quite low on Gram positive and negative bacteria(MIC of 200 μg/mL on MRSA C98506, MRSA C100459, MRSA ATCC33591, MSSA ATCC6538, E. coli ATCC25922).

    Table 1MIC of the chloroform extract (μg/mL).

    Table 2Impact of the chloroform extract (200 μg/mL) on the susceptibility of the MRSA towards various beta-lactam antibiotics.

    Table 3Antibacterial activity of the purified compounds (1-5) measured by a direct TLC-bioautography.

    Table 4Antibacterial activity of eupatilin 4 and jaceosidin 5, measured by a direct TLC- bioautography with different amounts spotted.

    4. Discussion

    4.1. Phytochemical investigation

    We report in this work the isolation, purification and structural elucidation of chemical components of the chloroform soluble part of the MeOH-H2O (77%) extract obtained from the aerial parts(leaves and flowers) of C. diluta Ait. subsp. algeriensis (Coss. & Durieu) Maire (Asteraceae). No report is available so far on the phytochemistry of this species endemic to Algeria and Morocco. The present phytochemical investigation allowed the isolation of a lignan[(-)-arctigenin], flavonoids (eupatilin and jaceosidin) and phenols(vanillin and paridol). These results are in agreement with major studies reported on different Centaurea species[14,43-48].

    4.2. Biological activities

    4.2.1. Cytotoxic effects

    The raw extract and the isolated compounds were evaluated for cytotoxic activity. Moderate cytotoxic effects were observed for three compounds, (-)-arctigenin 2, eupatilin 4 and jaceosidin 5, with IC50s in the range 25-50 μg/mL. These data are in agreement with previous studies. Indeed, arctigenin (unspecified stereoisomer) as tumor specific agent that showed cytotoxicity to lung cancer (A549),liver cancer (HepG2) and stomach cancer (KATO III) cells, but not cytotoxic to several normal cell lines[49]. Arctigenin specifically inhibited the proliferation of cancer cells, which might consequently lead to the induction of apoptosis and is cytotoxic for human hepatocellular carcinoma cell lines, the IC50values after 12 h, 24 h and 48 h of treatment were respectively 38.29, 1.99 and 0.24 μM[50], the highest activity was demonstrated with IC50values of 0.73 μM (HeLa), 3.47 μM (MCF7) and 4.47 μM (A431)[46]. Eupatilin reduces aortic smooth muscle cell proliferation and migration by inhibiting PI3K, MKK3/6, and MKK4 activities (IC50, in Hec1A and KLE cells was 82.2 and 85.5 μM) [51, 52] and jaceosidin can induce G2/M cell cycle arrest by inactivating cdc25C-cdc2 via ATMChk1/2 activation[53].

    4.2.2. Antifungal and antimicrobial activities

    The raw extract and the isolated secondary metabolites were evaluated for antimicrobial activity. Although the raw extract didn’t show any antimicrobial effect on various bacteria or fungi, it could potentiate the effect of beta-lactam antibiotics on methicillinresistant S. aureus (MRSA), reducing the minimal inhibitory concentrations (MICs) by a factor of 2-32- fold. Jaceosidin 5 showed a moderate antimicrobial activity (MIC of 200 μg/mL on MRSA C98506, MRSA C100459, MRSA ATCC33591, MSSA ATCC6538,E. coli ATCC25922). This is in agreement with previous results [54]. Jaceosidin 5 had the greatest potency (MICs 16-32 μg/mL) against most S. aureus isolates [55].

    The identification of five compounds, vanillin, (-)-arctigenin,paridol, eupatilin and jaceosidin, from the aerial parts (leaves and flowers) of C. diluta Ait. subsp. algeriensis (Coss. & Dur.) M.(Asteraceae) emphasized the possible relevance of this plant for Algerian traditional medicine and it is surprising that no report has been published so far on eventual ethnomedical uses of this species. This may be due to a low distribution of this species or to an eventual toxicity that could have discouraged its use in traditherapy;this warrants investigation. A promising effect on bacterial resistance needs to be further investigated to identify the compound(s) able to reverse bacterial betalactam resistance.

    Declare of interest statement

    We declare that we have no conflict of interest.

    Acknowledgements

    We thank Algerian government for financial support, HCDS Djelfa for helping us in the process of exploration and the harvest of plant material, professor M. Kaabeche for the identification of the plant material and C. Delporte (Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles(ULB) for the mass spectrometry measurement.

    We thank Professor V. Mathieu (Laboratoire de Cancérologie et Toxicologie, Université Libre de Bruxelles) for access to her laboratory and help in performing the cytotoxicity experiments,Dr. Ongena Marc for access to her laboratory (Centre Wallon de Biologie Industrielle, Bio-Industrie Unité Gembloux Agro-Bio Tech,Université de Liège, 5030 Gembloux, Belgique) and Dr. E. Gicquel and J. Vancautenberg for the measurement of the optical rotation(Institut Meurice - Service de Chimie Organique Haute Ecole Lucia de Brouckère Avenue Emile Gryzon, 11070 Bruxelles).

    References

    [1] Ozenda P. Flore du Sahara septentrional et central. CNRS: Paris; 1958,p. 450-454.

    [2] Quezel P, Santa S. Nouvelle flore d’Algérie et des régions désertiques méridionales. Centre National de La Recherche Scientifique (CNRS): Paris; 1963,p.1016-1032.

    [3] Arif R, Küpeli E, Ergun F. The biological activity of Centaurea L. species. GU J Sci 2004; 17(4):149-164.

    [4] Baytop T. Türkiye’de bitkiler ile tedavi (Ge?mi?te ve bugün). Istanbul : Nobel T?p Kitabevleri; 1999,p.316.

    [5] Alapetite GP. Flore de la tunisie. Imprimerie Officielle de la République Tunisienne: Tunis; 1981, p. 1060.

    [6] Fakhfakh JA, Damak M. Sesquineolignans from the flowers of Centaurea furfuracea Coss. et Dur. (Asteraceae). Nat Prod Res 2007; 21(12):1037-1041.

    [7] Aclinou P, Boukerb A, Bouquant J, Massiot G, Le Men-Olivier, L. Plantes des Aures: Constituants des racines de Centaurea incana. Plant Med Phytother 1982; 16:303-309.

    [8] Djeddi S, Karioti A, Sokovic M, Stojkovic D, Seridi R, Skaltsa H. Minor sesquiterpene lactones from Centaurea pullata and their antimicrobial activity. J Nat Prod 2007; 70(11):1796-1799.

    [9] Djeddi S, Argyropoulou C, Chatter R. Analgesic properties of secondary metabolites from Algerian Centaurea pullata and Greek C. grisebachii ssp. grisebachii. J Appl Sci Res 2012; 8(6):2876-2880.

    [10] Medjroubi K, Benayache F, Bermejo J. Sesquiterpene lactones from Centaurea musimomum. Antiplasmodial and cytotoxic activities. Fitoterapia 2005; 76:744-746.

    [11] Ciric A, Karioti A, Glamoclija J, Sokovic M, Skaltsa H. Antimicrobial activity of secondary metabolites isolated from Centaurea spruneri Boiss. & Heldr. J Serb Chem Soc 2011; 76:27-34.

    [12] Koukoulitsa C, Geromichalos GD, Skaltsa H. VolSurf analysis of pharmacokinetic properties for several antifungal sesquiterpene lactones isolated from Greek Centaurea sp. J Comput Aid Mol Des 2005; 19(8): 617-623.

    [13] Seghiri R, Boumaza O, Mekkiou R, Benayache S, Mosset P, Quintana J, et al. A flavonoid with cytotoxic activity and other constituents from Centaurea africana. Phytochem Lett 2009; 2:114-118.

    [14] Kolli EH, León F, Benayache F, Estévez S, Quintana J, Estévez F, et al.Cytotoxic sesquiterpene lactones and other constituents from Centaurea omphalotricha. J Braz Chem Soc 2012; 23(5):977-983.

    [15] López-Rodríguez M, GarcíaV P, Zater H, Benayache S, Benayache F. Cynaratriol, a sesquiterpene lactone from Centaurea musimomum. Acta Cryst 2009; E65: o1867-o1868.

    [16] Shoeb M, MacManus SMM, Nahar L, Jaspars M, Celik S, Sarker SD,et al. Bioactivity of two Turkish endemic Centaurea species, and their major constituents. Braz J Pharmacog 2007; 17:155-159.

    [17] Shoeb M, Jaspars M, MacManus S, Celik S, Kong-Thoo-Lin P, Sarker S. Bioactivity of the extracts and the isolation of lignans from Centaurea dealbata. Ars Pharm 2006; 47(4): 315-322.

    [18] Shoeb M, MacManus SM, Kumarasamy Y, Jaspars M, Nahar L, Thoo-Lin PK, et al. Americanin, a bioactive dibenzylbutyrolactone lignan,from the seeds of Centaurea americana. Phytochemistry 2006; 67(21): 2370-2375.

    [19] Demir S, Karaalp C, Bedir E. Unusual sesquiterpenes from Centaurea athoa DC. Phytochem Lett 2016; 15: 245-250.

    [20] Aktumsek A, Zengin G, Guler GO, Cakmak YS, Duran A. Assessment of the antioxidant potential and fatty acid composition of four Centaurea L. taxa from Turkey. Food Chem 2013; 141(1): 91-97.

    [21] Milo?evi? Ifantis T, Soluji? S, Pavlovi?-Muratspahi? D, Skaltsa H. Secondary metabolites from the aerial parts of Centaurea pannonica(Heuff.) Simonk. from Serbia and their chemotaxonomic importance. Phytochemistry 2013; 94: 159-170.

    [22] Bohlmann F, Postulka S, Ruhnke J. Polyacetylenverbindungen, XXlV. Die Polyine der gattung Centaurea L. Chem Ber 1958; 91:1642-1656.

    [23] Bohlmann F, Rode KM, Zdero C. Polyacetylenverbindungen, CXVII. Neue polyine der gattung Centaurea. Chem Ber 1966; 99:3544-3551.

    [24] Bohlmann F, Wotschokowsky M, Laser J, Zdero C, Bach KD. Polyacetylenverbindungen, 15 1. Uber die Biogenese von Tri- und Tetraacetylenverbindungen. Chem Ber 1968; 101(6):2056-2061.

    [25] Ben Jemia M, Senatore F, Bruno M, Bancheva S. Components from the Essential oil of Centaurea aeolica Guss. and C. diluta Aiton from Sicily,Italy. Rec Nat Prod 2015; 9: 580-585.

    [26] Jahandiez E, Maire R. Catalogue des plantes du Maroc. Tome III. Dicotylédones et Supplément aux volumes I et II. Cat Pl Maroc 1934;3:813-814.

    [27] Boudjerda A, Zater H, Benayache S, Chalchat JC, Gonzalez-Platas J,Leon F, et al. A new guaianolide and other constituents from Achillea ligustica. Biochem Syst Ecol 2008;36:461-466.

    [28] Aliouche L, Zater H, Zama D, Bentamene A, Seghiri R, Mekkiou R,et al. Flavonoids of Serratula cichoracea and their antioxidant activity. Chem Nat Compd 2007; 43(5):618-619.

    [29] Wang YL, Huang W, Chen S, Chen SQ, Wang SF. Synthesis, structure and tyrosinase inhibition of natural phenols derivatives. J Chin Pharmaceut Sci 2011; 20(3):235-244.

    [30] Mohamad Nasir MI, Mohamad Yusof N, Mohd Salleh N, Coswald SS,Sollehuddin S. Separation of vanillin from oil palm empty fruit bunch lignin. Clean 2008; 36(3):287- 291.

    [31] Aslan ü, ?ksüz S. Chemical constituents of Centaurea cuneifolia. Turk J Chem 1999;23:15-20.

    [32] Gelbrich T, Braun DE, Ellern A, Griesser UJ. Four polymorphs of methylparaben:structural relationships and relative energy differences. Cryst Growth Des 2013; 13:1206-1217.

    [33] Sajan D, Joe H, Jayakumar VS, Zaleski J. Structural and electronic contributions to hyperpolarizabilityin methyl p-hydroxy benzoate. J Mol Struct 2006; 785:43-53.

    [34] Kitouni R, Benayache F, Benayache S. Flavonoids of the exudate of Centaurea calcitrapa. Chem Nat Compd 2015; 51(4):762-763.

    [35] Belkacem S, Belbache H, Boubekri C, Mosset P, Rached-Mosbah O,Marchioni E, et al. Chemical constituents from Centaurea parviflora Desf. Res J Pharm Biol Chem Sci 2014; 5(3):1275-1279.

    [36] Kubacey TM, Haggag EG, El-Toumy SA, Ahmed AA, El-Ashmawy IM, Youns MM. Biological activity and flavonoids from Centaurea alexanderina leaf extract. J Pharm Res 2012; 5(6):3352-3361.

    [37] Mathieu V, Wauthoz N, Lefranc F, Niemann H, Amighi K, Kiss R, et al. Cyclic versus hemi-bastadins pleiotropic anti-cancer effects: from apoptosis to anti-angiogenic and anti-migratory effects. Molecules 2013;18(3):3543-3461.

    [38] Mosmann T. Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65:55-63.

    [39] Okusa PN, Stévigny C, Devleeschouwer M, Duez P. Direct and indirect antimicrobial effects and antioxidant activity of Cordia gilletii De Wild(Boraginaceae). J Ethnopharmacol 2007; 112:476-481.

    [40] Okusa PN, Stévigny C, Devleeschouwer M, Duez P. Optimization of the culture medium used for direct TLC-bioautography. Application to the detection of antimicrobial compounds from Cordia gilletii De Wild(Boraginaceae). J Planar Chromatogr 2010; 23(4):245-249.

    [41] Damak N, Ghorbel H, Bahroun A, Damak M, Mc Killop A, Simmonds M. Contribution to structural investigation of Centaurea dimorpha compounds. J Soc Chim Tunis 2000; 4: 653-658.

    [42] Williamson EM. Synergy and other interactions in phytomedicines. Phytomedicine 2001; 8:401-409.

    [43] Yaglioglu AS, Demirtas I, Goren N. Bioactivity-guided isolation of antiproliferative compounds from Centaurea carduiformis DC. Phytochem Lett 2014; 8(5): 213-219.

    [44] Khammar A, Djeddi S. Pharmacological and biological properties of some Centaurea species. Eur J Sci Res 2012; 84(3): 398-416.

    [45] Erol-Dayi ?, Pekmez M, Bona M, Aras-Perk A, Arda N. Total phenolic contents, antioxidant activities and cytotoxicity of three Centaurea species: C. calcitrapa subsp. calcitrapa, C. ptosimopappa and C. spicata. Free Rad Antiox 2011; 1(2):32-36.

    [46] Csapi B, Hajdú Z, Zupkó I, Berényi á, Forgo P, Szabó P, et al. Bioactivity-guided isolation of antiproliferative compounds from Centaurea arenaria. Phytother Res 2010;24:1664-1669.

    [47] Karamenderes C, KhanS, Tekwani BL, Jacob MR, Khan IA. Antiprotozoal and antimicrobial activities of Centaurea species growing in Turkey. Pharm Biol 2006; 44(7):534-539.

    [48] Sarker SD, Kumarasamy Y, Shoeb M, Celik S, Eucel E, Middleton M,Nahar L. Antibacterial and antioxidant activities of three Turkish species of the genus Centaurea. Orient Pharm Exp Med 2005; 5(3):246-250.

    [49] Susanti S, Iwasaki H, Itokazu Y, Nago M, Taira N, Saitoh S, et al. Tumor specific cytotoxicity of arctigenin isolated from herbal plant Arctium lappa L. J Nat Med 2012;66:614-621.

    [50] Lu Z, Cao S, Zhou H, Hua L, Zhang S, Cao J. Mechanism of Arctigenin-Induced specific cytotoxicity against human hepatocellular carcinoma cell lines: Hep G2 and SMMC7721. PLoS One 2015; 10(5):e0125727.

    [51] Cho J H, Lee J G, YangY I, Kim J H, Ahn J H, Baek N I, et al. Eupatilin,a dietary flavonoid, induces G2/M cell cycle arrest in human endometrial cancer cells. Food Chem Toxicol 2011; 49(8):1737-1744.

    [52] Son JE, Lee E, Seo SG, Lee J, Kim JE, Kim J, et al. Eupatilin, a major flavonoid of Artemisia, attenuates aortic smooth muscle cell proliferation and migration by inhibiting PI3K, MKK3/6, and MKK4 activities. Planta Med 2013; 79(12):1009-1016.

    [53] Lee JG, Kim JH, Ahn JH, Lee KT, Baek NI, Choi JH. Jaceosidin,isolated from dietary mugwort (Artemisia princeps), induces G2/M cell cycle arrest by inactivating cdc25C- cdc2 via ATM-Chk1/2 activation. Food Chem Toxicol 2013; 55:214-221.

    [54] Song GC, Ryu SY, Kim YS, Lee JY, Choi JS, Ryu CM. Elicitation of induced resistance against Pectobacterium carotovorum and Pseudomonas syringae by specific individual compounds derived from native Korean plant species. Molecules 2013; 18(10):12877- 12895.

    [55] Barnes EC, Kavanagh AM, Ramu S, Blaskovich MA, Cooper MA,Davis RA. Antibacterial serrulatane diterpenes from the Australian native plant Eremophila microtheca. Phytochemistry 2013; 93:162-169.

    Document heading 10.1016/j.apjtm.2016.04.016

    15 February 2016

    *Corresponding author: Corresponding authors: Pierre Duez, Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique.

    E-mail : pierre.duez@umons.ac.be

    Fadila Benayache, Unité de recherche : Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques(VARENBIOMOL), Faculté des Sciences Exactes, Université Frères Mentouri Constantine 1, 25000 Constantine, Algérie.

    Tel. /Fax: +213 31 81 11 03

    E-mail: fbenayache@yahoo.fr

    国产区一区二久久| 亚洲国产看品久久| 天天一区二区日本电影三级 | 12—13女人毛片做爰片一| 色老头精品视频在线观看| 成人永久免费在线观看视频| 法律面前人人平等表现在哪些方面| 黄色a级毛片大全视频| 国产精品一区二区免费欧美| 无限看片的www在线观看| 大型黄色视频在线免费观看| videosex国产| 国产麻豆69| 91大片在线观看| 精品一区二区三区av网在线观看| 免费高清在线观看日韩| 欧美激情 高清一区二区三区| www.999成人在线观看| 国产一区二区三区综合在线观看| 少妇被粗大的猛进出69影院| 在线观看免费视频网站a站| 亚洲,欧美精品.| 精品国产乱码久久久久久男人| 国产成人精品在线电影| 精品久久久久久,| 女人高潮潮喷娇喘18禁视频| 精品国产亚洲在线| 久久久久国产精品人妻aⅴ院| 黄色 视频免费看| 欧美成人午夜精品| 国产成+人综合+亚洲专区| 久久精品亚洲熟妇少妇任你| 亚洲自偷自拍图片 自拍| 亚洲专区国产一区二区| 国产亚洲av高清不卡| 婷婷六月久久综合丁香| 午夜免费激情av| 亚洲第一电影网av| 国产99白浆流出| 亚洲av美国av| 亚洲人成电影免费在线| 咕卡用的链子| 美女午夜性视频免费| 中文字幕另类日韩欧美亚洲嫩草| 校园春色视频在线观看| 免费在线观看视频国产中文字幕亚洲| 精品国产一区二区三区四区第35| a级毛片在线看网站| 亚洲国产中文字幕在线视频| 亚洲色图av天堂| 午夜a级毛片| 国产成人精品无人区| 久久草成人影院| 午夜日韩欧美国产| 黄色成人免费大全| 国产一区二区三区在线臀色熟女| 91麻豆精品激情在线观看国产| 亚洲伊人色综图| 久久久久国产精品人妻aⅴ院| 亚洲人成网站在线播放欧美日韩| 精品国产亚洲在线| 国产亚洲av高清不卡| 亚洲三区欧美一区| 一边摸一边做爽爽视频免费| 亚洲五月色婷婷综合| 老司机深夜福利视频在线观看| 女性被躁到高潮视频| 侵犯人妻中文字幕一二三四区| 久久精品亚洲熟妇少妇任你| 18禁观看日本| 日韩欧美一区二区三区在线观看| 99国产综合亚洲精品| 黄片大片在线免费观看| 亚洲免费av在线视频| 最近最新中文字幕大全电影3 | 热99re8久久精品国产| 午夜成年电影在线免费观看| 91精品国产国语对白视频| 成年版毛片免费区| 亚洲 国产 在线| 日韩欧美一区二区三区在线观看| 黄色视频,在线免费观看| 国产精华一区二区三区| 国产精品亚洲av一区麻豆| 淫妇啪啪啪对白视频| 在线十欧美十亚洲十日本专区| 国产一区二区三区视频了| 啦啦啦免费观看视频1| 19禁男女啪啪无遮挡网站| 嫁个100分男人电影在线观看| 中出人妻视频一区二区| 色尼玛亚洲综合影院| 亚洲色图综合在线观看| 国产精品国产高清国产av| 欧美日韩精品网址| 成人av一区二区三区在线看| 亚洲全国av大片| 国产又色又爽无遮挡免费看| 黑人巨大精品欧美一区二区蜜桃| 亚洲三区欧美一区| 每晚都被弄得嗷嗷叫到高潮| 午夜视频精品福利| 在线视频色国产色| 97碰自拍视频| 精品人妻1区二区| 乱人伦中国视频| 国产免费av片在线观看野外av| 中文字幕另类日韩欧美亚洲嫩草| 正在播放国产对白刺激| 一进一出抽搐gif免费好疼| 亚洲无线在线观看| 国产成人啪精品午夜网站| 国产亚洲av高清不卡| 亚洲熟妇中文字幕五十中出| 亚洲成a人片在线一区二区| 亚洲国产精品合色在线| 一二三四社区在线视频社区8| 在线观看日韩欧美| 韩国av一区二区三区四区| 亚洲国产精品sss在线观看| 91av网站免费观看| 波多野结衣一区麻豆| 香蕉国产在线看| 女性生殖器流出的白浆| 满18在线观看网站| 91国产中文字幕| 久久精品国产99精品国产亚洲性色 | 久久国产精品影院| av免费在线观看网站| 午夜福利影视在线免费观看| 国语自产精品视频在线第100页| 中文字幕精品免费在线观看视频| 精品国产亚洲在线| 精品久久久久久,| 在线观看一区二区三区| 国产一区二区在线av高清观看| 黄色 视频免费看| 欧美日本中文国产一区发布| 欧美一级毛片孕妇| 亚洲五月色婷婷综合| 久久精品影院6| 亚洲欧美激情综合另类| 亚洲中文字幕日韩| 露出奶头的视频| 婷婷丁香在线五月| 国产欧美日韩一区二区三区在线| 成人免费观看视频高清| 欧美日韩福利视频一区二区| 亚洲色图 男人天堂 中文字幕| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品一区二区www| 欧美精品亚洲一区二区| 老熟妇仑乱视频hdxx| 少妇粗大呻吟视频| 亚洲自拍偷在线| 午夜影院日韩av| 亚洲精品在线观看二区| 午夜福利,免费看| 他把我摸到了高潮在线观看| 亚洲性夜色夜夜综合| 男人操女人黄网站| 成熟少妇高潮喷水视频| 99久久99久久久精品蜜桃| 激情视频va一区二区三区| 亚洲第一av免费看| 一进一出好大好爽视频| 午夜福利在线观看吧| 精品午夜福利视频在线观看一区| 成人欧美大片| 91在线观看av| 久久精品91蜜桃| 在线观看66精品国产| 国产欧美日韩一区二区三区在线| 亚洲视频免费观看视频| 视频区欧美日本亚洲| 狠狠狠狠99中文字幕| 国产精品秋霞免费鲁丝片| 日韩有码中文字幕| xxx96com| 激情在线观看视频在线高清| 日本黄色视频三级网站网址| 黑人巨大精品欧美一区二区蜜桃| 国产91精品成人一区二区三区| 亚洲一码二码三码区别大吗| 一卡2卡三卡四卡精品乱码亚洲| 咕卡用的链子| 悠悠久久av| 麻豆成人av在线观看| 亚洲美女黄片视频| 久久久水蜜桃国产精品网| 一边摸一边抽搐一进一小说| 亚洲avbb在线观看| 日韩精品青青久久久久久| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av电影不卡..在线观看| 亚洲av成人不卡在线观看播放网| 99riav亚洲国产免费| 亚洲中文日韩欧美视频| 婷婷六月久久综合丁香| 一区二区三区精品91| 亚洲欧洲精品一区二区精品久久久| 亚洲色图av天堂| 国产三级在线视频| 宅男免费午夜| 国产精品九九99| 亚洲精华国产精华精| 在线av久久热| 日日夜夜操网爽| 成人av一区二区三区在线看| 美女高潮到喷水免费观看| 亚洲第一欧美日韩一区二区三区| 嫩草影视91久久| 老鸭窝网址在线观看| 99国产精品99久久久久| 欧美黄色片欧美黄色片| 亚洲男人的天堂狠狠| 亚洲全国av大片| 国产精品 国内视频| 丁香六月欧美| 深夜精品福利| www.熟女人妻精品国产| 男女午夜视频在线观看| a在线观看视频网站| av电影中文网址| 亚洲,欧美精品.| www国产在线视频色| 久久精品91蜜桃| 黄频高清免费视频| 男男h啪啪无遮挡| 两个人免费观看高清视频| 国产麻豆69| 久久国产精品影院| cao死你这个sao货| 亚洲国产欧美网| 久久中文看片网| 国产亚洲欧美98| 麻豆成人av在线观看| 99热只有精品国产| 日韩三级视频一区二区三区| 午夜福利,免费看| 男人的好看免费观看在线视频 | 国产精品综合久久久久久久免费 | 欧美丝袜亚洲另类 | 18禁黄网站禁片午夜丰满| 亚洲情色 制服丝袜| 国产一级毛片七仙女欲春2 | 免费人成视频x8x8入口观看| 18禁黄网站禁片午夜丰满| 好看av亚洲va欧美ⅴa在| 婷婷精品国产亚洲av在线| 久久久久久国产a免费观看| 国产熟女午夜一区二区三区| 国产亚洲精品综合一区在线观看 | 精品国产乱子伦一区二区三区| 男女之事视频高清在线观看| videosex国产| 69精品国产乱码久久久| 国产亚洲精品av在线| 国产又爽黄色视频| 国产精华一区二区三区| 亚洲av片天天在线观看| 亚洲精品在线观看二区| 久久人妻熟女aⅴ| 亚洲avbb在线观看| 精品福利观看| 国产精品,欧美在线| 制服诱惑二区| 免费一级毛片在线播放高清视频 | av超薄肉色丝袜交足视频| www.精华液| 国产亚洲精品久久久久久毛片| 色综合亚洲欧美另类图片| 麻豆国产av国片精品| 超碰成人久久| 免费av毛片视频| 久久天躁狠狠躁夜夜2o2o| 亚洲精品国产色婷婷电影| 久久国产精品影院| 日韩精品免费视频一区二区三区| 嫩草影院精品99| 国产极品粉嫩免费观看在线| 国产精品电影一区二区三区| 人人妻,人人澡人人爽秒播| 国产精品爽爽va在线观看网站 | 满18在线观看网站| 黄色a级毛片大全视频| 一进一出抽搐gif免费好疼| 国产高清激情床上av| 亚洲av第一区精品v没综合| 欧美日韩亚洲国产一区二区在线观看| 欧美乱色亚洲激情| 丁香欧美五月| 一级,二级,三级黄色视频| 亚洲一区二区三区不卡视频| 露出奶头的视频| 欧美最黄视频在线播放免费| 久久精品影院6| 黄色丝袜av网址大全| 成人三级黄色视频| 女人被狂操c到高潮| 欧美+亚洲+日韩+国产| 真人一进一出gif抽搐免费| 亚洲欧美日韩另类电影网站| 亚洲av第一区精品v没综合| 午夜日韩欧美国产| 午夜福利免费观看在线| 一级毛片精品| 天堂√8在线中文| 制服人妻中文乱码| 婷婷六月久久综合丁香| 日本三级黄在线观看| 亚洲成人精品中文字幕电影| 国产97色在线日韩免费| 国产三级在线视频| 国产精品秋霞免费鲁丝片| 12—13女人毛片做爰片一| 男人的好看免费观看在线视频 | 色播在线永久视频| 99re在线观看精品视频| 国产av又大| 曰老女人黄片| 亚洲熟妇中文字幕五十中出| 人人妻人人澡人人看| 亚洲中文日韩欧美视频| 最好的美女福利视频网| 亚洲精品美女久久av网站| 一级作爱视频免费观看| 国内精品久久久久精免费| 亚洲 欧美 日韩 在线 免费| 91精品三级在线观看| 老司机午夜十八禁免费视频| 久久精品国产综合久久久| 亚洲中文字幕一区二区三区有码在线看 | 动漫黄色视频在线观看| 欧美激情 高清一区二区三区| bbb黄色大片| 国语自产精品视频在线第100页| 中文字幕人妻丝袜一区二区| 国产亚洲欧美98| 欧美不卡视频在线免费观看 | www.精华液| 色哟哟哟哟哟哟| 欧美激情高清一区二区三区| 精品日产1卡2卡| 国产99白浆流出| 视频区欧美日本亚洲| www国产在线视频色| 老熟妇乱子伦视频在线观看| 日韩 欧美 亚洲 中文字幕| 日日干狠狠操夜夜爽| 一卡2卡三卡四卡精品乱码亚洲| 一级a爱视频在线免费观看| 亚洲精品国产精品久久久不卡| 精品国产乱子伦一区二区三区| 美女高潮喷水抽搐中文字幕| 亚洲在线自拍视频| 亚洲av美国av| 久久青草综合色| 十八禁网站免费在线| 黄色a级毛片大全视频| 99精品欧美一区二区三区四区| xxx96com| 久久久水蜜桃国产精品网| 免费观看精品视频网站| 男人舔女人下体高潮全视频| 性少妇av在线| 妹子高潮喷水视频| 亚洲av成人av| 精品日产1卡2卡| 91字幕亚洲| 国产97色在线日韩免费| 国内精品久久久久久久电影| 国产成+人综合+亚洲专区| 在线免费观看的www视频| 久久久久久亚洲精品国产蜜桃av| 亚洲国产毛片av蜜桃av| 亚洲精品国产一区二区精华液| 99re在线观看精品视频| 色尼玛亚洲综合影院| 欧美黑人精品巨大| 亚洲国产中文字幕在线视频| 国产私拍福利视频在线观看| 黑人欧美特级aaaaaa片| 老汉色av国产亚洲站长工具| 麻豆一二三区av精品| 国产精品日韩av在线免费观看 | 丰满的人妻完整版| 两个人看的免费小视频| 天堂√8在线中文| 国产激情欧美一区二区| 嫩草影院精品99| 男女做爰动态图高潮gif福利片 | 涩涩av久久男人的天堂| 少妇的丰满在线观看| 精品久久久久久,| 中出人妻视频一区二区| 国产免费av片在线观看野外av| 天堂影院成人在线观看| 长腿黑丝高跟| 国产成人精品久久二区二区免费| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区中文字幕在线| 18禁裸乳无遮挡免费网站照片 | 女人高潮潮喷娇喘18禁视频| 99久久综合精品五月天人人| 午夜福利一区二区在线看| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看完整版高清| 欧美一级a爱片免费观看看 | 男女床上黄色一级片免费看| 国产1区2区3区精品| 亚洲无线在线观看| 在线免费观看的www视频| 午夜久久久在线观看| av视频免费观看在线观看| 国产精品一区二区在线不卡| 99国产精品免费福利视频| 怎么达到女性高潮| 久久久国产精品麻豆| 香蕉久久夜色| 亚洲国产欧美一区二区综合| 亚洲熟女毛片儿| 真人一进一出gif抽搐免费| 亚洲全国av大片| 最新在线观看一区二区三区| 亚洲片人在线观看| 制服人妻中文乱码| 美女高潮到喷水免费观看| 男男h啪啪无遮挡| 精品国产乱码久久久久久男人| 欧美激情久久久久久爽电影 | 丝袜在线中文字幕| 欧美色欧美亚洲另类二区 | 黑人欧美特级aaaaaa片| 色综合站精品国产| 天天一区二区日本电影三级 | 老熟妇仑乱视频hdxx| 精品无人区乱码1区二区| 久久久国产欧美日韩av| 免费久久久久久久精品成人欧美视频| 精品乱码久久久久久99久播| 中文字幕高清在线视频| 搡老妇女老女人老熟妇| 精品少妇一区二区三区视频日本电影| 成人手机av| 久久久久久人人人人人| 非洲黑人性xxxx精品又粗又长| 村上凉子中文字幕在线| 成人亚洲精品av一区二区| 99国产精品一区二区蜜桃av| 长腿黑丝高跟| 欧美成人免费av一区二区三区| 亚洲国产欧美日韩在线播放| 一个人观看的视频www高清免费观看 | avwww免费| 日本一区二区免费在线视频| 国产一级毛片七仙女欲春2 | 侵犯人妻中文字幕一二三四区| 国产野战对白在线观看| 在线观看免费日韩欧美大片| 亚洲国产欧美网| 国产在线观看jvid| 亚洲人成伊人成综合网2020| 国产99白浆流出| 国产精品自产拍在线观看55亚洲| 午夜久久久在线观看| av中文乱码字幕在线| 男人操女人黄网站| 欧美激情久久久久久爽电影 | 欧美国产日韩亚洲一区| 午夜福利18| 老司机午夜十八禁免费视频| 老汉色∧v一级毛片| 国产色视频综合| 精品福利观看| 母亲3免费完整高清在线观看| 黄网站色视频无遮挡免费观看| bbb黄色大片| 18禁观看日本| 欧美色视频一区免费| 在线观看www视频免费| 啪啪无遮挡十八禁网站| 中文字幕精品免费在线观看视频| 91成人精品电影| 中亚洲国语对白在线视频| 9191精品国产免费久久| 亚洲成av片中文字幕在线观看| 久久伊人香网站| 亚洲av成人不卡在线观看播放网| 18禁裸乳无遮挡免费网站照片 | 欧洲精品卡2卡3卡4卡5卡区| 日本欧美视频一区| 老司机午夜福利在线观看视频| 亚洲av成人不卡在线观看播放网| 一进一出抽搐动态| 国产精品免费视频内射| 久久人妻福利社区极品人妻图片| 午夜日韩欧美国产| 女生性感内裤真人,穿戴方法视频| 中文字幕最新亚洲高清| 男女下面进入的视频免费午夜 | 欧美黑人欧美精品刺激| 狂野欧美激情性xxxx| 久久久久亚洲av毛片大全| 一区在线观看完整版| 国产精品国产高清国产av| 色综合站精品国产| 免费一级毛片在线播放高清视频 | 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久人人人人人| 后天国语完整版免费观看| 动漫黄色视频在线观看| 久久久久九九精品影院| 精品不卡国产一区二区三区| av超薄肉色丝袜交足视频| 亚洲av五月六月丁香网| 久久精品国产亚洲av高清一级| 搞女人的毛片| 免费女性裸体啪啪无遮挡网站| 色综合婷婷激情| 国产三级黄色录像| 久久久久精品国产欧美久久久| 欧美成人午夜精品| 性色av乱码一区二区三区2| 国产精品电影一区二区三区| 亚洲欧美精品综合一区二区三区| av在线天堂中文字幕| 女人爽到高潮嗷嗷叫在线视频| 久久久久久大精品| 国产激情欧美一区二区| 91精品三级在线观看| 亚洲avbb在线观看| 久久人人精品亚洲av| 久久久久久亚洲精品国产蜜桃av| 亚洲 国产 在线| 成年人黄色毛片网站| 国产精品一区二区精品视频观看| 中文字幕另类日韩欧美亚洲嫩草| 色播在线永久视频| 黄色视频,在线免费观看| 亚洲 欧美一区二区三区| 日本 av在线| 免费在线观看亚洲国产| 婷婷精品国产亚洲av在线| 日韩一卡2卡3卡4卡2021年| 此物有八面人人有两片| 桃色一区二区三区在线观看| 久久久国产欧美日韩av| 大码成人一级视频| 午夜福利一区二区在线看| 午夜成年电影在线免费观看| 亚洲视频免费观看视频| 国产精品一区二区在线不卡| 丰满的人妻完整版| 国产成人啪精品午夜网站| 国产xxxxx性猛交| 女人精品久久久久毛片| 一区二区三区高清视频在线| 制服诱惑二区| 激情视频va一区二区三区| 午夜精品在线福利| 亚洲一区二区三区色噜噜| 后天国语完整版免费观看| 亚洲精品一卡2卡三卡4卡5卡| 欧美在线一区亚洲| 亚洲国产精品合色在线| 51午夜福利影视在线观看| 不卡av一区二区三区| 免费女性裸体啪啪无遮挡网站| 欧美av亚洲av综合av国产av| 一个人观看的视频www高清免费观看 | 最新在线观看一区二区三区| 国产精品久久久av美女十八| 美女扒开内裤让男人捅视频| 1024香蕉在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲欧美在线一区二区| 黑人操中国人逼视频| 久久精品国产亚洲av高清一级| 777久久人妻少妇嫩草av网站| 亚洲五月天丁香| 亚洲欧美日韩另类电影网站| 这个男人来自地球电影免费观看| 国产亚洲精品久久久久久毛片| 久久久久国内视频| 国产精品99久久99久久久不卡| 日韩大码丰满熟妇| 亚洲中文字幕日韩| 麻豆av在线久日| 手机成人av网站| 在线观看午夜福利视频| 亚洲专区国产一区二区| 又大又爽又粗| 日本黄色视频三级网站网址| 国产欧美日韩一区二区精品| 亚洲精品中文字幕在线视频| 在线观看免费午夜福利视频| 欧美+亚洲+日韩+国产| 在线av久久热| 19禁男女啪啪无遮挡网站| 国产精品免费视频内射| av片东京热男人的天堂| 校园春色视频在线观看| 亚洲国产毛片av蜜桃av| 精品午夜福利视频在线观看一区| 美女免费视频网站| 亚洲男人的天堂狠狠| 99热只有精品国产| 国产在线精品亚洲第一网站| 男女床上黄色一级片免费看| svipshipincom国产片| 国产精品久久久人人做人人爽| 亚洲情色 制服丝袜| 亚洲精品粉嫩美女一区| 国产成人免费无遮挡视频|