• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鉭摻雜六方相氧化鎢對Sr2+的吸附:Zeta電位的測量及吸附機理的研究

    2016-09-09 09:35:52牟婉君彭述明
    物理化學(xué)學(xué)報 2016年8期

    蹇 源 牟婉君 劉 寧 彭述明

    (1四川大學(xué)原子核科學(xué)技術(shù)研究所,輻射物理及技術(shù)教育部重點實驗室,成都610064;2中國工程物理研究院核物理與化學(xué)研究所,四川綿陽621900)

    ?

    鉭摻雜六方相氧化鎢對Sr2+的吸附:Zeta電位的測量及吸附機理的研究

    蹇源1,2,*牟婉君2劉寧1彭述明1,2,*

    (1四川大學(xué)原子核科學(xué)技術(shù)研究所,輻射物理及技術(shù)教育部重點實驗室,成都610064;2中國工程物理研究院核物理與化學(xué)研究所,四川綿陽621900)

    研究Ta摻雜六方相氧化鎢(hex-WO3)材料在吸附Sr2+過程中其表面zeta電位的變化情況,并進一步探討了吸附過程的熱力學(xué)及吸附機理。結(jié)果表明:(1)在實驗pH值范圍內(nèi),Ta摻雜hex-WO3懸浮液的zeta電位值隨溶液中電解質(zhì)的價態(tài)增大而增大;(2)且zeta電位隨體系中離子強度的增加而增大;(3)Ta摻雜hex-WO3對Sr2+的吸附容量隨著溫度降低而增大,隨著離子強度的增加而減少;(4)吸附過程的吸附焓為-47 kJ· mol-1,且Sr2+離子與材料表面之間主要為化學(xué)相互作用;(5)Ta摻雜hex-WO3對Sr2+吸附過程主要為材料表面吸附及材料孔道內(nèi)離子交換共同作用。

    Ta;hex-WO3;Zeta電位;Sr2+;吸附機理

    www.whxb.pku.edu.cn

    1 Introduction

    With the development of nuclear industry and technology,much radioactive liquid waste is released into the environment,which leads to a direct threat to human health1.For example,90Sr,with a half-life of 30 years,is an important source of radioactivity in liquid waste,and can cause detrimental effects to animals and humans because it can substitute for the calcium in bones,leading to an increased risk of leukemia and other diseases2.Hence,re-duction of strontium migration is an actively pursued goal in the treatment of radioactive liquid waste.With growing attention to this issue,a number of technologies and materials have been investigated for reducing strontium concentration,such as adsorption,adsorption/ion exchange,chemical precipitation,and biochemical reductive precipitation.Compared to other technologies,adsorption technologies are inexpensive,effective,swift, and environmentally friendly ways to dispose of radioactive liquid waste3-5.Many excellent materials have been adopted for the removal of90Sr ions from nuclear wastewater,such as clay minerals6,zeolites7,silicotitanates8,and carbon nanotubes9.In fact, some outstanding results have been achieved in this regard. However,the fairly narrow pH operating range and/or slow ion exchange kinetics of nanomaterials have restricted their practical application.The pH of wastewater is a limiting factor that affects the use of available exchangers because most radioactive liquid waste is highly acidic.Thus,to design and fabricate adsorbents that possess excellent chemical stability and high selectivity for fission nuclides in acidic solutions,at low cost,and in a simple and environmentally friendly way,is a significant challenge for radioactive liquid waste treatment in real applications.

    Hexagonal tungstate oxide(hex-WO3)has received much attention because of its well-known tunnel structure in which WO6octahedra share their corners with each other to form hexagonal tunnels along the c-axis10,11.Guest ions(e.g.,Na+,NH4+,etc.)reside in the“hexagonal window”tunnels between layers,and ion exchange can replace them by K+,Cs+,and other ions.Moreover,it has been reported that hex-WO3can act as an adsorbent for removing radionuclides(Cs+,Sr2+,etc.)from acidic solution.It has also been reported that the adsorption capacity of Sr2+on hex-WO3may be increased by inserting heteroatoms at W6+sites,which can potentially affect tunnel dimensions and adsorption site acidity. This is one strategy for modulating cation selectivity4,12,13.

    The electrokinetic behavior of nanomaterials is used to explain charge formation,charge density,and changes in the adsorption process,such as the isoelectric point(iep)and potential-determining ions(pdi),of fine particles in an aqueous solution.These play a significant role in allowing understanding of the adsorption mechanism of inorganic and organic species at the solid/solution interface14-16.The zeta-potential is defined as the shear plane potential of the particle when it moves in a liquid.Determination of the ζ-potential gives an indication of the magnitude of the potential at the edges of the diffuse double layer around the particle17.

    In our previous work,we successfully prepared Ta-doped hex-WO3nanomaterials and found that they exhibited excellent adsorption ability for Sr2+in acidic solution4.The purpose of the present paper is to investigate the surface electrokinetic properties of Ta-doped hex-WO3nanomaterials,as well as their adsorption mechanism for Sr2+ions.

    2 Material and methods

    2.1Synthesis of Ta-doped WO3nanomaterials

    The method of synthesis Ta-doped WO3was as follows:1 g

    whereζis the zeta potential(mV),μMis the electrophoretic mobility(m2·V-1·s-1),ηis the dynamic viscosity of the liquid(Pa·s), ε0is the permittivity of the vacuum(F·m-1),andεris the relative permittivity of the liquid.Asample of 0.1 g Ta-doped hex-WO3in 50 mL distilled water containing the desired electrolytes was added to a thermostatic shaker bath and rinsed for 12 h at(25.0± 0.1)°C.An aliquot taken from the supernatant was used to measure the zeta potential.The average of 5 measurements was taken to represent the measured potential.The applied voltage during the measurements was generally varied in the range of 50-150 mV.

    2.4Adsorption experiment

    Studies on the Sr2+sorption behavior were performed on Tadoped hex-WO3samples in batch experiments using 200 mL volume flasks.Aqueous solutions of non-radioactive Sr(NO3)2were used instead of radioactive isotopes to avoid radiation damage.Solution pH was adjusted and measured using a digital pH-meter(PHS-4CT,China),using HNO3and NaOH solutions. To study the adsorption ability of Ta-doped WO3samples in acidic solutions,the pH of the initial solution did not exceed 8.Adsoranalytical grade Na2WO4·2H2O(99.9%,Aladdin)was dissolved in 45 mLdeionized water by stirring at room temperature,then 0.1 mol·L-1TaCl5(99.99%,Aladdin)solution(dissolved in ethanol) and 5 mL of 3 mol·L-1HCl solution was added to the above solution with continuous stirring until tungstenic acid was precipitated thoroughly.Finally 35 mL of 0.5 mol·L-1ammonium sulfate(NH4)2SO4solution was added to this solution,which was then transferred into a Teflon-lined autoclave with a capacity of 100 mL.Hydrothermal treatment was carried out at 170°C for 48 h.After that,the autoclave was allowed to cool down naturally. The final products were collected,then washed with deionized water and ethanol several times,and dried in air at 80°C to give the Ta-doped hex-WO3samples.

    2.2Material characterization

    The crystalline structure of the prepared samples was characterized using X-ray diffraction(PXRD,X′Pert PRO,PANalytical,Almelo,Netherlands)with Cu-Kαradiation(λ=0.15406 nm at 40 kV and 45 mA).The composition and chemical state were determined by X-ray photoelectron spectroscopy(XPS) using an RBD upgraded PHI-5000C ESCAsystem(Perkin-Elmer) using an Mg-monochromatic X-ray at a power of 25 Wwith an X-ray-beam diameter of 10 mm,and a pass energy of 29.35 eV.The binding energy was calibrated by the C 1s hydrocarbon peak at 284.8 eV.Fourier transform infrared(FT-IR)spectra of the samples were obtained on a Perkin-Elmer1730 infrared spectrometer in the range of 400-4000 cm-1.

    2.3Zeta potential measurements

    The zeta potential of the Ta-doped hex-WO3suspension was measured using a zeta Meter(zetaPALS,BLK,USA).The zeta potential was calculated from the measured electrophoretic mobility using the Smoluchowski equation18:bent(0.2 g)was added to Sr(NO3)2solution(50 mL)at different acidities(pH=1-7).The suspension was agitated at 298 K for 12 h.Equilibrium studies were conducted within a Sr2+concentration range of 20-200 mg·L-1.Detailed experimental conditions are presented in the related figure captions for clear identification.The solutions were withdrawn from the flasks and separated from the solids by centrifugation,then the initial and the residual concentration of tested ion(s)in supernatants were determined by atomic absorption spectroscopy(AAalyst800,PerkinElmer,USA). The sorption amount qe(mg·g-1)of adsorbed Sr2+ions is calculated as:

    where C0(mg·L-1)is the initial concentration of the metal ion,Ce(mg·L-1)is the equilibrium concentration,V(L)is the volume of the test solution,and m(g)is the sorbent dose.

    3 Results and discussion

    3.1FT-IR characterization

    FT-IR spectra of hex-WO3and Ta-doped hex-WO3are shown in Fig.1.Both samples display similar spectra.The broad peak observed at 3141 cm-1can be attributed to the stretching vibration of surface hydroxyls and adsorbed water molecules19.The peaks appearing at 1623 and 1400 cm-1relate to the bending vibration of adsorbed water molecules and―OH groups,respectively.This indicates that―OH groups have strong bonds to either water molecules or surface oxygen atoms20.The strong peaks at 823 cm-1can be attributed to the stretching vibration of W―Ointer―O,and the relatively weak intensity peaks at 657 and 588 cm-1can be assigned to the bending vibration of W―O.Peaks at 1189 and 1112 cm-1belong to shortened W―O bonds of WO3,and these degrade in the Ta-doped hex-WO3sample21.Furthermore,a broad peak at 3415 cm-1is observed following incorporation of Ta into the hex-WO3framework,indicative of the presence of a high hydroxyl group content and the adsorbed water on the surface of Ta-doped hex-WO3that is beneficial for adsorption of Sr2+.

    3.2Zeta potential of Ta-doped hex-WO3

    3.2.1Effect of solid concentration

    Fig.1 FT-IR spectra of hex-WO3and Ta-doped hex-WO3

    Solid concentration in solution is a major parameter governing surface charge generation,which has an important effect on zeta potential.This means that the ionic species produced at the solidliquid interface increase with increase in solid concentration,and that using inadequate solids concentration can lead to erroneous conclusions in the interpretation of zeta potential measurements. As shown in Fig.2,the effect of solid concentration in solution on zeta potential is minor.Therefore,in the subsequent zeta potentials measurements the solid-to-liquid ratio was kept constant at 10 g· L-1.

    3.2.2Effect of pH

    Fig.3 shows the zeta-potential values of Ta-doped hex-WO3nanomaterials as a function of pH of the buffer solution used for treatment.As shown,the Ta-doped hex-WO3has no point of zero charge and exhibits negative zeta-potential values in the chosen pH range,indicating that the sample has a highly negatively charged surface.The surface charge of nanomaterials is attributed to the edge surface and structural charge sites.The edge surface charge comes from proton adsorption by the hydroxyl groups(―W―OH at octahedral layers);whereas the structural charge sites are the permanent negative charges resulting from isomorphic substitutions taking place in the octahedral layers(W5+substituted by Ta5+)22.The hex-WO3possesses greater negative charge because it has been doped with Ta5+,which provides a favorable environment for adsorbing the positively charged Sr2+through electrostatic interactions.Incorporating Ta5+can increase the content of hydroxyl groups on the hex-WO3surface,thus leading to agreater negative charge.

    Fig.2 Effect of solid concentration on the zeta potential of Ta-doped hex-WO3

    Fig.3 Zeta potential value as a function of pH for hex-WO3and Ta-doped hex-WO3

    The electrical charge at the oxide surface/aqueous phase to protonation/deprotonation of the surface hydroxyl can be ascribed as23:

    The fact that there is no iep which shows that the reaction responsible for the surface charge of the solid is mainly the reaction in Eq.(5).

    3.2.3Effect of electrolyte

    Discussion of the source of surface charges on the oxide surfaces may be useful before investigating the change in zetapotential with equilibrium pH of the Ta-doped hex-WO3suspensions in various electrolyte media24.Fig.4(a,b)shows the change in zeta-potential of the Ta-doped hex-WO3suspensions as a function of equilibrium pH value in 10-3mol·L-1monovalent and divalent electrolytes.Ta-doped hex-WO3suspensions have a negative zeta-potential in the experimental equilibrium pH range, and the negative charges decrease with increase in equilibrium pH value.Moreover,the zeta-potential of Ta-doped hex-WO3in divalent electrolyte solution was much higher than in the monovalent electrolyte solution having the same ionic strength.

    Fig.4 Variation of zeta potential with equilibrium pH of Ta-doped hex-WO3suspensions in the presence of different monovalent(a)and divalent(b)electrolytes at constant concentration

    Changes in the zeta-potential of minerals with background electrolytes of different valences follow the Hardy-Schulze rule25. It is believed that divalent cations can be specifically adsorbed onto the surface of minerals(in the inner Helmholtz plane)causing charge reversal.Additionally,hydrated ions present in the outer Helmholtz plane can also increase the zeta-potential by compressing the electrical double layer26.One can deduce,therefore, that divalent ions will reduce the double layer thickness more than will monovalent ions(given that they are both present in the same concentration),causing a sharper potential drop across the Stern layer27,28.

    3.2.4Effect of ionic strength

    Investigations carried out into adsorption revealed that the extent of waste uptake was strongly influenced by the concentration and nature of the electrolyte ionic species added to the aqueous media29.Electrolyte concentration,along with pH,influences the development of positive and negative surface charges, which directly affect the surface adsorption.KCl was chosen as a salt for investigating the effect of ionic strength on the adsorption of Sr2+ions onto the Ta-doped hex-WO3surface.This was carried out in no salt,and salt concentrations of 10-5,10-4,and 10-3mol·L-1.As shown in Fig.5a,increasing the ionic strength significantly decreased the adsorption of Sr2+ions onto the Ta-doped hex-WO3.The electrostatic interaction between opposite charges of the oxide surface and the Sr2+ions is screened by the salt,and increases with salt concentration,leading to a decrease in the amount adsorbed30,31.This result is consistent with the changes in zeta-potential of the Ta-doped hex-WO3suspension at differentconcentrations of KCl electrolyte(Fig.5b),where an increase in electrolyte concentration causes an increase in surface potential, which is unfavorable for Sr2+adsorption.

    Fig.5 (a)Effect of ionic strength on the adsorption of Sr2+ions onto Ta-doped hex-WO3;(b)variation of zeta potential with equilibrium pH of Ta-doped hex-WO3at different KCl concentrations

    3.2.5Effect of temperature

    The temperature dependence of adsorption reactions has an important effect on the adsorption process.Fig.6 shows that the adsorption process for Sr2+ions on the Ta-doped hex-WO3is exothermic,and is more favorable at low temperatures.The adsorption amount decreases as the temperature increases.Two possible reasons for this are:(1)A decrease in the number of active surface sites for adsorption onto the adsorbents;(2)an increase in thickness of the boundary layer surrounding the adsorbent with rising temperature.Moreover,increasing temperature is favorable for reaching equilibrium quickly.The enthalpy change for Sr2+ion adsorption can be estimated by the van′t Hoff equation32,33:

    where the subscript θ refers to the equilibrium;Rgis the gas constant;and qmis the ultimate constant at each temperature measured at constant coverage.Under these conditions,from the Langmuir equation at θ=qe/qm=0.5;K=1/Ce:

    where qeis the equilibrium loading of adsorbate onto adsorbent (mol·g-1);Ceis the equilibrium concentration of adsorbate in solution(mol·L-1);and K is the relative energy of adsorption(L· mol-1).

    This value of ΔH is termed the isosteric heat of adsorption, referring to the fact that it applies to a certain coverage value.The Langmuir model implies that ΔH should be constant,but it is more likely to be a function of coverage(θ=qe/qm).From Eq.(8),the value of ΔH was calculated as-47 kJ·mol-1from the data given in Fig.7.The results show that the interaction between surface and adsorbate ions is chemical in nature.

    3.2.6Effect of coexisting ions

    Fig.6 Effect of temperature on the adsorption of Sr2+ions onto Ta-doped hex-WO3

    Fig.7 Plot of-lnCevs 1/T for Sr2+adsorption onto Ta-doped hex-WO3

    Fig.8 Effect of competitive ions on the adsorption of Sr2+

    Fig.8 shows the selective uptake of Sr2+ions on Ta-doped hex-WO3in the presence of various cations.It can be found that the removal of Sr2+was slightly influenced by the cations of K+, whereas in the presence of Mg2+,Al3+,Na+,one can see that they had no obvious effect on the Sr2+absorption onto Ta-doped hex-WO3.These results are attributed to the configuration of the hydrated metal ions in aqueous solution.The alkali metal ions are highly hydrated and smaller ions have a greater degree of hydration.The ionic radius increases order as follows:Al3+≤Mg2+< Na+

    3.3Adsorption mechanism

    Previous studies have shown adsorption of Sr2+ions onto Tadoped hex-WO3samples mainly takes place through chemisorption (covalent bonding and ion exchange).Fig.9 schematically illustrates the adsorption of Sr2+ions onto Ta-doped hex-WO3. The―OH groups on the adsorbent surface and particular tunnels of the adsorbent structure are favorable for improved adsorption capacity of Sr2+.

    Fig.9 Schematic diagram of the adsorption of Sr2+by Ta-doped hex-WO3nanomaterials

    Fig.10 XRD patterns of Ta-doped hex-WO3before and after Sr2+adsorption

    Fig.11 FT-IR spectra of Ta-doped hex-WO3before and after Sr2+adsorption

    To further understand the interaction mechanism between Sr2+and the Ta-doped hex-WO3samples,XRD patterns for Ta-doped hex-WO3before and after Sr2+adsorption were analyzed.As shown Fig.10,the XRD patterns for Ta-doped hex-WO3before and after Sr2+adsorption are similar,but the position of the(001)peak moves to a higher angle,indicating that the Ta-doped hex-WO3structure contracted after adsorption of Sr2+,and that a forceful interaction exists between Sr2+and the material framework.This result demonstrates that some Sr2+ions entered into the tunnels of the Ta-doped hex-WO3structure.

    The FT-IR spectra of Ta-doped hex-WO3before and after Sr2+adsorption are shown in Fig.11.The peaks at 3415 and 1400 cm-1can be attributed to the stretching and bending vibrations,respectively,of―OH groups(see Fig.2),where the intensities of these peaks weakened after Sr2+adsorption.Moreover,the broad peak at 3141 cm-1disappeared after absorption of Sr2+,demonstrating that the―OH groups on the Ta-doped hex-WO3surface were bound to Sr.

    Fig.12 O 1s XPS spectra of Ta-doped hex-WO3before(a)and after(b)Sr2+adsorption

    To obtain an in-depth understanding of the composition of the Ta-doped hex-WO3samples before and after adsorption of Sr2+, O 1s XPS spectra of these samples are shown in Fig.12.Two peaks,at binding energies of 530.0 and 531.5 eV,can be attributed to the surface lattice oxygen and adsorbed hydroxyl species,respectively.Clearly,the surface―OH concentration in the Tadoped hex-WO3sample before Sr2+adsorption was higher than that in the Ta-doped hex-WO3sample after Sr2+adsorption,further indicating that the hydroxyl groups have coordinated with Sr2+ions.

    4 Conclusions

    The electrokinetic properties of Ta-doped hex-WO3suspensions were investigated using microelectrophoresis as a function of pH in the presence of various electrolytes,such as LiCl,NaCl,KCl, CsCl,CaCl2,and MgCl2.The adsorption of Sr2+ions onto Ta-doped hex-WO3from aqueous solutions were then studied as a function of pH,ionic strength,temperature,and coexisting ions.

    The zeta-potential values of the studied Ta-doped hex-WO3suspensions in divalent electrolytes were much higher than in monovalent electrolytes.Increasing the ion strength in solution caused the zeta potential of the Ta-doped hex-WO3suspensions to increase accordingly.Sr2+ion adsorption increased with a decrease in temperature and ionic strength.The interaction between the Tadoped hex-WO3surface and Sr2+ions was concluded to be chemical in nature.

    Zeta-potential measurements coupled with adsorption experiments clearly indicate that the adsorption of Sr2+onto Ta-doped hex-WO3nanoparticles involves two mechanisms:(i)simple superficial adsorption via electrostatic interactions between Sr2+ions and negatively charged sites on the sample surfaces;and(ii)intercalation of Sr2+into the Ta-doped hex-WO3framework through displacement of water molecules,Na+,and NH4+that reside in the tunnels along the c-axis.

    Results obtained here suggest that measuring the zeta-potential of sorbents in suspension can play a major role in investigating the adsorption mechanism in the absorption process,and further demonstrates that Ta-doped hex-WO3is a suitable candidate for sorption of Sr2+in acidic radioactive liquid waste treatment.

    References

    (1)Buesseler,K.;Aoyama,M.;Fukasawa,M.Environ.Sci. Technol.2011,45,9931.doi:10.1021/es202816c

    (2)Nielsen,S.Bone 2004,35,583.doi:10.1016/j.bone.2004.04.026

    (3)Wen,T.;Wu,X.L.;Liu,M.C.;Xing,Z.H.;Wang,X.K.;Xu, A.W.Dalton Trans.2014,43,7464.doi:10.1039/c3dt53591f

    (4)Li,X.L.;Mu,W.J.;Xie,X.;Liu,B.J.;Tang,H.;Zhou,G.H.; Wei,H.Y.;Jian,Y.;Luo,S.Z.J.Hazard.Mater.2014,264,386. doi:10.1016/j.jhazmat.2013.11.032

    (5)Anthony,R.G.;Philip,C.V.;Dosch,R.G.Water Manage. 1993,13,503.doi:10.1016/0956-053X(93)90080-G

    (6)Manos,M.;Kanatzidis,M.J.Am.Chem.Soc.2012,134,16441. doi:10.1021/ja308028n

    (7)El-Kamash,A.M.J.Hazard.Mater.2008,151,432. doi:10.1016/j.jhazmat.2007.06.009

    (8)Latheef,I.M.;Huckman,M.E.;Anthony,R.G.Ind.Eng. Chem.Res.2000,39,1356.doi:10.1021/ie990748u

    (9)Lu,S.;Xu,J.;Zhang,C.;Niu,Z.J.Radioanal.Nucl.Chem. 2011,287,893.doi:10.1007/s10967-010-0849-1

    (10)Pang,H.F.;Xiang,X.;Li,Z.J.;Fu,Y.Q.;Zu,X.T.Phys. Status Solidi A 2012,209,537.doi:10.1002/pssa.201127456

    (11)Phuruangrat,A.;Ham,D.J.;Hong,S.J.;Thongtema,S.;Lee,J. S.J.Mater.Chem.2010,20,1683.doi:10.1039/B918783A

    (12)Griffith,C.S.;Luca,V.Chem.Mater.2004,16,4992.doi: 10.1021/cm049335w

    (13)Griffith,C.S.;Luca,V.;Hanna,J.V.;Pike,K.J.;Smith,M.E.; Thorogood,G.S.Inorg.Chem.2009,48,5648.doi:10.1021/ ic801294x

    (14)Alkan,M.;Karada?,M.;Do?an,M.;Demirba?,?.Coll.Surf.A: Physicochem.Eng.Aspects 2005,291,309.doi:10.1016/j. colsurfa.2005.02.024

    (15)Leroy,P.;Revil,A.J.Colliod Interface Sci.2004,270,371.doi: 10.1016/j.jcis.2003.08.007

    (16)Ersoy,B.;?elik,M.S.Micropor.Mater.2002,55,305. doi:10.1016/S1387-1811(02)00433-X

    (17)Alkan,M.;Demirba?,?.;Do?an,M.J.Colliod Interface Sci. 2005,259,155.doi:10.1016/j.jcis.2005.05.027

    (18)Do?an,M.;Alkan,M.;Türkyilmaz,A.;?zdemir,Y.J.Hazard. Mater.2004,192,141.doi:10.1016/j.jhazmat.2004.03.003

    (19)Liu,Z.Y.;Sun,D.D.;Guo,P.;Leckie,J.O.Chem.Eur.J.2007, 13,1851.doi:10.1002/chem.200601092

    (20)Rougier,A.;Portemer,F.;Quédé,A.;Marssi,A.E.Appl.Surf. Sci.1999,153,1.doi:10.1016/S0169-4332(99)00335-9

    (21)Szilágyi,I.M.;Madarász,J.;Hange,F.;Pokol,G.J.Therm. Anal.Calorim.2007,88,139.doi:10.1007/s10973-006-8078-0

    (22)Wang,T.H.;Liu,T.Y.;Wu,D.C.;Li,M.H.;Chen,J.R.;Teng, S.P.J.Hazard.Mater.2010,173,335.doi:10.1016/j. jhazmat.2009.08.091

    (23)Laskowski,J.S.J.Colliod Interface Sci.1993,159,349. doi:10.1006/jcis.1993.1333

    (24)Moreira,W.C.;Gushikem,Y.;Nascimento,O.R.J.Colliod Interface Sci.1992,150,115.doi:10.1016/0021-9797(92) 90272-N

    (25)Mpandou,A.;Siffert,B.J.J.Colliod Interface Sci.1984,102, 138.doi:10.1016/0021-9797(84)90207-8

    (26)Duman,O.;Tun?,S.Microporous Mesoporous Mat.2009,117, 331.doi:10.1016/j.micromeso.2008.07.007

    (27)Kaya,A.;Yukselen,Y.Can.Geotech.J.2005,42,1280. doi:10.1139/t05-048

    (28)Yukselen,Y.;Kaya,A.Environ.Earth.Sci.2011,62,697. doi:10.1007/s12665-010-0556-9

    (29)Alkan,M.;Do?an,M.J.Colliod Interface Sci.1998,207,90. doi:10.1006/jcis.1998.5694

    (30)Tekin,N.;Demirba?,?.;Alkan,M.Microporous Mesoporous Mat.2005,85,340.doi:10.1016/j.micromeso.2005.07.004

    (31)Blockhaus,F.;Sequaris,J.M.;Narres,H.D.;Schwuger,M.J. J.Colliod Interface Sci.1997,186,234.doi:10.1006/ jcis.1996.4639

    (32)Verm?hlen,K.;Lewandowski,H.;Narres,H.D.;Schwuger,M. J.Surf.A 2000,163,45.doi:10.1016/S0927-7757(99)00429-X

    (33)Nassem,R.;Tahir,S.Water Res.2001,35,3982.doi:10.1016/ S0043-1354(01)00130-0

    Removal of Sr2+Ions by Ta-Doped Hexagonal WO3:Zeta Potential Measurements and Adsorption Mechanism Determination

    JIAN Yuan1,2,*MU Wan-Jun2LIU Ning1PENG Shu-Ming1,2,*
    (1Key Laboratory of Radiation Physics and Technology,Ministry of Education,Institute of Nuclear Science and Technology, Sichuan University,Chengdu 610064,P.R.China;2Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics,Mianyang 621900,Sichuan Province,P.R.China)

    The adsorption of Sr2+ions onto Ta-doped hex-WO3nanomaterials was studied by measuring the zeta potentials of the powder nanoparticles and by determining the adsorption isotherm and adsorption mechanism.Five important results were obtained:(1)the zeta potential values of the Ta-doped hex-WO3suspensions in different electrolyte solutions,within the studied pH ranges,increased with an increase in electrolyte valence;and(2)the zeta potential of the Ta-doped hex-WO3suspensions increased with an increase in ionic strength.(3)Sr2+ion adsorption increased with a decrease in temperature and ionic strength.(4)The adsorption enthalpy was calculated as-47 kJ·mol-1,and the interaction between the Ta-doped hex-WO3surface and Sr2+ions was concluded to be chemical in nature.(5)The adsorption of Sr2+ions onto the Ta-doped hex-WO3was attributed to surface chemical adsorption and ion exchange(in tunnels).

    Ta;hex-WO3;Zeta potential;Sr2+;Adsorption mechanism

    February 29,2016;Revised:April 20,2016;Published on Web:April 21,2016.

    O647

    10.3866/PKU.WHXB201604213

    *Corresponding authors.PENG Shu-Ming,Email:pengsm01@163.com;Tel:+86-816-2495481.JIAN Yuan,Email:inpc207@163.com;

    Tel:+86-816-2492703.

    The project was supported by the National Natural Science Foundation of China(21501159).

    國家自然科學(xué)基金(21501159)資助項目

    ?Editorial office ofActa Physico-Chimica Sinica

    [Article]

    婷婷六月久久综合丁香| 色尼玛亚洲综合影院| 久久久久免费精品人妻一区二区| 国产精品综合久久久久久久免费| 俄罗斯特黄特色一大片| 日韩有码中文字幕| 国产成人a区在线观看| 成人国产综合亚洲| 亚洲自拍偷在线| 琪琪午夜伦伦电影理论片6080| 欧美乱妇无乱码| 国产av一区在线观看免费| 91狼人影院| 久久精品人妻少妇| 国产一区二区在线av高清观看| 俺也久久电影网| 中文字幕免费在线视频6| 欧美日韩国产亚洲二区| av在线观看视频网站免费| 十八禁网站免费在线| 一本久久中文字幕| 午夜久久久久精精品| 少妇熟女aⅴ在线视频| 亚洲成人精品中文字幕电影| 99国产综合亚洲精品| 欧美xxxx性猛交bbbb| 欧美一级a爱片免费观看看| 亚洲专区国产一区二区| 美女大奶头视频| 久久久久久久久大av| 啪啪无遮挡十八禁网站| 婷婷丁香在线五月| 欧美精品啪啪一区二区三区| 午夜福利欧美成人| 精品免费久久久久久久清纯| 婷婷丁香在线五月| 免费无遮挡裸体视频| www日本黄色视频网| 免费看美女性在线毛片视频| 午夜激情欧美在线| 麻豆一二三区av精品| 1000部很黄的大片| 亚洲内射少妇av| 欧美乱妇无乱码| 亚洲不卡免费看| 欧美精品啪啪一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 91在线精品国自产拍蜜月| 一级av片app| 国产伦一二天堂av在线观看| 最好的美女福利视频网| 免费观看人在逋| 97超级碰碰碰精品色视频在线观看| 国产在线男女| 婷婷精品国产亚洲av在线| 淫秽高清视频在线观看| 在线看三级毛片| 在线播放无遮挡| 婷婷精品国产亚洲av在线| 国产精品自产拍在线观看55亚洲| 麻豆av噜噜一区二区三区| 少妇的逼水好多| 男人舔奶头视频| 九九热线精品视视频播放| 亚洲人成伊人成综合网2020| 中文资源天堂在线| 精品人妻视频免费看| 亚洲七黄色美女视频| 亚洲精品456在线播放app | 国产精品亚洲美女久久久| 国产男靠女视频免费网站| 成年女人永久免费观看视频| 99热6这里只有精品| 午夜日韩欧美国产| 色在线成人网| 亚洲国产精品成人综合色| 欧美乱色亚洲激情| 亚洲人成网站在线播放欧美日韩| 亚洲av美国av| 成人性生交大片免费视频hd| 在线播放无遮挡| 亚洲欧美日韩无卡精品| 日本a在线网址| 欧美成人免费av一区二区三区| 少妇高潮的动态图| 国内揄拍国产精品人妻在线| 在线观看午夜福利视频| 国产色爽女视频免费观看| 日本黄大片高清| 国产黄a三级三级三级人| 成人av在线播放网站| 麻豆一二三区av精品| 午夜福利在线在线| av视频在线观看入口| 亚洲男人的天堂狠狠| 黄色日韩在线| 五月玫瑰六月丁香| 国产成人av教育| 免费一级毛片在线播放高清视频| av中文乱码字幕在线| 国产伦人伦偷精品视频| 亚洲国产精品久久男人天堂| 亚洲一区二区三区色噜噜| www.999成人在线观看| 精品人妻熟女av久视频| 在线观看舔阴道视频| 18禁黄网站禁片免费观看直播| 日日干狠狠操夜夜爽| 精品99又大又爽又粗少妇毛片 | 国产伦精品一区二区三区视频9| 18美女黄网站色大片免费观看| 中文在线观看免费www的网站| 日本黄色视频三级网站网址| 女生性感内裤真人,穿戴方法视频| 很黄的视频免费| 国产成+人综合+亚洲专区| 最好的美女福利视频网| 欧美黑人巨大hd| 丰满人妻熟妇乱又伦精品不卡| 动漫黄色视频在线观看| 亚洲无线在线观看| 亚洲av不卡在线观看| 变态另类成人亚洲欧美熟女| 久久人人爽人人爽人人片va | 久久精品91蜜桃| 精品午夜福利在线看| 男女视频在线观看网站免费| 91久久精品国产一区二区成人| 又紧又爽又黄一区二区| 在线观看66精品国产| 精品一区二区三区人妻视频| 午夜福利在线在线| 99国产精品一区二区蜜桃av| 国产高清三级在线| av在线观看视频网站免费| 久久久久久久精品吃奶| 久久久久久久亚洲中文字幕 | 国产亚洲精品久久久com| 中文字幕久久专区| 久久国产乱子免费精品| www.www免费av| 99精品在免费线老司机午夜| 日本五十路高清| av在线天堂中文字幕| 成人亚洲精品av一区二区| 欧美日韩综合久久久久久 | 天美传媒精品一区二区| 国产综合懂色| av在线观看视频网站免费| 亚洲黑人精品在线| 欧美潮喷喷水| 一级a爱片免费观看的视频| 日本 欧美在线| 日韩高清综合在线| 久久久国产成人精品二区| 日日摸夜夜添夜夜添av毛片 | 婷婷精品国产亚洲av在线| 午夜福利高清视频| 五月玫瑰六月丁香| 久久久国产成人免费| 真实男女啪啪啪动态图| 女同久久另类99精品国产91| 黄色女人牲交| 午夜精品在线福利| 国产综合懂色| 9191精品国产免费久久| 一级黄色大片毛片| 日韩成人在线观看一区二区三区| 国产欧美日韩精品亚洲av| 日本 欧美在线| 51国产日韩欧美| 亚洲精品乱码久久久v下载方式| 好看av亚洲va欧美ⅴa在| 国产极品精品免费视频能看的| 国产精品av视频在线免费观看| 亚洲无线在线观看| 亚洲av免费高清在线观看| 国产v大片淫在线免费观看| 丁香六月欧美| 小说图片视频综合网站| 亚洲自拍偷在线| 最近视频中文字幕2019在线8| 在线看三级毛片| 精品久久久久久久人妻蜜臀av| 婷婷精品国产亚洲av在线| 女人十人毛片免费观看3o分钟| 内地一区二区视频在线| 日本黄大片高清| 亚洲av电影在线进入| 亚洲第一欧美日韩一区二区三区| 熟女电影av网| 亚洲最大成人av| 国产v大片淫在线免费观看| 久久国产精品影院| 亚洲,欧美精品.| 日韩 亚洲 欧美在线| 日韩国内少妇激情av| 色综合亚洲欧美另类图片| 欧美色视频一区免费| 成人一区二区视频在线观看| 精品人妻视频免费看| 一边摸一边抽搐一进一小说| 看黄色毛片网站| 亚洲精品成人久久久久久| 亚洲欧美日韩卡通动漫| 很黄的视频免费| 一级a爱片免费观看的视频| 久久婷婷人人爽人人干人人爱| 日本a在线网址| 少妇人妻精品综合一区二区 | 男人舔奶头视频| 黄色女人牲交| 亚洲内射少妇av| 国产精品自产拍在线观看55亚洲| 国产精品久久视频播放| 在线免费观看不下载黄p国产 | 国产精品伦人一区二区| 亚洲在线自拍视频| av天堂在线播放| 免费人成视频x8x8入口观看| 小蜜桃在线观看免费完整版高清| 日本 av在线| 欧美色视频一区免费| 亚洲无线观看免费| 色综合亚洲欧美另类图片| 国产中年淑女户外野战色| 亚洲专区国产一区二区| 天美传媒精品一区二区| 国产在线男女| 精品午夜福利在线看| 精品日产1卡2卡| ponron亚洲| 久久天躁狠狠躁夜夜2o2o| 国产精品不卡视频一区二区 | 中文字幕高清在线视频| 日韩欧美三级三区| 亚洲avbb在线观看| 欧美日本亚洲视频在线播放| 亚洲国产色片| 成人特级黄色片久久久久久久| 性色av乱码一区二区三区2| 天堂网av新在线| 欧美在线黄色| 少妇人妻精品综合一区二区 | 亚洲精华国产精华精| 国产亚洲精品综合一区在线观看| 亚洲精品色激情综合| 亚洲av不卡在线观看| 91午夜精品亚洲一区二区三区 | 99热这里只有是精品50| 男女做爰动态图高潮gif福利片| 亚洲人成电影免费在线| 日韩国内少妇激情av| 哪里可以看免费的av片| 国产又黄又爽又无遮挡在线| 午夜a级毛片| 国产中年淑女户外野战色| 欧美三级亚洲精品| 久久亚洲真实| 搞女人的毛片| 久久久久久大精品| 高潮久久久久久久久久久不卡| 热99在线观看视频| 性欧美人与动物交配| 一区二区三区高清视频在线| 国产亚洲精品久久久com| 亚洲av五月六月丁香网| 51午夜福利影视在线观看| 国产激情偷乱视频一区二区| 精品乱码久久久久久99久播| 日本在线视频免费播放| 精品久久久久久久久亚洲 | 日韩欧美在线乱码| 天堂√8在线中文| 高清在线国产一区| avwww免费| 亚洲一区高清亚洲精品| 欧美又色又爽又黄视频| 国产麻豆成人av免费视频| 久久精品91蜜桃| 91久久精品国产一区二区成人| 韩国av一区二区三区四区| 哪里可以看免费的av片| 淫妇啪啪啪对白视频| 久久99热这里只有精品18| 成年女人毛片免费观看观看9| ponron亚洲| 亚洲欧美清纯卡通| av天堂中文字幕网| 丝袜美腿在线中文| 日韩精品中文字幕看吧| 午夜免费成人在线视频| 嫁个100分男人电影在线观看| 一本综合久久免费| 国产精品精品国产色婷婷| 怎么达到女性高潮| www.999成人在线观看| 99久久成人亚洲精品观看| 成人三级黄色视频| 日本黄色片子视频| 欧美日本亚洲视频在线播放| 日本撒尿小便嘘嘘汇集6| 国产老妇女一区| 国产高清有码在线观看视频| 亚洲成av人片在线播放无| 亚洲精品粉嫩美女一区| 观看免费一级毛片| 黄片小视频在线播放| 国产久久久一区二区三区| 久久国产乱子伦精品免费另类| 午夜激情福利司机影院| 亚洲av成人不卡在线观看播放网| 国产成人aa在线观看| 国产一区二区三区视频了| 18禁裸乳无遮挡免费网站照片| 国产精品国产高清国产av| 免费观看人在逋| netflix在线观看网站| 少妇的逼好多水| 精品久久久久久久久久免费视频| 高清日韩中文字幕在线| 99热这里只有精品一区| 在线观看一区二区三区| 午夜福利成人在线免费观看| 一区福利在线观看| 成年女人毛片免费观看观看9| 99国产极品粉嫩在线观看| 18禁黄网站禁片午夜丰满| 欧美日韩黄片免| 美女cb高潮喷水在线观看| 女同久久另类99精品国产91| 俺也久久电影网| 在线a可以看的网站| 99久久无色码亚洲精品果冻| 欧美最新免费一区二区三区 | 国产熟女xx| 成人特级av手机在线观看| 亚洲三级黄色毛片| 女生性感内裤真人,穿戴方法视频| 国内精品久久久久精免费| 美女高潮喷水抽搐中文字幕| 怎么达到女性高潮| 国产精品三级大全| 午夜日韩欧美国产| 美女xxoo啪啪120秒动态图 | 在线观看午夜福利视频| 全区人妻精品视频| 美女cb高潮喷水在线观看| 国产精品亚洲一级av第二区| 成人无遮挡网站| 亚洲色图av天堂| 91久久精品国产一区二区成人| 亚洲国产精品合色在线| 久久久久久久精品吃奶| 黄色一级大片看看| 毛片一级片免费看久久久久 | 91久久精品电影网| 国产麻豆成人av免费视频| 国内少妇人妻偷人精品xxx网站| 亚洲国产色片| 日韩欧美国产一区二区入口| 日本黄色片子视频| av国产免费在线观看| 国产精品亚洲av一区麻豆| 国产午夜精品久久久久久一区二区三区 | 免费av不卡在线播放| 91久久精品国产一区二区成人| 黄色一级大片看看| 欧美xxxx黑人xx丫x性爽| 一级黄色大片毛片| 给我免费播放毛片高清在线观看| 国产精品一区二区性色av| 亚洲欧美日韩高清专用| ponron亚洲| 国产美女午夜福利| 国产精品影院久久| 欧美丝袜亚洲另类 | 欧美性猛交╳xxx乱大交人| 色综合婷婷激情| 嫩草影院精品99| 国产亚洲精品综合一区在线观看| 日本免费a在线| 国产欧美日韩精品一区二区| 高清日韩中文字幕在线| 在线播放国产精品三级| 亚洲自偷自拍三级| 欧美国产日韩亚洲一区| 亚洲精品日韩av片在线观看| 91麻豆av在线| 国产精品av视频在线免费观看| 久久久久精品国产欧美久久久| 香蕉av资源在线| 亚洲天堂国产精品一区在线| 男女床上黄色一级片免费看| av专区在线播放| a级毛片a级免费在线| 18+在线观看网站| 我要看日韩黄色一级片| 757午夜福利合集在线观看| 色播亚洲综合网| 在线a可以看的网站| 美女cb高潮喷水在线观看| 人妻夜夜爽99麻豆av| 国产真实乱freesex| 亚洲 国产 在线| 精品无人区乱码1区二区| 午夜影院日韩av| 久久久国产成人精品二区| eeuss影院久久| 日韩欧美在线二视频| 黄色女人牲交| 啦啦啦观看免费观看视频高清| 国产一区二区激情短视频| 国产亚洲精品综合一区在线观看| 亚洲七黄色美女视频| 国产黄片美女视频| 18美女黄网站色大片免费观看| 全区人妻精品视频| 国产精品美女特级片免费视频播放器| 日本五十路高清| 中出人妻视频一区二区| 一进一出好大好爽视频| 99精品在免费线老司机午夜| 俄罗斯特黄特色一大片| 网址你懂的国产日韩在线| 最后的刺客免费高清国语| 色哟哟哟哟哟哟| 无人区码免费观看不卡| 亚洲精品成人久久久久久| 久久伊人香网站| 国产高清激情床上av| 国产在视频线在精品| 亚洲自偷自拍三级| 国产亚洲精品av在线| 国产黄色小视频在线观看| 婷婷精品国产亚洲av| 免费观看的影片在线观看| 国内少妇人妻偷人精品xxx网站| 日本撒尿小便嘘嘘汇集6| 婷婷色综合大香蕉| 午夜久久久久精精品| 国产av不卡久久| 久久久久久久久中文| 日本免费a在线| 国产乱人伦免费视频| 免费观看的影片在线观看| 日本免费一区二区三区高清不卡| 成人鲁丝片一二三区免费| 日本 av在线| 久久久久久久亚洲中文字幕 | 白带黄色成豆腐渣| 成年人黄色毛片网站| 男人舔奶头视频| 如何舔出高潮| 宅男免费午夜| 看黄色毛片网站| 日日干狠狠操夜夜爽| 麻豆成人av在线观看| 日韩亚洲欧美综合| 自拍偷自拍亚洲精品老妇| 色综合欧美亚洲国产小说| 免费av毛片视频| 窝窝影院91人妻| 一级毛片久久久久久久久女| 麻豆成人av在线观看| 午夜精品久久久久久毛片777| 自拍偷自拍亚洲精品老妇| 日韩欧美在线二视频| 天堂动漫精品| 韩国av一区二区三区四区| 啪啪无遮挡十八禁网站| 每晚都被弄得嗷嗷叫到高潮| 国产激情偷乱视频一区二区| 听说在线观看完整版免费高清| 成人国产综合亚洲| 好男人在线观看高清免费视频| 亚洲精品在线观看二区| 久久精品国产亚洲av天美| 国产av不卡久久| 久久久久久久久久成人| 久久精品国产清高在天天线| 国产在线男女| 一个人观看的视频www高清免费观看| 永久网站在线| 成人鲁丝片一二三区免费| 免费av毛片视频| a级一级毛片免费在线观看| 最近中文字幕高清免费大全6 | 神马国产精品三级电影在线观看| 中文字幕免费在线视频6| 天堂动漫精品| 老司机深夜福利视频在线观看| www.www免费av| 嫩草影视91久久| 中文字幕免费在线视频6| 亚洲av成人av| 亚洲欧美日韩东京热| 亚洲欧美清纯卡通| 国产三级在线视频| 国产aⅴ精品一区二区三区波| 综合色av麻豆| 成人高潮视频无遮挡免费网站| 一本久久中文字幕| 亚洲精品一区av在线观看| 直男gayav资源| 国产一区二区亚洲精品在线观看| 少妇熟女aⅴ在线视频| 久久九九热精品免费| 午夜影院日韩av| 亚洲天堂国产精品一区在线| 国产精品自产拍在线观看55亚洲| 国产老妇女一区| 免费在线观看成人毛片| 国产欧美日韩一区二区三| 人人妻人人看人人澡| 亚洲五月天丁香| 老熟妇仑乱视频hdxx| 色av中文字幕| 色哟哟·www| 亚洲最大成人中文| 最近在线观看免费完整版| 亚洲成人精品中文字幕电影| 亚洲人成网站高清观看| 午夜亚洲福利在线播放| 日本黄大片高清| 中出人妻视频一区二区| АⅤ资源中文在线天堂| 国产精品一区二区三区四区免费观看 | 高清日韩中文字幕在线| 日日摸夜夜添夜夜添av毛片 | 亚洲在线自拍视频| 性色av乱码一区二区三区2| 亚洲第一区二区三区不卡| 国产精品亚洲av一区麻豆| 亚洲av免费在线观看| 久久久久免费精品人妻一区二区| 亚洲五月婷婷丁香| 亚洲国产精品sss在线观看| 天堂网av新在线| 狠狠狠狠99中文字幕| 国产一级毛片七仙女欲春2| 亚洲精品456在线播放app | 可以在线观看的亚洲视频| 婷婷色综合大香蕉| 丁香六月欧美| 国产精品久久视频播放| 日本五十路高清| 国产 一区 欧美 日韩| 一级毛片久久久久久久久女| 国产一区二区三区视频了| 极品教师在线视频| 亚洲av成人av| 老熟妇乱子伦视频在线观看| 一进一出抽搐动态| 丰满的人妻完整版| 色5月婷婷丁香| 亚洲av免费高清在线观看| 精品久久久久久久久亚洲 | 神马国产精品三级电影在线观看| 天堂影院成人在线观看| 我要搜黄色片| 免费在线观看影片大全网站| 精品久久久久久成人av| 露出奶头的视频| 一级黄色大片毛片| 亚洲一区高清亚洲精品| 久久精品影院6| 亚洲色图av天堂| 免费在线观看成人毛片| 亚州av有码| 亚洲国产精品合色在线| 亚洲人与动物交配视频| 国产免费av片在线观看野外av| 色综合婷婷激情| 亚洲五月婷婷丁香| 3wmmmm亚洲av在线观看| 中文字幕av在线有码专区| 午夜老司机福利剧场| 亚洲欧美日韩无卡精品| 成人欧美大片| 久久久久国内视频| 国产真实伦视频高清在线观看 | 欧美+亚洲+日韩+国产| 一本精品99久久精品77| 少妇裸体淫交视频免费看高清| 国产一级毛片七仙女欲春2| 中文字幕免费在线视频6| 亚洲av电影在线进入| 亚洲精品在线美女| 中文字幕免费在线视频6| 噜噜噜噜噜久久久久久91| 亚洲精品在线美女| 午夜福利成人在线免费观看| 一个人免费在线观看的高清视频| 亚洲成人免费电影在线观看| 亚洲av不卡在线观看| 露出奶头的视频| 国内精品美女久久久久久| 蜜桃久久精品国产亚洲av| 99国产综合亚洲精品| 悠悠久久av| 又爽又黄a免费视频| 亚洲av第一区精品v没综合| 久久精品人妻少妇| 国产精品一区二区免费欧美| 欧美激情在线99| 亚洲精品一区av在线观看| 精品国内亚洲2022精品成人| 中国美女看黄片| 搡老岳熟女国产| 国产激情偷乱视频一区二区| 亚洲欧美清纯卡通| 一区福利在线观看| 欧美日韩国产亚洲二区| 精品人妻熟女av久视频|