• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    磁性AgBr/Ag3PO4/ZnFe2O4復(fù)合催化劑的制備及光催化性能

    2016-09-09 09:35:58孟英爽
    物理化學(xué)學(xué)報(bào) 2016年8期
    關(guān)鍵詞:光電催化華北唐山

    孟英爽 安 逸 郭 謙 葛 明,3,*

    (1華北理工大學(xué)化學(xué)工程學(xué)院,河北唐山063009;2華北理工大學(xué)以升創(chuàng)新教育基地,河北唐山063009;3河北省環(huán)境光電催化材料重點(diǎn)實(shí)驗(yàn)室,河北唐山063009)

    ?

    磁性AgBr/Ag3PO4/ZnFe2O4復(fù)合催化劑的制備及光催化性能

    孟英爽1安逸2郭謙1葛明1,3,*

    (1華北理工大學(xué)化學(xué)工程學(xué)院,河北唐山063009;2華北理工大學(xué)以升創(chuàng)新教育基地,河北唐山063009;3河北省環(huán)境光電催化材料重點(diǎn)實(shí)驗(yàn)室,河北唐山063009)

    水熱法結(jié)合原位沉淀法成功制備新型磁性溴化銀/磷酸銀/鐵酸鋅(AgBr/Ag3PO4/ZnFe2O4)復(fù)合催化劑,并通過X射線衍射、能量色散X射線、場(chǎng)發(fā)射掃描電子顯微鏡、透射電子顯微鏡和紫外-可見漫反射光譜對(duì)其晶相結(jié)構(gòu)、組成、形貌及吸光性能進(jìn)行了表征。在可見光照射下,所制備的AgBr/Ag3PO4/ZnFe2O4復(fù)合催化劑光催化降解羅丹明B(RhB)的活性優(yōu)于Ag3PO4/ZnFe2O4、AgBr/ZnFe2O4和P25 TiO2。在酸性和堿性溶液中,AgBr/Ag3PO4/ZnFe2O4光催化劑呈現(xiàn)出優(yōu)良光催化性能。在AgBr/Ag3PO4/ZnFe2O4體系中,光催化降解RhB的速率隨著反應(yīng)體系溫度的升高而增大,由阿倫尼烏斯方程計(jì)算獲得反應(yīng)體系活化能為31.9 kJ·mol-1。AgBr/Ag3PO4/ZnFe2O4復(fù)合材料優(yōu)異的可見光催化活性歸因于光生電荷的有效分離,所產(chǎn)生的超氧自由基和空穴是RhB降解的主要活性物種。

    AgBr/Ag3PO4/ZnFe2O4;磁性;光催化;可見光;機(jī)理

    www.whxb.pku.edu.cn

    1 Introduction

    Many toxic organic compounds in water are recalcitrantly polluting due to their slow degradation by microorganisms. Heterogeneous photocatalysis becomes an advanced oxidation approach to removing hazardous organic compounds in water1,2. Currently,TiO2is the most frequently used photocatalyst3. However,its large band gap(~3.2 eV)invokes ultra-violet(UV) light to achieve a high photocatalytic activity,which significantly hinders its efficient utilization of solar energy.Therefore,it is highly desirable to develop highly efficient visible-light-driven photocatalysts using sunlight.

    In recent years,Ag-based catalysts with high visible-light photocatalytic activities have received increasing attention4. Among the reported Ag-based photocatalysts,silver orthophosphate(Ag3PO4)turns out to be the highest in quantum efficiency and has been widely used for organic pollutants degradation under visible light irradiation5,6.Our previous studies have confirmed that Ag3PO4possesses an excellent photocatalytic performance for dyes degradation under visible light7,8.Nonetheless,it is undeniable that the consumption of a large amount of noble metal silver prevents its practical application.Therefore,Ag3PO4-based composite photocatalysts have been developed to reduce Ag consumption without sacrificing their high photocatalytic performances9-11.

    Spinel zinc ferrite(ZnFe2O4)is a visible-light driven photocatalyst with high stability12.Moreover,ZnFe2O4can be feasibly recycled by an external magnet because it is one of the most interesting ferrites13.Recently,many efforts have been devoted to combining ZnFe2O4with other semiconductors to yield recyclable and high-performance composite catalysts.For instance,Chen et al.14employed a solvothermal-liquid phase deposition method to synthesize a Ag3PO4/ZnFe2O4composite photocatalyst with an enhanced photocatalytic activity for 2,4-dichlorophenol degradation.Ge et al.15reported a magnetic Ag3PO4/ZnFe2O4photocatalyst with a high photocatalytic efficiency for dye degradation using visible light.Li et al.16synthesized a magnetically separable ZnFe2O4-ZnO-Ag3PO4hollow nanospheres with photocatalytic activity superior to Ag3PO4/ZnFe2O4.According to previous reports,the AgBr/Ag3PO4composite photocatalysts is much better in photocatalysis than Ag3PO417,18.We anticipate that the hybrid AgBr/Ag3PO4/ZnFe2O4catalyst could be an excellent photocatalytic material based on the facts that the presence of ZnFe2O4in AgBr/Ag3PO4/ZnFe2O4composite reduces the consumption of AgBr/Ag3PO4,and the composite catalyst can be recycled by an external magnet15,16.

    Herein,a novel magnetic AgBr/Ag3PO4/ZnFe2O4composite photocatalyst was synthesized via the hydrothermal and in situ precipitation method.Its photocatalytic performance was verified with the photodegradation of rhodamine B(RhB)under the illumination of visible light.The pH-and temperature-dependent experiments were carried out to explore in detail the photocatalysis,recycling and possible photodegradation mechanism of the AgBr/Ag3PO4/ZnFe2O4system.

    2 Materials and methods

    2.1Preparation of catalysts

    All reagents were of analytical grade and used as received from Tianjin Guangfu Chemical Co.ZnFe2O4particles were synthesized via a simple hydrothermal route15.0.001 mol Zn(NO3)2·6H2O(AR) and 0.002 mol FeCl3·6H2O(AR)were dissolved in 30 mLdistilled water,and then 5 mL NaOH solution(3 mol·L-1,AR)was added under stirring.The mixture was transferred to a 50 mL Teflonlined autoclave and thermally treated at 180°C for 15 h.The precipitate was collected by centrifugation,washed with distilled water and pure ethanol for several times,and then calcined at 500°C for 3 h.

    The synthetic procedure of the AgBr/Ag3PO4/ZnFe2O4composite catalyst was as follows:100 mLdeionized water and 50 mL absolute ethanol were mixed,then 0.002 mol ZnFe2O4sample was added and sonicated for 20 min before 0.003 mol AgNO3(AR) was added and magnetically stirred for 30 min.0.001 mol Na2HPO4·12H2O(AR)was dissolved in 30 mL deionized water, and the prepared soluton was added dropwise into the ZnFe2O4suspension under magnetic stirring.After 30 min of stirring,20 mL NaBr solution(0.05 mol·L-1,AR)was added dropwise into above-prepared suspension.After stirred for another 30 min,the precipitate was collected by centrifugation,washed with distilled water and pure ethanol for several times,and then dried at 80°C for 2 h.

    For comparison,the Ag3PO4/ZnFe2O4or AgBr/ZnFe2O4catalyst was prepared in the absence of either NaBr or Na2HPO4.AgBr/ Ag3PO4could be obtained without addition of the ZnFe2O4nanoparticles.Pure Ag3PO4and AgBr were prepared by a direct ion-exchange method.P25 TiO2was purchased from Degussa AG, Germany.

    2.2Characterization

    The phase and purity of the as-prepared catalysts were analyzed by X-ray diffraction(XRD)(Rigaku D/Max-2500 X-ray diffractometer,Japan)using Cu Kαradiation,λ=0.154056 nm.The size and shape of the samples were characterized by field emission scanning electron microscope(FESEM,HITACHI S-4800,Japan) associated with energy dispersive X-ray spectroscopy(EDS) (Thermo Fisher,Noran 7,USA)and transmission electron microscopy(TEM,JEOL 2100,Japan).The UV-Vis diffuse reflectance spectroscopy(DRS)was achieved by a UV-Vis spectrophotometer(Shimadzu,UV-3600,Japan).The photoluminescence spectra of the samples were measured with a fluorescence spectrophotometer(FLsp920,Edinburgh).The magnetic measurement instrument(MPMS-XL-7,Quantum Design,USA)was employed to detect the magnetic property of the AgBr/Ag3PO4/ZnFe2O4catalyst at room temperature.

    2.3Photocatalytic tests

    The photocatalytic activities of the as-prepared photocatalysts for RhB degradation were investigated under visible light illumination.The photodegradation experiments were carried out in a simple photocatalytic reactor8,and the reaction temperature was controlled to be 25±1°C.The catalyst(0.10 g)was added into the RhB solution(10 mg·L-1,100 mL),followed by magnetical stirring in dark for 30 min.During the light irradiation,3 mL of the suspension was taken out at given time intervals and separated by centrifugation.The residual RhB concentration was calculated from the absorbance at 553 nm,as measured by a visible spectrophotometer(722s,China).Nitric acid and sodium hydroxide were used to adjust the initial pH of the RhB solution.The active species generated in the photocatalytic process were detected using in situ capture experiments.

    3 Results and discussion

    3.1Sample characterization

    The structure and purity of the as-synthesized samples were analyzed by XRD,as shown in Fig.1.All peaks in Figs.1a,1b,and 1c can be indexed to ZnFe2O4(JCPDS No.22-1012)19,Ag3PO4(JCPDS No.06-0505)7,and AgBr(JCPDS No.06-0438)20.A comparison of Figs.1a and 1b leads to that the sample(Fig.1d) contains two crystalline phases and is indeed the Ag3PO4/ZnFe2O4composite.The as-prepared sample(Fig.1e)exhibits the coexistence of ZnFe2O4,Ag3PO4and AgBr phases,indicating that the AgBr/Ag3PO4/ZnFe2O4composite catalyst was obtained via the hydrothermal and in situ precipitation method.Similarly,theAgBr/ ZnFe2O4composite catalyst is also successfully prepared(Figs.1a, 1c and 1f).The chemical composition of the AgBr/Ag3PO4/Zn-Fe2O4catalyst was verified by EDS(Fig.2).The detectable elements are O,P,Fe,Zn,Br and Ag(C comes from the conductive tape),further confirming the existence ofAgBr,Ag3PO4and Zn-Fe2O4.

    Fig.1 XRD patterns of the as-prepared samples

    Fig.2 EDS spectrum of theAgBr/Ag3PO4/ZnFe2O4composite catalyst

    Figs.3a,3b and 3c are the FESEM images of the as-synthesized samples.The pure ZnFe2O4sample is composed of nanoparticles (Fig.3a).As shown in Figs.3b and 3c,the ZnFe2O4nanoparticles are loaded at the surfaces of the Ag3PO4and AgBr particles,as compared with Fig.3a.According to Fig.3d,the AgBr/Ag3PO4/ ZnFe2O4sample depicts an irregular shape and varing size.The TEM image of the AgBr/Ag3PO4/ZnFe2O4sample is given in Fig.3e.Obviously,the ZnFe2O4nanoparticles are loaded on the AgBr/Ag3PO4composite particles.Unfortunately,the Ag3PO4and AgBr particles cannot be distinguished by either the low magnification TEM image or the HRTEM image which cannot detect AgBr21.

    The optical absorption properties of the as-synthesized samples were measured using a UV-Vis spectrophotometer.The UV-Vis diffuse reflectance spectra of the as-synthesized ZnFe2O4,Ag3PO4, AgBr,Ag3PO4/ZnFe2O4,AgBr/ZnFe2O4and AgBr/Ag3PO4/ZnFe2O4catalysts are displayed in Fig.4.Clearly,all samples exhibit absorption in the visible range(Fig.4).The band gap energy of a semiconductor can be calculated by the following formula22:

    where α,h,ν,A and Egare absorption coefficient,planck constant,light frequency,a constant and band gap energy,correspondingly. The value of n is determined from the type of optical transition of a semiconductor(n=1 for direct transition and n=4 for indirect transition).For ZnFe2O4,Ag3PO4and AgBr,n corresponds to 1,1 and 417,23.Thus,the Egestimated by extrapolation of the plots (Fig.5a)of(αhν)2versus hν are 1.85 and 2.42 eV for ZnFe2O4and Ag3PO4,respectively.The Egof AgBr is determined from a plot of (αhν)1/2versus hν about 2.35 eV(Fig.5b).

    The valence and conduction band edge potential of a semiconductor can be estimated according to the empirical equations shown below24:

    where EVBand ECBare the valence and conduction band edge potentials,respectively;X is the electronegativity of the semiconductor;Eeis the energy of free electrons on the hydrogen scale (about 4.5 eV(vs NHE)).The X values for ZnFe2O4,Ag3PO4and AgBr are 5.05,5.96 and 5.81 eV17,23.As a result,the EVBof Zn-Fe2O4,Ag3PO4and AgBr are calculated to be 1.48,2.67 and 2.49 eV(vs NHE),and their corresponding ECBare-0.37,0.25 and 0.14 eV(vs NHE).

    Fig.3 FESEM images of the as-obtained samples

    The magnetic property of the as-prepared AgBr/Ag3PO4/Zn-Fe2O4sample was investigated using a magnetic measurement instrument at room temperature.Fig.6 displays the magnetic hysteresis of the AgBr/Ag3PO4/ZnFe2O4catalyst under an applied magnetic field of±2 T.The saturation magnetization(Ms)of the AgBr/Ag3PO4/ZnFe2O4composite is determined to be 2.6 emu·g-1, which is lower than pure ZnFe2O415.The AgBr/Ag3PO4/ZnFe2O4photocatalyst could be separated and recycled from solution by applying an external magnetic field(inset in Fig.6),which is an important advantage for a magnetic photocatalyst.

    3.2Photocatalytic activity

    Fig.4 UV-Vis diffuse reflectance spectra of the as-synthesized catalysts

    Fig.5 Corresponding band gap energy of ZnFe2O4,Ag3PO4andAgBr

    Fig.6 Hysteresis loop ofAgBr/Ag3PO4/ZnFe2O4catalyst at room temperature

    The visible-light-driven photocatalytic activities of the assynthesized catalysts were investigated by the photodegradation of RhB in water.Previous studies indicate that the Ag3PO4/Zn-Fe2O4photocatalysts exhibit an excellent photocatalytic activity for organic pollutants degradation under visible light illumination14,15.In this work,the as-prepared Ag3PO4/ZnFe2O4catalyst shows a high photocatalytic performance under visible light,and the AgBr/ZnFe2O4composite also has an excellent photocatalytic capability(Fig.7).After irradiation for 90 min,RhB is nearly 100%degraded over the Ag3PO4/ZnFe2O4or AgBr/ZnFe2O4catalyst(Fig.7).The AgBr/Ag3PO4/ZnFe2O4catalyst possesses a higher photodegradation rate for RhB than Ag3PO4/ZnFe2O4and AgBr/ZnFe2O4(Fig.7).As shown in Fig.S1(Supporting Information),the photoluminescence(PL)emission intensity ofAgBr/ ZnFe2O4orAgBr/Ag3PO4/ZnFe2O4is weaker than that ofAg3PO4/ ZnFe2O4,suggesting that the AgBr/ZnFe2O4or AgBr/Ag3PO4/ ZnFe2O4catalyst has a higher separation rate of electrons and holes,compared with Ag3PO4/ZnFe2O410.According to the PL results(Fig.S1,Supporting Information),the photocatalytic activity of AgBr/ZnFe2O4should be higher than AgBr/Ag3PO4/Zn-Fe2O4,which is not true.This is because the particle size ofAgBr/ Ag3PO4/ZnFe2O4is smaller than that ofAgBr/ZnFe2O4(Figs.3c and 3d),leading to that the AgBr/Ag3PO4/ZnFe2O4catalyst possesses much more active sites.Moreover,the presence of Ag3PO4could adsorb more RhB molecules to promote the photocatalytic activity8.In addition,the as-obtained AgBr/Ag3PO4/ZnFe2O4photocatalyst shows a superior photocatalytic activity for RhB degradation compared with P25 TiO2under visible light illumination (Fig.7).

    Fig.7 Photodegradation of RhB by the different catalysts using visible light(pH 7,temperature 25°C)

    Fig.8 Photodegradation of RhB overAgBr/Ag3PO4/ZnFe2O4catalyst using visible light at different pH values(temperature 25°C)

    Dye wastewater from textile,cosmetics,printing industries and so on often has a wide range of pH and temperature values. Therefore,the RhB photodegradation over the AgBr/Ag3PO4/ ZnFe2O4composite catalyst was scrutinized at different pH (temperature)conditions under visible light irradiation.As shown in Fig.8,the AgBr/Ag3PO4/ZnFe2O4catalyst has a high photocatalytic activity for RhB degradation at various pH values,and the photocatalytic performance of AgBr/Ag3PO4/ZnFe2O4catalyst decreases with increasing pH.In our previous study,the photocatalytic ability of Ag3PO4/ZnFe2O4catalyst for RhB degradation is greatly suppressed in the acidic solution(pH=4)15.In this work, the AgBr/Ag3PO4/ZnFe2O4catalyst in the acidic condition shows a superior photocatalytic activity,and RhB was bearly completely degraded after 60 min at pH 4(Fig.8).This result is attributed to fact that the presence ofAgBr could protectAg3PO4to some extent in the acidic condition25.In addition,the photocatalytic activity of AgBr/Ag3PO4at pH 4 or 10 is lower than that of AgBr/Ag3PO4/ ZnFe2O4(Fig.8 and Fig.S2),indicating that the presence of Zn-Fe2O4could promote the photocatalytic activity of AgBr/Ag3PO4in both acid and basic conditions.This result further reveals that the AgBr/Ag3PO4/ZnFe2O4composite is a good photocatalytic material.

    Fig.9a compares the photocatalytic activity of AgBr/Ag3PO4/ ZnFe2O4catalyst for RhB degradation at various temperatures.As can be seen,the photodegradation rate for RhB slightly increases with temperature(Fig.9a).The Langmuir-Hinshelwood model is well established for photocatalysis at low concentrations of pollutants26.The equation is listed as below:

    where C0and C are the concentrations of the reactant at time 0 and t,respectively,and k is the apparent reaction rate constant.The k value can be obtained from plot slope of ln(C0/C)versus time.At 298,308,313,and 318 K,the k value was 0.0299,0.0364,0.0552 and 0.0654 min-1,correspondingly.The activation energy(Ea)of the reaction on AgBr/Ag3PO4/ZnFe2O4was determined by the slope of-lnk against 1/T(Fig.9b)according to the Arrhenius equation,and was determined as 31.9 kJ·mol-1.

    Further experiments were conducted to recycle the AgBr/ Ag3PO4/ZnFe2O4catalyst for RhB degradation under visible light irradiation.After every 60-min interval of the photocatalytic reaction,concentrated RhB solution was injected,and the catalyst separated by an external magnetic field was washed and put back into the reactor.The RhB degradation efficiency during each run is shown in Fig.10.

    Fig.9 (a)Photodegradation of RhB byAgBr/Ag3PO4/ZnFe2O4at different temperature(pH 7);(b)Arrhenius plot based on the effect of temperature

    For the first cycle,the AgBr/Ag3PO4/ZnFe2O4catalyst has an excellent photocatalytic performance,which is consistent with the above result(Fig.7).For the second run,the AgBr/Ag3PO4/Zn-Fe2O4composite possesses a lower capacity of removing RhB compared with the first run.This result is due to the formation of metallic Ag which could block the active sites7.Fig.S3(Supporting Information)displays the XRD patterns of the AgBr/ Ag3PO4/ZnFe2O4catalyst before and after the first cycle.Obviously,the Ag peak appears.However,it is worth noticing that the RhB degradation efficiency in the third,fourth and fifth runs tends to be stable compared with the result in the second run.This result is due to fact that the metallic Ag generated in the early stage could prevent the photocorrosion ofAgBr orAg3PO427.

    3.3Possible photodegradation mechanism in the

    AgBr/Ag3PO4/ZnFe2O4system

    Trapping experiments were carried out to detect the reactive oxygen species in the AgBr/Ag3PO4/ZnFe2O4system.Isopropanol, benzoquinone and ammonium oxalate were introduced into the reaction suspension as scavengers for·OH,O2-·and h+,correspondingly7,28.As shown in Fig.11,no obvious inhibition for RhB degradation can be observed when isopropanol is present,indicating that the OH·radicals are not the main reactive oxygen species.However,in the AgBr/Ag3PO4/ZnFe2O4system,the RhB photodegradation rate greatly decreases when benzoquinone or ammonium oxalate is added(Fig.11).The schematic diagram of the possible electron-hole separation in the AgBr/Ag3PO4/ZnFe2O4catalyst is given in Fig.12.Under visible light illumination,the photoinduced electrons could be collected on the conduction band (CB)ofAg3PO4,which can react with O2molecules to generate O2-·radicals,leading to the degradation of RhB29.Meanwhile,the holes accumulated on the valence band(VB)of ZnFe2O4are insufficient to oxidize the adsorbed H2O to OH·radicals14,but could directly attack the adsorbed dye molecules.Based on the above arguments, one may deduce that O2-·and h+are the main reactive oxygen species for RhB degradation in AgBr/Ag3PO4/ZnFe2O4system(Fig.12).

    Fig.10 Cycling test in the degradation of RhB byAgBr/Ag3PO4/ ZnFe2O4under visible light irradiation

    Fig.11 Photodegradation of RhB overAgBr/Ag3PO4/ZnFe2O4catalyst in the different solution

    Fig.12 Schematic diagram of the possible electron-h(huán)ole pairs separation inAgBr/Ag3PO4/ZnFe2O4catalyst

    4 Conclusions

    The magnetic AgBr/Ag3PO4/ZnFe2O4composite catalyst prepared via the hydrothermal and in situ precipitation route possessed a higher photocatalytic activity for RhB degradation than Ag3PO4/ZnFe2O4,AgBr/ZnFe2O4and P25 TiO2under visible light illumination.Such a composite photocatalyst showed an excellent photocatalytic performance in both acid and basic solutions.Its photodegradation rate for RhB increased with temperature.The light-produced superoxide radicals and holes in this composite catalyst were attributed to be the main active species for the RhB degradation.The AgBr/Ag3PO4/ZnFe2O4photocatalyst could be feasibly recycled by an external magnetic field.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1)Kubacka,A.;Fernández-García,M.;Colón,G.Chem.Rev. 2012,112,1555.doi:10.1021/cr100454n

    (2)Alfano,O.M.;Bahnemann,D.;Cassano,A.E.;Dillert,R.; Goslich,R.Catal.Today 2000,58,199.doi:10.1016/S0920-5861(00)00252-2

    (3)Chong,M.N.;Jin,B.;Chow,C.W.K.;Saint,C.Wat.Res. 2010,44,2997.doi:10.1016/j.watres.2010.02.039

    (4)Li,G.P.;Wang,Y.X.;Mao,L.Q.RSC Adv.2014,4,53649. doi:10.1039/C4RA08044K

    (5)Yi,Z.G.;Ye,J.H.;Kikugawa,N.;Kako,T.;Ouyang,S.X.; Stuart-Williams,H.;Yang,H.;Cao,J.Y.;Luo,W.J.;Li,Z.S.; Liu,Y.;Withers,R.L.Nat.Mater.2010,9,559.doi:10.1038/ nmat2780

    (6)Martin,D.J.;Liu,G.G.;Moniz,S.J.A.;Bi,Y.P.;Beale,A.M.; Ye,J.H.;Tang,J.W.Chem.Soc.Rev.2015,44,7808. doi:10.1039/C5CS00380F

    (7)Ge,M.;Zhu,N.;Zhao,Y.P.;Li,J.;Liu,L.Ind.Eng.Chem.Res. 2012,51,5167.doi:10.1021/ie202864n

    (8)Ge,M.Chin.J.Catal.2014,35,1410.[葛明.催化學(xué)報(bào), 2014,35,1410.]doi:10.1016/S1872-2067(14)60079-6

    (9)Ge,M.;Tan,M.M.;Cui,G.H.Acta Phys.-Chim.Sin.2014,30, 2107.[葛明,譚勉勉,崔廣華.物理化學(xué)學(xué)報(bào),2014,30, 2107.]doi:10.3866/PKU.WHXB201409041

    (10)Dong,C.;Wu,K.L.;Li,M.R.;Liu,L.;Wei,X.W.Catal. Commun.2014,46,32.doi:10.1016/j.catcom.2013.11.018

    (11)Hong,X.T.;Wu,X.H.;Zhang,Q.Y.;Xiao,M.F.;Yang,G.L.; Qiu,M.R.;Han,G.C.Appl.Surf.Sci.2012,258,4801. doi:10.1016/j.apsusc.2012.01.102

    (12)Fu,Y.S.;Wang,X.Ind.Eng.Chem.Res.2011,50,7210. doi:10.1021/ie200162a

    (13)Hochepied,J.F.;Bonvilie,P.;Pileni,M.P.J.Phys.Chem.B 2000,104,905.doi:10.1021/jp991626i

    (14)Chen,X.J.;Dai,Y.Z.;Huang,W.K.Mater.Lett.2015,145, 125.doi:10.1016/j.matlet.2015.01.097

    (15)Ge,M.;Chen,Y.Y.;Liu,M.L.;Li,M.J.Envi.Chem.Eng. 2015,3,2809.doi:10.1016/j.jece.2015.10.011

    (16)Li,J.Q.;Liu,Z.X.;Zhu,Z.F.J.Alloy.Compd.2015,636,229. doi:10.1016/j.jallcom.2015.02.176

    (17)Cao,J.;Luo,B.D.;Lin,H.L.;Xu,B.Y.;Chen,S.F.J.Hazard. Mater.2012,217-218,107.doi:10.1016/j.jhazmat.2012.03.002

    (18)Wang,B.;Gu,X.Q.;Zhao,Y.L.;Qiang,Y.H.Appl.Surf.Sci. 2013,283,396.doi:10.1016/j.apsusc.2013.06.121

    (19)Su,M.H.;He,C.;Sharma,V.K.;Asi,M.A.;Xia,D.H.;Li,X. Z.;Deng,H.Q.;Xiong,Y.J.Hazard.Mater.2012,211-212, 95.doi:10.1016/j.jhazmat.2011.10.006

    (20)Wu,Y.;Song,L.M.;Zhang,S.J.;Wu,X.Q.;Zhang,S.N.; Tian,H.F.;Ye,J.Y.Catal.Commun.2013,37,14.doi:10.1016/ j.catcom.2013.03.027

    (21)Jiang,J.;Li,H.;Zhang,L.Z.Chem.-A Eur.J.2012,18,6360. doi:10.1002/chem.201102606

    (22)Butler,M.A.J.Appl.Phys.1977,48,1914.doi:10.1063/ 1.323948

    (23)Chen,X.J.;Dai,Y.Z.;Liu,T.H.;Guo,J.;Wang,X.Y.;Li,F.F. J.Mol.Catal.A:Chem.2015,409,198.doi:10.1016/j. molcata.2015.08.021

    (24)Zhang,X.;Zhang,L.Z.;Xie,T.F.;Wang,D.J.J.Phys.Chem. C 2009,113,7371.doi:10.1021/jp900812d

    (25)Jia,C.;Xie,X.W.;Ge,M.;Zhao,Y.Q.;Li,Z.L.;Zhang,H.; Cui,G.H.Mat.Sci.Semicon.Proc.2015,36,71.doi:10.1016/j. mssp.2015.02.086

    (26)Sakkas,V.A.;Arabatzis,I.M.;Konstantinou,I.K.;Dimou,A. D.;Albanis,T.A.;Falaras,P.Appl.Catal.B:Environ.2004,49, 195.doi:10.1016/j.apcatb.2003.12.008

    (27)Liu,Y.P.;Fang,L.;Lu,H.D.;Li,Y.W.;Hu,C.Z.;Yu,H.G. Appl.Catal.B:Environ.2012,115-116,245.doi:10.1016/j. apcatb.2011.12.038

    (28)Katsumata,H.;Taniguchi,M.;Kaneco,S.;Suzuki,T.Catal. Commun.2013,34,30.doi:10.1016/j.catcom.2013.01.012

    (29)Yang,X.F.;Cui,H.Y.;Li,Y.;Qin,J.L.;Zhang,R.X.;Tang,H. ACS Catal.2013,3,363.doi:10.1021/cs3008126

    Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4Composite Catalyst

    MENG Ying-Shuang1AN Yi2GUO Qian1GE Ming1,3,*
    (1College of Chemical Engineering,North China University of Science and Technology,Tangshan 063009,Hebei Province,P.R. China;2Yisheng Innovation Education Base,North China University of Science and Technology,Tangshan 063009, Hebei Province,P.R.China;3Hebei Key Laboratory of Photocatalytic and Electrocatalytic Materials for Environment, Tangshan 063009,Hebei Province,P.R.China)

    Hydrothermal processing in conjunction with in situ precipitation were successfully applied to synthesize the magnetic composite catalyst silver bromide/silver phosphate/zinc ferrite(AgBr/Ag3PO4/ZnFe2O4). The phase structure,composition,morphology,and optical property of this material were subsequently assessed by X-ray diffraction,energy dispersive X-ray spectroscopy,field emission scanning electron microscopy, transmission electron microscopy,and UV-Vis diffuse reflectance spectroscopy.Under visible light illumination, the as-prepared AgBr/Ag3PO4/ZnFe2O4photocatalyst exhibited superior photocatalytic performance during rhodamine B(RhB)degradation compared withAg3PO4/ZnFe2O4,AgBr/ZnFe2O4,and P25 TiO2.This new catalyst also showed excellent photocatalytic activity in both acidic and basic solutions.The RhB photodegradation rate was slightly increased at higher temperatures,and the activation energy for this reaction was determined to be 31.9 kJ·mol-1according to theArrhenius equation.The high performance of theAgBr/Ag3PO4/ZnFe2O4catalyst can be attributed to efficient photo-induced charge separation,and the generation of superoxide radicals and holes that are responsible for RhB degradation.

    AgBr/Ag3PO4/ZnFe2O4;Magnetism;Photocatalysis;Visible light;Mechanism

    February 23,2016;Revised:May 6,2016;Published on Web:May 8,2016.

    O644;O649

    10.3866/PKU.WHXB201605081

    *Corresponding author.Email:geminggena@163.com.Tel:+86-31-52592574.

    The project was supported by the Natural Science Foundation of Hebei Province,China(B2014209182),Youth Foundation of Hebei Education

    Department,China(QN2014045)and College Students′Innovative Entrepreneurial Training Plan Program of North China University of Science and Technology,China(X2015117).

    河北省自然科學(xué)基金(B2014209182),河北省教育廳青年基金(QN2014045)和華北理工大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(X2015117)資助

    ?Editorial office ofActa Physico-Chimica Sinica

    [Article]

    猜你喜歡
    光電催化華北唐山
    中國(guó)農(nóng)業(yè)發(fā)展銀行唐山分行
    華北玉米市場(chǎng)將進(jìn)入筑底期
    唐山香酥饹馇圈
    液相沉積法制備W摻雜ZnO薄膜電極性能的研究
    王大根
    Literature Review on Context Translation Mode
    把唐山打造成為國(guó)家級(jí)節(jié)能環(huán)保產(chǎn)業(yè)基地
    光電催化技術(shù)在有機(jī)廢水處理中的應(yīng)用
    化工管理(2016年21期)2016-03-14 06:36:51
    華北明珠
    Ta/Al-Fe2O3薄膜電極的制備及其光電催化降解亞甲基藍(lán)性能
    免费黄网站久久成人精品| 一区福利在线观看| 国产日韩一区二区三区精品不卡| 汤姆久久久久久久影院中文字幕| 麻豆av在线久日| 两性夫妻黄色片| 日韩制服骚丝袜av| 亚洲综合色网址| av天堂久久9| 成人影院久久| 亚洲,一卡二卡三卡| 一级毛片我不卡| 亚洲欧美精品综合一区二区三区 | 亚洲图色成人| 一级爰片在线观看| 波多野结衣av一区二区av| 亚洲精品久久成人aⅴ小说| 人妻 亚洲 视频| 女性生殖器流出的白浆| 成人毛片a级毛片在线播放| 欧美日韩一级在线毛片| 又粗又硬又长又爽又黄的视频| 亚洲精品成人av观看孕妇| 免费看不卡的av| 叶爱在线成人免费视频播放| 亚洲av中文av极速乱| 亚洲国产av新网站| 搡老乐熟女国产| 亚洲婷婷狠狠爱综合网| 搡老乐熟女国产| 久久久国产一区二区| 一二三四中文在线观看免费高清| 久久 成人 亚洲| 亚洲国产精品成人久久小说| 熟妇人妻不卡中文字幕| 18+在线观看网站| 一级毛片黄色毛片免费观看视频| 国产一区二区三区av在线| 亚洲av男天堂| 又粗又硬又长又爽又黄的视频| 久久综合国产亚洲精品| 国产成人免费无遮挡视频| 毛片一级片免费看久久久久| 亚洲av免费高清在线观看| 热re99久久精品国产66热6| 熟妇人妻不卡中文字幕| 巨乳人妻的诱惑在线观看| 国产亚洲av片在线观看秒播厂| 99国产精品免费福利视频| 中文字幕另类日韩欧美亚洲嫩草| 最新的欧美精品一区二区| 亚洲av男天堂| 一级片'在线观看视频| 啦啦啦中文免费视频观看日本| 叶爱在线成人免费视频播放| 韩国av在线不卡| 亚洲av综合色区一区| 在线亚洲精品国产二区图片欧美| 一区福利在线观看| 美女高潮到喷水免费观看| 国产精品国产av在线观看| 欧美激情 高清一区二区三区| 国产av一区二区精品久久| 久久久国产欧美日韩av| 美女中出高潮动态图| 国产精品不卡视频一区二区| 十八禁网站网址无遮挡| 亚洲第一区二区三区不卡| 国产黄频视频在线观看| 搡女人真爽免费视频火全软件| 国产精品 欧美亚洲| 成人漫画全彩无遮挡| 丰满迷人的少妇在线观看| 一级毛片我不卡| 如何舔出高潮| 成年av动漫网址| 国产野战对白在线观看| 午夜免费男女啪啪视频观看| 国产欧美亚洲国产| 中文天堂在线官网| 美女主播在线视频| 亚洲内射少妇av| 看免费av毛片| 色婷婷久久久亚洲欧美| 老汉色∧v一级毛片| www.自偷自拍.com| 1024香蕉在线观看| 精品国产超薄肉色丝袜足j| 国产精品久久久久成人av| 伊人久久国产一区二区| 国产成人精品无人区| 中文字幕色久视频| 又粗又硬又长又爽又黄的视频| 涩涩av久久男人的天堂| 精品亚洲成a人片在线观看| 免费看不卡的av| 你懂的网址亚洲精品在线观看| 青草久久国产| 99久久中文字幕三级久久日本| 青青草视频在线视频观看| 久久免费观看电影| 纵有疾风起免费观看全集完整版| 免费观看a级毛片全部| 一级片'在线观看视频| 精品卡一卡二卡四卡免费| 97人妻天天添夜夜摸| 亚洲国产成人一精品久久久| 久久女婷五月综合色啪小说| av又黄又爽大尺度在线免费看| 下体分泌物呈黄色| 80岁老熟妇乱子伦牲交| 免费在线观看黄色视频的| 精品卡一卡二卡四卡免费| 欧美av亚洲av综合av国产av | 久久久亚洲精品成人影院| 国产日韩一区二区三区精品不卡| 亚洲av在线观看美女高潮| 亚洲第一区二区三区不卡| 国产精品欧美亚洲77777| 日韩一区二区三区影片| 久久久久久久久久人人人人人人| 欧美精品av麻豆av| 韩国精品一区二区三区| 精品人妻偷拍中文字幕| 美女xxoo啪啪120秒动态图| 女人被躁到高潮嗷嗷叫费观| 啦啦啦中文免费视频观看日本| 精品一区二区三区四区五区乱码 | 精品久久久久久电影网| 欧美日韩精品网址| 看免费成人av毛片| 亚洲精品国产一区二区精华液| 水蜜桃什么品种好| 美女高潮到喷水免费观看| 99久久中文字幕三级久久日本| av女优亚洲男人天堂| 欧美激情 高清一区二区三区| 少妇被粗大猛烈的视频| 一区二区三区乱码不卡18| 亚洲第一av免费看| freevideosex欧美| 精品国产国语对白av| 天天影视国产精品| 制服诱惑二区| 日本欧美国产在线视频| 岛国毛片在线播放| 欧美日韩亚洲国产一区二区在线观看 | 国产熟女欧美一区二区| 久久热在线av| 国产野战对白在线观看| 一区二区三区精品91| 男男h啪啪无遮挡| 欧美精品高潮呻吟av久久| 日韩一本色道免费dvd| 日韩成人av中文字幕在线观看| 精品人妻一区二区三区麻豆| av在线观看视频网站免费| 亚洲 欧美一区二区三区| 高清在线视频一区二区三区| 边亲边吃奶的免费视频| 国产免费视频播放在线视频| 日韩精品免费视频一区二区三区| 国产熟女午夜一区二区三区| www日本在线高清视频| 国产精品不卡视频一区二区| 成年女人毛片免费观看观看9 | 五月开心婷婷网| av片东京热男人的天堂| 激情视频va一区二区三区| 国产精品.久久久| 久久久久视频综合| 国产精品久久久久久精品古装| 国产白丝娇喘喷水9色精品| 日韩中文字幕视频在线看片| 国产精品久久久久久精品古装| 美女脱内裤让男人舔精品视频| 欧美国产精品一级二级三级| 男人舔女人的私密视频| 制服丝袜香蕉在线| 少妇猛男粗大的猛烈进出视频| 国产xxxxx性猛交| 国产一区二区三区av在线| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站在线观看播放| 99热网站在线观看| 丝袜在线中文字幕| 国产成人精品在线电影| 国产亚洲最大av| 老熟女久久久| 国产精品偷伦视频观看了| 丰满少妇做爰视频| 99re6热这里在线精品视频| 一本色道久久久久久精品综合| 亚洲五月色婷婷综合| 高清视频免费观看一区二区| 色哟哟·www| 性色av一级| 亚洲精品一二三| 亚洲第一区二区三区不卡| 亚洲精品国产av蜜桃| 女性生殖器流出的白浆| 国产精品亚洲av一区麻豆 | 日韩中文字幕视频在线看片| 午夜福利视频精品| 三上悠亚av全集在线观看| 欧美变态另类bdsm刘玥| 欧美日韩精品网址| 欧美黄色片欧美黄色片| av福利片在线| 一本大道久久a久久精品| 国产亚洲精品第一综合不卡| 国产免费福利视频在线观看| 色哟哟·www| 国产亚洲一区二区精品| 亚洲人成网站在线观看播放| 最新的欧美精品一区二区| 精品第一国产精品| 日韩一区二区三区影片| 高清视频免费观看一区二区| 日本午夜av视频| 久久青草综合色| 久久久久久人人人人人| 最近中文字幕2019免费版| 亚洲综合色网址| 最近的中文字幕免费完整| 久久久精品免费免费高清| 国产成人精品无人区| 国产色婷婷99| 久久99一区二区三区| 在线观看三级黄色| 国产黄色视频一区二区在线观看| 免费看不卡的av| 国产一区二区三区av在线| 一区二区三区四区激情视频| 中文字幕制服av| 99re6热这里在线精品视频| av福利片在线| 好男人视频免费观看在线| 精品亚洲乱码少妇综合久久| 99国产综合亚洲精品| 可以免费在线观看a视频的电影网站 | 国产亚洲最大av| 黄色配什么色好看| av一本久久久久| 三上悠亚av全集在线观看| 中文天堂在线官网| 亚洲四区av| 黄色一级大片看看| 国产一区二区 视频在线| 国产野战对白在线观看| 久久久精品国产亚洲av高清涩受| 免费看av在线观看网站| 国产精品国产三级专区第一集| 久久国内精品自在自线图片| 国产av精品麻豆| 中国国产av一级| 日韩视频在线欧美| 女人精品久久久久毛片| 18禁观看日本| av免费观看日本| 久久久久国产精品人妻一区二区| 在线天堂最新版资源| 看免费av毛片| 欧美黄色片欧美黄色片| 成人影院久久| 午夜福利一区二区在线看| 久久久精品国产亚洲av高清涩受| 国产精品熟女久久久久浪| 亚洲国产色片| 国产亚洲最大av| 最近的中文字幕免费完整| 秋霞伦理黄片| 日韩av不卡免费在线播放| 亚洲精品国产一区二区精华液| 亚洲国产精品成人久久小说| 巨乳人妻的诱惑在线观看| 天天躁夜夜躁狠狠久久av| 亚洲国产精品一区三区| 女的被弄到高潮叫床怎么办| 老司机影院毛片| 亚洲内射少妇av| 涩涩av久久男人的天堂| 免费黄色在线免费观看| 久久精品国产亚洲av涩爱| 久久久久久伊人网av| 色婷婷久久久亚洲欧美| 人妻一区二区av| 最新中文字幕久久久久| 免费在线观看视频国产中文字幕亚洲 | 波野结衣二区三区在线| 亚洲精品视频女| 久久ye,这里只有精品| 女人被躁到高潮嗷嗷叫费观| 免费女性裸体啪啪无遮挡网站| 久久热在线av| 精品人妻一区二区三区麻豆| 天天躁夜夜躁狠狠久久av| 欧美另类一区| 国产片特级美女逼逼视频| 成年动漫av网址| 这个男人来自地球电影免费观看 | 国产成人精品婷婷| 一边摸一边做爽爽视频免费| 国产白丝娇喘喷水9色精品| 日韩大片免费观看网站| 亚洲欧美精品综合一区二区三区 | 亚洲欧美成人综合另类久久久| 免费日韩欧美在线观看| 欧美变态另类bdsm刘玥| 五月伊人婷婷丁香| 一级毛片我不卡| 欧美变态另类bdsm刘玥| 精品国产乱码久久久久久小说| 国产老妇伦熟女老妇高清| 国产高清不卡午夜福利| 毛片一级片免费看久久久久| 欧美日本中文国产一区发布| 亚洲,一卡二卡三卡| 国产精品二区激情视频| av免费在线看不卡| 99久久精品国产国产毛片| 国产精品久久久av美女十八| a级毛片在线看网站| 高清不卡的av网站| 伊人久久国产一区二区| 日韩av不卡免费在线播放| 日日摸夜夜添夜夜爱| 亚洲伊人色综图| 99国产综合亚洲精品| 91久久精品国产一区二区三区| 熟妇人妻不卡中文字幕| 美女大奶头黄色视频| 综合色丁香网| tube8黄色片| 超色免费av| 久久精品国产综合久久久| 秋霞伦理黄片| 欧美日韩一级在线毛片| 五月天丁香电影| 日本黄色日本黄色录像| 久久久久国产一级毛片高清牌| 国产乱来视频区| 丝袜美腿诱惑在线| 在线观看美女被高潮喷水网站| 亚洲欧美色中文字幕在线| 成人黄色视频免费在线看| 国产成人aa在线观看| 精品国产一区二区三区久久久樱花| 日韩成人av中文字幕在线观看| 久久国产精品男人的天堂亚洲| 波多野结衣一区麻豆| 免费看av在线观看网站| 99香蕉大伊视频| 晚上一个人看的免费电影| 一区二区三区精品91| 青春草国产在线视频| 久久99精品国语久久久| 麻豆乱淫一区二区| 成人亚洲精品一区在线观看| 女的被弄到高潮叫床怎么办| 亚洲男人天堂网一区| 亚洲伊人久久精品综合| 99久国产av精品国产电影| 熟女av电影| 国产成人91sexporn| 日韩 亚洲 欧美在线| 欧美最新免费一区二区三区| 国产人伦9x9x在线观看 | 欧美xxⅹ黑人| 最近中文字幕高清免费大全6| 国产色婷婷99| 免费在线观看黄色视频的| 国产黄色视频一区二区在线观看| 女人久久www免费人成看片| 国产男女内射视频| 久久久久久人人人人人| 电影成人av| videossex国产| 亚洲成av片中文字幕在线观看 | 97人妻天天添夜夜摸| 久久女婷五月综合色啪小说| 国产成人a∨麻豆精品| 色94色欧美一区二区| 9191精品国产免费久久| 国产精品av久久久久免费| 一本久久精品| 男女下面插进去视频免费观看| 下体分泌物呈黄色| 久久99精品国语久久久| 中文字幕制服av| 日本wwww免费看| 乱人伦中国视频| 精品久久久久久电影网| 亚洲第一av免费看| 91久久精品国产一区二区三区| 亚洲精品一二三| 观看美女的网站| 亚洲久久久国产精品| 欧美日韩视频高清一区二区三区二| 欧美黄色片欧美黄色片| 啦啦啦视频在线资源免费观看| 欧美激情极品国产一区二区三区| 嫩草影院入口| 寂寞人妻少妇视频99o| 9热在线视频观看99| 亚洲一区二区三区欧美精品| 亚洲精品在线美女| 免费在线观看黄色视频的| 99久久人妻综合| 日日撸夜夜添| 精品一区二区三卡| av天堂久久9| 91精品三级在线观看| 日日爽夜夜爽网站| 欧美激情高清一区二区三区 | 精品一品国产午夜福利视频| 青春草亚洲视频在线观看| 免费在线观看完整版高清| 久久99热这里只频精品6学生| 久久鲁丝午夜福利片| 国产成人a∨麻豆精品| 精品国产露脸久久av麻豆| 老司机影院成人| 日韩一本色道免费dvd| 激情视频va一区二区三区| 精品国产乱码久久久久久小说| 久久精品国产鲁丝片午夜精品| 99久久中文字幕三级久久日本| 男人添女人高潮全过程视频| 丰满迷人的少妇在线观看| 国产欧美亚洲国产| 夜夜骑夜夜射夜夜干| 人成视频在线观看免费观看| 麻豆乱淫一区二区| 免费播放大片免费观看视频在线观看| 欧美精品高潮呻吟av久久| 亚洲欧洲日产国产| 午夜福利,免费看| 国产1区2区3区精品| 亚洲成人av在线免费| 久久国内精品自在自线图片| 这个男人来自地球电影免费观看 | 国产一区二区激情短视频 | 国产精品偷伦视频观看了| 中文字幕制服av| 色吧在线观看| 午夜福利乱码中文字幕| 亚洲精品久久午夜乱码| 国产男女超爽视频在线观看| 不卡av一区二区三区| 成人毛片60女人毛片免费| 三级国产精品片| 成年av动漫网址| 一级爰片在线观看| 亚洲精品国产色婷婷电影| 91精品三级在线观看| av卡一久久| 永久网站在线| 精品少妇一区二区三区视频日本电影 | 国产免费现黄频在线看| 欧美 亚洲 国产 日韩一| 男的添女的下面高潮视频| 久久精品久久久久久久性| 一级黄片播放器| 满18在线观看网站| 人妻人人澡人人爽人人| 大陆偷拍与自拍| 亚洲成人手机| 国产成人精品福利久久| 国产片内射在线| 国产淫语在线视频| 成年女人毛片免费观看观看9 | 国产成人午夜福利电影在线观看| 国产97色在线日韩免费| 精品亚洲乱码少妇综合久久| 久久精品国产自在天天线| 另类精品久久| 亚洲精品久久久久久婷婷小说| 国产乱来视频区| 国产精品一国产av| 亚洲三区欧美一区| 亚洲精品久久久久久婷婷小说| 一边摸一边做爽爽视频免费| 日韩av不卡免费在线播放| 午夜激情av网站| 午夜福利网站1000一区二区三区| 夜夜骑夜夜射夜夜干| 日本免费在线观看一区| 亚洲欧美清纯卡通| 久久影院123| 亚洲精品久久午夜乱码| 99re6热这里在线精品视频| 成人漫画全彩无遮挡| 免费少妇av软件| 欧美日韩视频精品一区| 亚洲人成电影观看| 好男人视频免费观看在线| 99国产精品免费福利视频| 久久午夜综合久久蜜桃| 精品一品国产午夜福利视频| 成年女人毛片免费观看观看9 | 男女无遮挡免费网站观看| 一边亲一边摸免费视频| 欧美97在线视频| 精品午夜福利在线看| 免费黄频网站在线观看国产| 美女国产视频在线观看| 高清在线视频一区二区三区| av片东京热男人的天堂| 午夜福利视频在线观看免费| 一本—道久久a久久精品蜜桃钙片| 亚洲少妇的诱惑av| 国产成人免费观看mmmm| 亚洲伊人色综图| 亚洲第一区二区三区不卡| 精品卡一卡二卡四卡免费| 永久免费av网站大全| 热re99久久精品国产66热6| 国产97色在线日韩免费| 尾随美女入室| 99久久精品国产国产毛片| 国产精品偷伦视频观看了| 国产亚洲精品第一综合不卡| 丰满迷人的少妇在线观看| 国产av精品麻豆| 人妻系列 视频| 日韩一卡2卡3卡4卡2021年| 国产av一区二区精品久久| 美女福利国产在线| 日韩av在线免费看完整版不卡| 女的被弄到高潮叫床怎么办| 免费久久久久久久精品成人欧美视频| 国产一区二区激情短视频 | 看非洲黑人一级黄片| 青春草视频在线免费观看| 一区二区三区四区激情视频| 成人毛片a级毛片在线播放| 狠狠精品人妻久久久久久综合| 欧美日韩亚洲国产一区二区在线观看 | 午夜日韩欧美国产| 这个男人来自地球电影免费观看 | 狠狠婷婷综合久久久久久88av| 少妇熟女欧美另类| 中国三级夫妇交换| 尾随美女入室| 99久国产av精品国产电影| 一区在线观看完整版| 一级爰片在线观看| 91在线精品国自产拍蜜月| 亚洲av日韩在线播放| 在线亚洲精品国产二区图片欧美| 男女边吃奶边做爰视频| 多毛熟女@视频| 啦啦啦啦在线视频资源| 亚洲av男天堂| 欧美+日韩+精品| 欧美国产精品va在线观看不卡| 黄片无遮挡物在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 日本爱情动作片www.在线观看| 男女下面插进去视频免费观看| 亚洲国产成人一精品久久久| 男女边吃奶边做爰视频| 老司机影院毛片| 韩国高清视频一区二区三区| 日韩三级伦理在线观看| 亚洲成av片中文字幕在线观看 | 看十八女毛片水多多多| 少妇人妻精品综合一区二区| 精品久久久久久电影网| 国产毛片在线视频| 春色校园在线视频观看| 午夜av观看不卡| 男人添女人高潮全过程视频| av卡一久久| 久久99精品国语久久久| 国产免费又黄又爽又色| 少妇猛男粗大的猛烈进出视频| 亚洲精品日韩在线中文字幕| tube8黄色片| 日日爽夜夜爽网站| 亚洲精品日韩在线中文字幕| 欧美av亚洲av综合av国产av | 韩国精品一区二区三区| 久久午夜综合久久蜜桃| 制服丝袜香蕉在线| 九九爱精品视频在线观看| 丰满乱子伦码专区| 中文字幕人妻丝袜制服| 在线亚洲精品国产二区图片欧美| 国产片内射在线| 天堂中文最新版在线下载| 精品99又大又爽又粗少妇毛片| av天堂久久9| 亚洲国产精品一区二区三区在线| 亚洲精品中文字幕在线视频| 一级片'在线观看视频| 亚洲人成77777在线视频| 另类精品久久| 国产精品欧美亚洲77777| 一级毛片黄色毛片免费观看视频| 18禁动态无遮挡网站| 亚洲精品国产色婷婷电影| 黄频高清免费视频| 久久久久久人人人人人| 国产精品一区二区在线不卡| 在线看a的网站| 狠狠精品人妻久久久久久综合| 久久午夜综合久久蜜桃| 国产成人精品无人区| 97在线人人人人妻| 91在线精品国自产拍蜜月| 亚洲精品日韩在线中文字幕| 日本欧美视频一区| 在线观看免费高清a一片|