• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精吸附U(VI)的動力學和熱力學

    2016-09-09 09:35:30荊鵬飛劉慧君胡勝勇雷蘭林馮志遠
    物理化學學報 2016年8期
    關鍵詞:南華大學甲酰志遠

    荊鵬飛 劉慧君 張 勤 胡勝勇 雷蘭林 馮志遠

    (南華大學化學化工學院,湖南衡陽421001)

    ?

    聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精吸附U(VI)的動力學和熱力學

    荊鵬飛劉慧君*張勤胡勝勇雷蘭林馮志遠

    (南華大學化學化工學院,湖南衡陽421001)

    β-環(huán)糊精與對甲苯磺酰氯在低溫堿性溶液中反應合成6-對甲苯磺酰酯-β-環(huán)糊精,并利用紅外光譜和核磁共振氫譜對其進行表征;聯(lián)苯甲酰與6-對甲苯磺酰酯-β-環(huán)糊精以摩爾比為1:2反應合成一種新型的聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精(BB β-CD)材料,并采用紫外可見分光光度法對其合成機理以及BB β-CD和聯(lián)苯甲酰對U(VI)的吸附行為進行研究;同時采用掃描電鏡對材料吸附U(VI)前后的外貌形態(tài)進行表征。通過間歇吸附法考察pH、反應時間、溫度以及干擾離子等因素對吸附過程的影響。結果表明,相比聯(lián)苯甲酰,BB β-CD能更有效地吸附U(VI),在pH=4.5,反應時間為60 min條件下,最大吸附量為12.16 mg·g-1,吸附率高達91.2%。動力學和熱力學擬合結果表明,吸附過程更符合準二級動力學速率方程,Langmuir等溫吸附模型比Freundlich等溫吸附模型更適合模擬吸附過程,且吸附是自發(fā)吸熱的過程。

    聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精;鈾(VI)吸附;動力學;平衡;熱力學

    www.whxb.pku.edu.cn

    1 Introduction

    With the continuous development of the global atomic energy industry,uranium and its compounds are nuclear fuels in power generation,which plays an important role in the military,civilian nuclear science,and technology.But with the rapid development of the nuclear industry,a large amount of wastewater containing uranium has been discharged into the environment,which has resulted in widespread environmental contamination1-5.Therefore, the efficient separation of uranium from aqueous phase,especially from industrial effluents,has attracted high attention of researchers6-8.To remove U(VI)from aqueous solution,several methods,such as chemical precipitation9,evaporation concentration10,ion exchange11,film processing method12,adsorption and solvent extraction13-15,have been developed to date.Currently, adsorption is an attractive method due to its high efficiency and diversity of adsorption.Many different sorbents,such as alumina, sepiolite,activated carbon,carbon nanotube,silica gel,goethite, chitosan and so on,have been investigated16-22.However,how to get a quick and resultful material for the determination and adsorption of U(VI)is still a work badly in need for us to do.

    β-cyclodextrins(β-CD)is a cyclic oligosaccharide with seven glucose units containing a hydrophilic exterior and hydrophobic internal cavity.The cavity structure of β-cyclodextrin can selectively form BB β-CD with other guest molecules through hostguest interactions.Sun et al.23had studied the adsorption and desorption of U(VI)on functionalized graphene oxides.Liu et al.24had studied the selective adsorption of U(VI)from acidic solution by high performance of phosphate-functionalized graphene oxide. Li et al.25had studied the adsorption and recovery of U(VI)from low concentration uranium solution by amidoxime modified Aspergillus niger.Hosseini and Abedi26had studied the adsorption of Th(IV)and U(VI)on mixed-ligands impregnated resin containing antraquinones with that conventional one.However,the study on the adsorption of U(VI)on bridged β-cyclodextrin is rarely reported.

    Benzil consists of two carbonyl(C=O)groups,which can form complexes with metal ions,is a kind of good α-diketone and it is also an excellent metal-chelating agent.To the best of our knowledge,there was still no report of study on the adsorption of U(VI)by BB β-CD.Compared with the reported sorbents,BB β-CD has great application in the adsorption of U(VI)from low concentration U(VI)solution because of low toxicity,biocompatibility,biodegradability and collaborative adsorption with benzil27,28,and expands the adsorption range for U(VI).At the same time,BB β-CD is also a low-cost sorbent with high adsorption capacity for U(VI)from low concentration U(VI)solution.In our work,adsorption material of BB β-CD was prepared by the reaction of benzil and sulfated-β-CD with the molar ratio of 1:2. In order to find the optimum adsorption conditions,a series of factors,such as pH value,contact time,temperature,and interfering ions were carried out for investigating the chemical adsorption properties of the sorbent for U(VI).In addition,various kinetic and thermodynamics models are also applied to study the adsorption process.

    2 Experimental

    2.1Materials and methods

    β-cyclodextrin(purity≥98%),benzil(purity≥98%),ptoluenesufonyl chloride(p-TsCl,99%),sodium hydroxide(purity ≥97%).Ammonium uranyl tricarbonate((NH4)4[UO2(CO3)3]), hydrochloric acid,alcohol,acetonitrile,arsenazo III,nitric acid, etc.were analytical reagent and used without further purification. All reagents were purchased fromAladdin Chemical Reagent Co. Ltd.(Shanghai,China).

    U3900 UV-spectrophotometer(Hitachi Ltd,Japan),Shimadzu IR Prestige-21 FTIR(Shimadzu,Japan),Bruker AV-III 400 MHz NMR spectrometer(Bruker BioSpin,Switzerland),S-4800 Scanning Electron Microscope(Hitachi Ltd.,Japan),etc.

    2.2Synthesis of sulfated-β-CD

    5 g of β-CD was dissolved in 100 mL of water,3 g of sodium hydroxide,and 1.68 g of p-TsCl was also added under the condition of ice water bath.The mixture was stirred and reacted for 5 h.Then the unreacted p-TsCl was filtered,the filtrate was adjusted to pH 6-7 by 1 mol·L-1HCl and it was put into a fridge for 24 h at 4°C.The resulting precipitate was filtered and recrystallized 2 times in water,CH3CN/H2O(1/1,V/V)to give sulfatedβ-CD.

    2.3Preparation of BB β-CD

    BB β-CD was prepared by the reaction of benzil(0.1 g)and sulfated-β-CD(1.2374 g)with the molar ratio of 1:2 in water at 50°C for 4 h,then the mixture was put into a fridge overnight at 4°C.The resulting precipitate was filtered and washed 6 times with deionized water and ethanol and dried by vacuum evaporation at 60°C for 8 h to give BB β-CD.The synthesis routes of sulfated-β-CD and BB β-CD are showed in Fig.1.

    2.4Adsorption studies

    In order to obtain the optimization adsorption conditions,the effects of pH,contact time,temperature,and interfering ions were examined.In the batch adsorption experiments,15 mg BB β-CD was added to the 10 mL U(VI)solution in 25 mL flask for which concentration was 20 mg·L-1,pH value is 2.0-7.0,and time range is 20-180 min.In addition,the flasks were shaken using shakingwater bath for specified durations at desired temperatures(298-338 K).After equilibration,the residual concentration of U(VI) ions was determined by UV-spectrophotometer.The adsorption capacity Q(mg·g-1)of BB β-CD and the remove ratio R(%)of U(VI)were calculated was calculated by the following equations:

    Fig.1 Synthesis route of sulfated-β-CD and BB β-CD

    where C0and Ce(mg·L-1)are the initial and equilibrium concentrations,respectively.V(L)is the volume of the testing solution,and m(g)is the mass of sorbent.

    2.5Effect of interfering ions

    In order to explore the selective adsorption behavior of U(VI), some important different concentrations of interfering ions such as Na+,Mg2+,Fe3+,and Cu2+were added to 20 mg·L-1U(VI)solution,pH 4.5,shaking to adsorb for 60 min.Centrifuge and UV-spectrophotometer was employed to analyze the U(VI)concentration in the adsorbed solution.

    3 Results and discussion

    3.1Characterization analysis

    Fig.2(A)shows the FTIR spectra of β-CD,sulfated-β-CD,and BB β-CD.Compared with β-CD some new absorption peaks were found in the FTIR spectra of sulfated-β-CD.In the FTIR spectra of sulfated-β-CD,the peaks around 1177 and1364 cm-1resulted from symmetric stretching and antisymmetric stretching vibration of S=O.The peaks at 1599,1078,and 1028 cm-1were ascribed to the νC=Con benzene ring,the νC―O―Cand νC―Oof the template sulfated-β-CD.And the peaks of 837,815 cm-1were ascribed to the νC―Hon the benzene ring29.And compared with sulfated-β-CD, BB β-CD appeared characteristic bands at 1697 cm-1,which was ascribed to the νC=O.

    Fig.2 FTIR spectra of β-CD(1),sulfated-β-CD(2),BB β-CD(3)

    The FTIR spectra of BB β-CD and BB β-CD+U(VI)are respectively shown in Fig.2(B).As shown in Fig.2(B),the FTIR spectra of BB β-CD shows that the template does not change the adsorption peak of each chemical group very much,suggesting that the template only combines with the with hydrophobic interaction and hydrogen bonding interaction,but not forming chemical bonds.The FTIR spectra of BB β-CD+U(VI)displays significant shift in some peaks.The shift of the peak from 1697 to 1702 cm-1reflects the changes in the stretching frequency of carbonyl(C=O)upon binding of U(VI).This observation indicates the involvement of carbonyl(C=O)in the adsorption process30,31.

    Fig.3 shows the1HNMR(DMSO-d6,400 MHz,TMS)spectra of benzil,β-CD,sulfated-β-CD,and BB β-CD.As seen in Fig.3, the1HNMR spectra of benzil,β-CD,sulfated-β-CD,and BB β-CD have obvious difference and the change of chemical shifts of sulfated-β-CD and BB β-CD are shown in Table 1.As shown in Fig.3,the chemical shifts of sulfated-β-CD are different from those of β-CD,and the results of them are consistent with the reported sulfated-β-CD32.Compared with sulfated-β-CD,the chemical shifts of part protons(H3 and H5)of BB β-CD have obvious move and other protons have not apparent movement.Therefore,we canknow that the formation of the BB β-CD by insertion of the aromatic ring of the benzil into the sulfated-β-CD cavity can be confirmed by observing the chemical shifts induced in the H3 and H5 resonances of sulfated-β-CD due to the ring-current effects of the aromatic benzil.As shown in Table 1,the relatively large upfield shift is observed for H3 and H5 of sulfated-β-CD,which indicate that benzil molecule inserted into sulfated-β-CD cavity33. All of these proved that the synthesis of BB β-CD is reliable and successful.

    Fig.3 1HNMR spectra of benzil(a),β-CD(b), sulfated-β-CD(c),and BB β-CD(d)

    The UV-spectrophotometer analysis results shows the changes of absorb and wavelength about different molar ratios of benzil and sulfated-β-CD(Fig.4).Absorption wavelength moved to the maximal from 1:0 to 1:2,however,it went back when the molar ratio went to 1:2 and 1:2.5,and we can preliminarily conclude that the molar ratio of 1:2 is the best molar ratio.

    As the stirring time went on,the mixture solution slowly turned to clarify while it was turbidity at the beginning.Maybe it belonged to the reason that benzil did not dissolute in the water,so it was turbidity at the beginning,but as the stirring went on,the benzil went into the cavity of sulfated-β-CD to format BB β-CD. Besides UV-spectrophotometer,it is also very important to choose the best molar ratio by determining inclusion constants under different molar ratios of benzil and sulfated-β-CD,and the resultsare reported in Table 2.Here,it is the determination and calculation process of inclusion constant under the molar ratio of 1:2 of benzil and sulfated-β-CD.UV-spectrophotometer shows adsorption of benzil in 0.05 g BB β-CD is 2.068,according to the standard concentration of benzil in Fig.5,that means the concentration of benzil in 10 mLethanol is C=1.70×10-3mol·L-1. Defining the mass ratio of benzil and sulfated-β-CD in original sample is k0,and in the BB β-CD is k1,the inclusion constant is K, k1=1.70×10-3×10×10-3×210.23/0.05=0.0714,K=(k1/k0)× 100%=0.0714/0.07477×100%=95.49%.In addition,the determination and calculation process of inclusion constants under other molar ratios of benzil and sulfated-β-CD are the same.The results of UV-spectrophotometer analysis and the determination of inclusion constants show that the molar ratio of 1:2 of benzil and sulfated-β-CD is the best molar ratio.

    Table 1 Chemical shifts of part protons of sulfated-β-CD and BB β-CD

    Fig.4 UV absorption of different molar ratios of benzil and sulfated-β-CD

    SEM shows that the surface of BB β-CD was uneven and rough while that of BB β-CD absorbed U(VI)was homogeneous.The reason is that pores in BB β-CD provides necessary channel and adsorption space for the adsorption.Therefore,BB β-CD can effectively adsorb U(VI)(Fig.6).

    3.2Effect of pH

    pH is one of the important factors that affect the adsorption efficiency,and the effect of pH on the adsorption of U(VI)from aqueous solutions is showed in Fig.7.The results showed that the adsorption of U(VI)increased gradually as pH increases from 2.0 to 4.5,then decreases when the pH value is higher than 4.5.Because at low pH,it is difficult for diketone to chelate metal ions and there are two reasons to explain it.On the one hand,the lower uptake at low pH may be attributed to the higher acidities which made the protonation of O in BB β-CD on benzil by H+34,and formed positively charged BB β-CD surface which prevent the adsorption of metal ions due to electrostatic repulsion35-37.On the other hand,the low adsorption can be due to the competition of H+and metal ions in the solution for the adsorption sites of BB β-CD38.And when the pH continues to increase,U(VI)may hydrolyse to UO2OH+and(UO2)2(OH)22+)or precipitation39,resultingin a false impression or adsorption error40.In order to get quantitative adsorption of U(VI)at higher pH values while avoid hydrolysis and precipitation,pH 4.5 was considered as the optical value,and the adsorption capacity of U(VI)was 12.16 mg·g-1.

    Fig.5 Standard concentration of benzil

    Table 2 Inclusion constants under different molar ratios of benzil and sulfated-β-CD

    Fig.6 SEM spectra of BB β-CD(a)and BB β-CD+U(VI)(b) (a)BB β-CD;(b)BB β-CD+U(VI)

    Fig.7 Effect of pH on the adsorption of U(VI)

    3.3Effect of contact time and kinetic studies

    The effect of contact time was investigated to determine the equilibrium point,and the result was given in Fig.8.The results showed that the adsorption capacity of U(VI)gradually increased during the 20-120 min and then tended to equilibrate in the following contact time for benzil.However,the sorbent BB β-CD tended to equilibrate in 60 min.This observation is due to the fact that the hydrophobic space of β-CD inclusion hydrophobic benzene ring of benzil,two oxygen atoms of benzil exposed and U (VI)adsorbed quickly and fully.Therefore,the U(VI)can be easier adsorbed on BB β-CD than benzil.The BB β-CD in this study had good adsorption capacity at pH 4.5,and the adsorption equilibrium could reach a balance in 60 min.

    Fig.8 Effect of contact time on the adsorption of U(VI)

    To analyze the kinetic adsorption behaviors of U(VI)on BB β-CD,two kinetic models namely pseudo-first-order and pseudosecond-order models were used to fit the adsorption process.The pseudo-first-order kinetic model is given by the following equation41:

    where Qeand Qt(mg·g-1)are the amount of U(VI)adsorbed at equilibrium and at time t(min),respectively.K1(min-1)is the rate constant of pseudo-first-order,and t(min)is the reaction time. Values of Qeand K1were calculated from the intercept and slope values of the straight line by plotting lg(Qe-Qt)versus t are reported in Table 3 and as shown in Fig.9.The results showed that the linear plot of lg(Qe-Qt)and time followed pseudo-first-order kinetic model of U(VI)adsorption on BB β-CD.

    At the same time,the kinetic adsorption behaviors of U(VI)on BB β-CD was also described according to the pseudo-secondorder kinetic using the following equation42:

    where K2(mg·g-1·min-1)is the rate constant of pseudo-secondorder,and t(min)is the reaction time.Values of Qeand K2were calculated from the slope and intercept values of the straight line by plotting t/Qtversus t are reported in Table 3 and as shown in Fig.10.The results showed that the linear plot of t/Qtand time followed pseudo-second-order kinetic model of U(VI)adsorption on BB β-CD.The calculated Qevalue from pseudo-second-order kinetic equation agreed very well with the experimental Qevalue. The kinetic data showed that the adsorption of U(VI)followed pseudo-second-order kinetic model(R2=0.9944),and the experimental Qe(exp)value(12.16 mg·g-1)was close to the model Qevalue(12.165 mg·g-1).

    Table 3 Kinetic data for adsorption of U(VI)

    Fig.9 Pseudo-first-order plot for adsorption of U(VI)

    3.4Adsorption isotherms

    Generally speaking,adsorption isotherms can provide some significant information in optimizing the application of BB β-CD, Langmuir and Freundlich isotherms were used to simulate the adsorption isotherms of U(VI).According to the Langmuir isotherm model,adsorption process commonly occurs on the surface of sorbent until monolayer coverage is obtained.The linear equation of the Langmuir adsorption model can be expressed as follows43:

    where Qe(mg·g-1)and Qm(mg·g-1)are the equilibrium and maximum adsorption capacities,respectively.Ce(mg·L-1)is the equilibrium concentration of metal ions in solution,Ka(L·mg-1) is the Langmuir constant related to energy of adsorption.The values of Qmand Kacalculated from the intercept and slope values of the straight line by plotting 1/Qeversus 1/Ceare reported in Table 4 and as shown in Fig.11.The results showed that the linear plot of 1/Qeand 1/Cefollowed the Langmuir adsorption model of U(VI)adsorption on BB β-CD.

    Fig.10 Pseudo-second-order plot for adsorption of U(VI)

    Unlike the Langmuir adsorption model,the Freundlich adsorption model is an empirical model,which is based on heterogeneous surfaces and allows for several kinds of adsorption sites on the surface of adsorption material.The model can be represented by the following equation44,45:

    where Qe(mg·g-1)and Ce(mg·L-1)are the equilibrium concentrations of metal ions in solution,respectively.and KFand n are Freundlich constants,which mean adsorption capacity and adsorption intensity,respectively.The values of KFand n calculated from the intercept and slope values of the straight line by plotting lnQeversus lnCeare reported in Table 4 and as shown in Fig.12. The values of KFand n were found to be 1.01 and 1.35.The value of 1

    3.5Effect of temperature and adsorption

    thermodynamics

    The effect of temperature on the adsorption of U(VI)on thestudied BB β-CD were investigated at 298,308,318,328,and 338 K,respectively.Thermodynamic parameters were calculated to confirm the thermodynamic feasibility and the nature of the adsorption process.The thermodynamic parameters corresponding toU(VI)adsorptionontheBB β-CDcanbeexpressedusingvan′t Hoff equation46:

    Table 4 Isotherm model constant parameters for adsorption of U(VI)

    Fig.11 Langmuir plots for adsorption of U(VI)

    Fig.12 Freundlich plots for adsorption of U(VI)

    where C0and Ce(mg·L-1)are the initial and equilibrium concentrations,respectively.V(mL)is the volume of the testing solution,m(g)is the mass of sorbent,Kd(mL·g-1)is the distribution coefficient,ΔS0(J·mol-1·K-1)is standard entropy,ΔH0(kJ·mol-1) is the standard enthalpy,ΔG0(kJ·mol-1)is the standard Gibbs free energy,T(K)is the absolute temperature,and R(8.314 J·mol-1· K-1)is the gas constant.

    The curve of temperature and distribution coefficient is reported in Table 5 and as shown in Fig.13.As shown in Table 5,ΔH0is positive because the adsorption of U(VI)on BB β-CD is endothermic.The values of free energy are negative,and the decrease in the value of ΔG0with increase in temperature shows that the reaction is spontaneous and more favorable at higher temperature.

    Table 5 Thermodynamic parameters for the adsorption of U(VI)

    Fig.13 van′t Hoff plots for the adsorption of U(VI)

    Fig.14 Infection on the adsorption of U(VI)by interfering irons

    Fig.15 Possible adsorption mechanism of U(VI)

    3.6Interfering ions analysis

    In order to evaluate the selective adsorption of U(VI)by the BB β-CD,the effect of interfering ions on adsorption of U(VI)were carried out(Fig.14).The results showed that interfering ions had different influence on adsorption capacity of U(VI).Na+didn′t obviously affect the adsorption of U(VI).The adsorption of U(VI) could have the similar capacity when the concentration of Mg2+, Fe3+,and Cu2+were lower than 10 mg·L-1.The possible adsorption mechanism of U(VI)is shown in Fig.15.

    4 Conclusions

    Anovel BB β-CD was synthesised by the reaction of benzil and sulfated-β-CD with the molar ratio of 1:2,and it was successfully used for the adsorption of U(VI).The BB β-CD used as sorbent had good adsorption capacity(12.16 mg·g-1)and remove ratio (91.2%)of U(VI)at the optimum conditions.The adsorption capacity of U(VI)showed no obvious change in the presence of Na+,Mg2+,Fe3+,and Cu2+when concentration was lower than 10 mg·L-1.Kinetic study showed that the pseudo-second-order model was appropriate to describe the adsorption process,indicating the chemical adsorption.Among different models used for describing equilibrium isotherm data,Langmuir model is in good agreement with the experimental data with high R2(0.9907).The adsorption of U(VI)dependence on temperature was investigated and the thermodynamic parameters DH0,DS0,and DG0were calculated. The results showed that it was a feasible,spontaneous and endothermic adsorption process.In this paper,the raw materials are commercially available,the experimental method for the adsorption of U(VI)is reliable and feasible and it can provide certain reference value for future research.

    References

    (1)Olszewski,G.;Bory?o,A.;Skwarzec,B.J.Environ.Radioactiv. 2015,146,56.doi:10.1016/j.jenvrad.2015.04.001

    (2)Liu,P.H.;Wei,C.S.;Zhang,S.M.;Zhu,C.M.;Xie,S.R. Asian J.Chem.2015,27,1049.doi:10.14233/ ajchem.2015.18056

    (3)Cesare,M.D.;Cesare,N.D.;D'Onofrio,A.Appl.Radiat. Isotopes.2015,103,166.doi:10.1016/j.apradiso.2015.06.011

    (4)Bourgeois,D.;Burt-Pichat,B.;Goff,X.L.Anal.Bioanal. Chem.2015,407(22),6619.doi:10.1007/s00216-015-8835-7

    (5)Bonato,M.;Ragnarsdottir,K.V.Wat.Air Soil.Pollut.2012,223 (7),3845.doi:3846.10.1007/s11270-012-1153-1

    (6)Gu,Z.X.;Tu,C.N.;Wang,Y.;Yang,J.J.;Liu,N.;Liao,J.L.; Yang,Y.Y.;Tang,J.Acta Phys.-Chim.Sin.2015,31(Suppl), 95.[顧澤興,涂昌能,王云,楊吉軍,劉寧,廖家莉,楊遠友,唐軍.物理化學學報,2015,31(Suppl),95.]doi:10.3866/ PKU.WHXB2014Ac13

    (7)Yousif,A.M.;El-Afandy,A.H.;AbdelWahab,G.M.;Mubark, A.E.;Ibrahim,I.A.J.Radioanal.Nucl.Chem.2015,303(3), 1821.doi:10.1007/s10967-014-3688-7

    (8)Sun,T.X.;Shen,X.H.;Chen,Q.D.Acta Phys.-Chim.Sin. 2015,31(Suppl),32.[孫濤祥,沈興海,陳慶德.物理化學學報,2015,31(Suppl),32.]doi:10.3866/PKU.WHXB2014Ac10

    (9)Mellah,A.;Chegrouche,S.Barkat,M.Hydrometallurgy 2007, 85,163.doi:10.1016/j.hydromet.2006.08.011

    (10)Duff,M.C.;Morris,D.E.;Hunter,D.B.;Bertsch,P.M. Geochim.Cosmochim.Ac.2000,64(9),1535.doi:10.1016/ S0016-7037(99)00410-X

    (11)Zou,W.H.;Zhao,L.;Han,R.P.Chin.J.Chem.Eng.2009,17, 586.doi:10.1016/S1004-9541(08)60248-7

    (12)John,A.M.S.;Cattrall,R.W.;Kolev,S.D.J.Memb.Sci.2012, 409(4),242.doi:10.1016/j.memsci.2012.03.061

    (13)Gok,C.;Aytas,S.J.Hazard.Mater.2009,168(1),369.doi: 10.1016/j.jhazmat.2009.02.063

    (14)Joseph,C.;Schmeide,K.;Sachs,S.;Brendler,V.;Geipel,G.; Bernhard,G.Chem.Geol.2011,284(3),240.doi:10.1016/j. chemgeo.2011.03.001

    (15)Oshita,K.;Sabarudin,A.;Takayanagi,T.;Oshima,M.; Motomizu,S.Talanta 2009,79(2),1031.doi:10.1016/j. talanta.2009.03.035

    (16)Qian,L.;Ma,M.;Cheng,D.J.Radioanal.Nucl.Chem.2015, 303,161.doi:10.1007/s10967-014-3352-2

    (17)Branislava,M.M.;Milijan,J.;Mirjana,L.M.Radiat.Environ. Bioph.2015,54(2),217.doi:10.1007/s00411-015-0589-2

    (18)Ahmed,S.H.;Sharaby,C.M.;Gammal,E.M.E. Hydrometallurgy 2013,134,150.doi:10.1016/j. hydromet.2013.02.003

    (19)Tan,L.;Liu,Q.;Jing,X.Chem.Eng.J.2015,273,307. doi:10.1016/j.cej.2015.01.110

    (20)Basu,H.;Singhal,R.K.;Pimple,M.V.Int.J.Environ.Sci. Technol.2015,12,1899.doi:10.1007/s10967-014-3677-x

    (21)Sun,Y.;Yang,S.;Wang,Q.Radiochim.Acta 2014,102,797. doi:10.1515/ract-2013-2204

    (22)Chao,X.;Wang,J.;Yang,T.Carbohyd.Polym.2015,121,79. doi:10.1016/j.carbpol.2014.12.024

    (23)Sun,Y.B.;Yang,S.B.;Chen,Y.;Ding,C.C.;Cheng,W.C.; Wang,X.K.Environ.Sci.Technol.2015,49(7),4255. doi:10.1021/es505590j

    (24)Liu,X.;Li,J.;Wang,X.J.Nucl.Mater.2015,466(45),56. doi:10.1016/j.jnucmat.2015.07.027

    (25)Li,L.;Hu,N.;Ding,D.X.;Xin,X.;Wang,Y.D.;Xue,J.H.; Zhang,H.;Tan,Y.RSC Adv.2015,5,65827.doi:10.1039/ C5RA13516H

    (26)Hosseini,M.S.;Abedi,F.J.Radioanal.Nucl.Chem.2015,303, 2173.doi:10.1007/s10967-014-3366-9

    (27)Mirzajani,R.;Pourreza,N.;Najjar,S.S.A.Res.Chem. Intermediat.2014,40(8),2667.doi:10.1007/s11164-013-1120-5 (28)Ogoshi,T.;Harada,A.Sensors 2008,8,4961.doi:10.3390/ s8084961

    (29)Wang,Y.L.;Feng,R.S.;Guo,Y.J.Chin.J.Appl.Chem.2011, 28,1269.doi:10.3724/SP.J.1095.2011.00680

    (30)Xiao,Y.Q.;Xia,L.S.;Li,R.R.;Li,G.;Huang,X.Atom Energy Science and Technology 2015,49,2130.doi:10.7538/ yzk.2015.49.12.2130

    (31)Wang,J.S.;Zou,X.L.;Jia,L.Atom Energy Science and Technology 2015,49,255.doi:10.7538/yzk.2015.49.02.0255

    (32)Huang.Y.;Fan,X.D.Journal of Northwest University(Natural Science Edition)2003,33,41.doi:1000-274X(2003)01-0041-04

    (33)Ding,H.;Chao,J.;Zhang,G.Spectrochim.Acta A 2003,59, 3421.doi:10.1016/S1386-1425(03)00176-8

    (34)Ji,X.Z.;Liu,H.J.;Wang,L.L.J.Radioanal.Nucl.Chem. 2013,295,265.doi:10.1007/s10967-012-1979-4

    (35)Chen,S.P.;Hong,J.X.;Yang,H.X.J.Environ.Radioactiv. 2013,126,253.doi:10.1016/j.jenvrad.2013.09.002

    (36)Huang,G.L.;Zou,L.X.;Su,Y.;Lv,T.T.;Wang,L.L. J.Radioanal.Nucl.Chem.2016,307(2),1135.doi:10.1007/ s10967-015-4275-2

    (37)Hosseini,S.H.;Rahmanisani,A.;Jalalabadi,Y.Int.J.Environ. Anal.Chem.2015,95(4),277.doi:10.1080/ 03067319.2015.1016009

    (38)Chen,F.;Tan,N.;Long,W.;Yan,X.M.;Chen,F.Mar.Pollut. Bull.2013,74,213.doi:10.1016/j.marpolbul.2013.06.055

    (39)Long,D.J.;Liu,J.H.;Wang,X.M.Nuclear Power Engineering 2012,33,1.doi:10.1128/JVI.06957-11

    (40)Tong,K.S.;Kassim,M.J.;Azraa,A.Chem.Eng.J.2011,170, 145.doi:10.1016/j.cej.2011.03.044

    (41)Starvin,A.M.;Rao,T.P.Talanta 2004,63(2),225. doi:10.1016/j.talanta.2003.11.001

    (42)Li,Z.;Chen,F.;Yuan,L.;Liu,Y.;Zhao,Y.;Chai,Z.;Shi,W. Chem.Eng.J.2012,210,539.doi:10.1016/j.cej.2012.09.030

    (43)Zhou,L.M.;Shang,C.;Liu,Z.R.;Huang,G.L.Adesina,A.A. J.Colloid Interface Sci.2012,366(1),165.doi:10.1016/j. jcis.2011.09.069

    (44)Mellah,A.;Chegrouche,S.;Barkat,M.J.Colloid Interface Sci. 2006,296(2),434.doi:10.1016/j.jcis.2005.09.045

    (45)Oguz,E.J.Colloid Interface Sci.2005,281(1),62. doi:10.1016/j.jcis.2004.08.074

    (46)Aksoyoglu,S.J.Radioanal.Nucl.Chem.1989,134(2),393. doi:10.1007/BF02278276

    Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)

    JING Peng-FeiLIU Hui-Jun*ZHANG QinHU Sheng-Yong LEI Lan-LinFENG Zhi-Yuan
    (College of Chemistry and Chemical Engineering,University of South China,Hengyang 421001,Hunan Province,P.R.China)

    Sulfated β-cyclodextrin(β-CD)was prepared by the reaction of β-CD with p-toluenesulfonyl chloride at low temperature in aqueous sodium hydroxide.The product was analyzed by Fourier transform infrared spectroscopy(FTIR)and proton nuclear magnetic resonance(1H NMR).The novel benzil-bridged β-CD(BB β-CD)was acquired by the reaction of benzil with sulfated β-CD at a molar ratio of 1:2.UV spectrophotometry was used to study the synthetic mechanism of BB β-CD and benzil and their adsorption onto U(VI).Scanning electron microscopy(SEM)was used to analyze the surface properties of the materials.The adsorption of BB β-CD onto U(VI)was investigated as a function of pH,contact time, temperature,and interfering ions using the batch adsorption technique.It was found that the adsorption equilibrium of BB β-CD was reached faster than that of benzil.The optimum experimental conditions were pH=4.5 and shaking for 60 min,achieving the maximum adsorption capacity of 12.16 mg·g-1and a U(VI)removal ratio of 91.2%.Kinetic studies revealed that the adsorption reached equilibrium within 60 min for U(VI)and followed a pseudo-second-order rate equation.The isothermal data correlated with the Langmuir model better than with the Freundlich model.The thermodynamic data indicated the spontaneous and endothermic nature of the process.

    BB β-CD;Uranium(VI)adsorption;Kinetics;Equilibrium;Thermodynamics

    January 4,2016;Revised:April 20,2016;Published on Web:April 21,2016.

    O642;O643

    10.3866/PKU.WHXB201604212

    *Corresponding author.Email:liuhuijun@usc.edu.cn;Tel:+86-13607341186.

    The project was supported by the National Natural Science Foundation of China(11375084)and Hunan Provincial Innovation Foundation for Postgraduate,China(CX2015B399).

    國家自然科學基金(11375084)和湖南省研究生科研創(chuàng)新項目(CX2015B399)資助

    ?Editorial office ofActa Physico-Chimica Sinica

    [Article]

    猜你喜歡
    南華大學甲酰志遠
    南華大學召開學習丁德馨同志先進事跡座談會
    N-氨甲酰谷氨酸對灘羊乏情期誘導同期發(fā)情效果的影響
    中國飼料(2021年17期)2021-11-02 08:15:14
    獲批57項!南華大學2021年度自然科學基金立項取得好成績
    喜訊!南華大學2021年省級一流本科課程認定再創(chuàng)佳績!
    我最喜愛的玩具①
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    Wang Chuanshan
    大東方(2018年8期)2018-09-10 03:43:57
    N-氨基甲酰谷氨酸在仔豬生產(chǎn)中的應用
    廣東飼料(2016年5期)2016-12-01 03:43:22
    香噴噴的年喲
    新型meso-四(4-十四氨基甲酰苯基)卟啉及其金屬(Co)配合物的合成與液晶性能
    合成化學(2015年10期)2016-01-17 08:56:37
    亚洲精品第二区| 免费大片黄手机在线观看| 日日摸夜夜添夜夜爱| 一区二区三区高清视频在线| 欧美日韩精品成人综合77777| h日本视频在线播放| 波多野结衣巨乳人妻| 亚洲人成网站在线播| videos熟女内射| 成人美女网站在线观看视频| 乱人视频在线观看| 一边亲一边摸免费视频| 黄色日韩在线| 国产伦一二天堂av在线观看| 亚洲在久久综合| 久久精品国产亚洲av涩爱| 男人爽女人下面视频在线观看| 亚洲精品乱码久久久v下载方式| av线在线观看网站| 99久久人妻综合| 99久国产av精品国产电影| videossex国产| 性插视频无遮挡在线免费观看| 亚洲熟妇中文字幕五十中出| 亚洲美女搞黄在线观看| 久久精品国产亚洲网站| 91久久精品国产一区二区成人| 成人漫画全彩无遮挡| av一本久久久久| 超碰av人人做人人爽久久| 国产精品精品国产色婷婷| 久热久热在线精品观看| 搡老妇女老女人老熟妇| 嫩草影院入口| 久久6这里有精品| 亚洲精品日本国产第一区| 久久人人爽人人片av| av线在线观看网站| 亚洲国产成人一精品久久久| 男人爽女人下面视频在线观看| 午夜激情福利司机影院| 成人av在线播放网站| 久久人人爽人人片av| 又黄又爽又刺激的免费视频.| 久久久欧美国产精品| 国产伦一二天堂av在线观看| 人人妻人人澡人人爽人人夜夜 | 91久久精品电影网| 男女边摸边吃奶| 色综合亚洲欧美另类图片| 国产男人的电影天堂91| 一级毛片久久久久久久久女| 最后的刺客免费高清国语| 大香蕉97超碰在线| 非洲黑人性xxxx精品又粗又长| 蜜桃久久精品国产亚洲av| 极品教师在线视频| 日本欧美国产在线视频| 亚洲av中文av极速乱| 国产免费福利视频在线观看| 国产乱人视频| 我的老师免费观看完整版| 七月丁香在线播放| a级毛片免费高清观看在线播放| 一区二区三区免费毛片| 韩国av在线不卡| 美女xxoo啪啪120秒动态图| 久久久久精品久久久久真实原创| 国产成年人精品一区二区| 久久久久久久久大av| 国产精品爽爽va在线观看网站| 18禁裸乳无遮挡免费网站照片| 成人二区视频| 久久精品国产亚洲av天美| 国产高清三级在线| 亚洲在久久综合| 精品国产一区二区三区久久久樱花 | 国产黄a三级三级三级人| 91久久精品国产一区二区三区| 亚洲精品久久午夜乱码| 日韩av在线大香蕉| 精品久久久久久久末码| 久久久久性生活片| 极品教师在线视频| 啦啦啦啦在线视频资源| 看黄色毛片网站| 国产又色又爽无遮挡免| 精品少妇黑人巨大在线播放| 夫妻性生交免费视频一级片| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久久av| 国产有黄有色有爽视频| 你懂的网址亚洲精品在线观看| 嫩草影院精品99| 一级毛片 在线播放| 男的添女的下面高潮视频| 天堂中文最新版在线下载 | 亚洲国产最新在线播放| 国产黄色免费在线视频| 亚洲av中文av极速乱| 精品少妇黑人巨大在线播放| 国产伦一二天堂av在线观看| av天堂中文字幕网| 国产成人精品一,二区| 成人漫画全彩无遮挡| 欧美zozozo另类| av免费在线看不卡| 国产精品不卡视频一区二区| 国产毛片a区久久久久| 亚洲欧美精品自产自拍| 国产av在哪里看| 精品国产三级普通话版| 亚洲伊人久久精品综合| 美女主播在线视频| 久99久视频精品免费| 91久久精品国产一区二区成人| 欧美成人一区二区免费高清观看| 毛片一级片免费看久久久久| 成人亚洲欧美一区二区av| 亚洲精品aⅴ在线观看| 最近最新中文字幕免费大全7| 亚洲国产欧美在线一区| 激情 狠狠 欧美| 嫩草影院精品99| av天堂中文字幕网| 欧美日本视频| 成人午夜高清在线视频| 毛片女人毛片| 别揉我奶头 嗯啊视频| 国内精品一区二区在线观看| 亚洲国产精品sss在线观看| 69人妻影院| 99久久精品国产国产毛片| 国产精品伦人一区二区| 午夜精品国产一区二区电影 | 大香蕉久久网| 搞女人的毛片| 伦精品一区二区三区| 大香蕉97超碰在线| 久久久欧美国产精品| 少妇熟女欧美另类| 免费看美女性在线毛片视频| 五月玫瑰六月丁香| 男女啪啪激烈高潮av片| 精品久久久久久久久av| 国产免费福利视频在线观看| 中文在线观看免费www的网站| 免费少妇av软件| 成人二区视频| 在线 av 中文字幕| 在线观看免费高清a一片| 国产精品日韩av在线免费观看| 人人妻人人澡欧美一区二区| 国产精品蜜桃在线观看| 亚洲成人一二三区av| 亚洲久久久久久中文字幕| 亚洲精品一区蜜桃| 久久久国产一区二区| .国产精品久久| 成年女人在线观看亚洲视频 | 尾随美女入室| 夜夜看夜夜爽夜夜摸| 久久精品人妻少妇| 爱豆传媒免费全集在线观看| 一区二区三区四区激情视频| 三级毛片av免费| 成年av动漫网址| 成人二区视频| 中文乱码字字幕精品一区二区三区 | 一本久久精品| 色播亚洲综合网| 免费观看无遮挡的男女| 日日摸夜夜添夜夜爱| 91久久精品国产一区二区成人| 亚洲aⅴ乱码一区二区在线播放| 免费观看性生交大片5| 最近视频中文字幕2019在线8| 男女国产视频网站| 精品一区在线观看国产| 久久久久久国产a免费观看| 少妇的逼好多水| 国产国拍精品亚洲av在线观看| 亚洲av免费在线观看| 久久久久久久久久黄片| 丰满人妻一区二区三区视频av| 99热网站在线观看| 丰满人妻一区二区三区视频av| 美女黄网站色视频| 丰满人妻一区二区三区视频av| 爱豆传媒免费全集在线观看| 精品午夜福利在线看| 中文精品一卡2卡3卡4更新| 久久久国产一区二区| 久久久久久国产a免费观看| 91久久精品国产一区二区三区| 最近视频中文字幕2019在线8| 18禁在线播放成人免费| 天美传媒精品一区二区| 国产黄片视频在线免费观看| 91在线精品国自产拍蜜月| 丝袜美腿在线中文| 性插视频无遮挡在线免费观看| 六月丁香七月| 性色avwww在线观看| 国产亚洲精品久久久com| 成人av在线播放网站| 午夜激情福利司机影院| 成人鲁丝片一二三区免费| 国产单亲对白刺激| 狠狠精品人妻久久久久久综合| 欧美极品一区二区三区四区| 丝瓜视频免费看黄片| 日韩欧美国产在线观看| 天堂网av新在线| 国产伦精品一区二区三区四那| 亚洲精华国产精华液的使用体验| 久久久久免费精品人妻一区二区| 国产老妇女一区| 国产一级毛片七仙女欲春2| 天天躁夜夜躁狠狠久久av| 国产三级在线视频| 在线观看一区二区三区| 亚洲av男天堂| 一级片'在线观看视频| 噜噜噜噜噜久久久久久91| 国产v大片淫在线免费观看| a级一级毛片免费在线观看| 亚洲激情五月婷婷啪啪| 男女下面进入的视频免费午夜| 天美传媒精品一区二区| 91精品国产九色| 欧美激情久久久久久爽电影| 日韩精品有码人妻一区| 亚洲婷婷狠狠爱综合网| 色尼玛亚洲综合影院| 精品不卡国产一区二区三区| 国产 亚洲一区二区三区 | 久久韩国三级中文字幕| 亚洲久久久久久中文字幕| 老司机影院毛片| 爱豆传媒免费全集在线观看| 男人和女人高潮做爰伦理| 日韩电影二区| 国产极品天堂在线| 久久综合国产亚洲精品| 欧美 日韩 精品 国产| 亚洲性久久影院| 国产极品天堂在线| 一个人免费在线观看电影| 国产精品蜜桃在线观看| 欧美最新免费一区二区三区| 最近最新中文字幕免费大全7| 精品欧美国产一区二区三| 亚洲av中文字字幕乱码综合| 国产av在哪里看| 啦啦啦中文免费视频观看日本| 欧美成人午夜免费资源| 全区人妻精品视频| 日本猛色少妇xxxxx猛交久久| 51国产日韩欧美| 亚洲性久久影院| 又大又黄又爽视频免费| 一级毛片我不卡| 联通29元200g的流量卡| 汤姆久久久久久久影院中文字幕 | 亚洲av电影不卡..在线观看| 夫妻性生交免费视频一级片| 国产成人91sexporn| 久久久久精品性色| 午夜免费男女啪啪视频观看| 午夜免费男女啪啪视频观看| 啦啦啦啦在线视频资源| 秋霞在线观看毛片| 中文字幕av在线有码专区| 免费观看av网站的网址| 国产黄a三级三级三级人| 男人和女人高潮做爰伦理| 亚洲欧美清纯卡通| 国产69精品久久久久777片| 国产人妻一区二区三区在| 又粗又硬又长又爽又黄的视频| 免费高清在线观看视频在线观看| 国产老妇女一区| 大话2 男鬼变身卡| 亚洲,欧美,日韩| 色视频www国产| videos熟女内射| 日韩国内少妇激情av| 国内精品美女久久久久久| 国产一区二区在线观看日韩| 国产精品爽爽va在线观看网站| 国产在视频线精品| 如何舔出高潮| 欧美日本视频| 在线观看av片永久免费下载| 丰满人妻一区二区三区视频av| 一二三四中文在线观看免费高清| 免费在线观看成人毛片| 精品一区二区三卡| 亚洲av日韩在线播放| 日本av手机在线免费观看| 亚洲三级黄色毛片| 久久精品夜夜夜夜夜久久蜜豆| 男人爽女人下面视频在线观看| 国产毛片a区久久久久| 一级毛片电影观看| 国产乱人偷精品视频| 国产极品天堂在线| 国产av国产精品国产| 成人鲁丝片一二三区免费| 大陆偷拍与自拍| 青春草亚洲视频在线观看| 欧美日韩亚洲高清精品| 大话2 男鬼变身卡| 午夜亚洲福利在线播放| 日本黄色片子视频| 国产成人精品久久久久久| 亚洲av电影在线观看一区二区三区 | 亚洲av国产av综合av卡| 18禁在线播放成人免费| 又爽又黄a免费视频| 男的添女的下面高潮视频| 亚洲精品久久午夜乱码| 欧美97在线视频| 日本与韩国留学比较| 97热精品久久久久久| 欧美变态另类bdsm刘玥| 日韩中字成人| 五月天丁香电影| 欧美人与善性xxx| 国产成人免费观看mmmm| 国产中年淑女户外野战色| 伦理电影大哥的女人| 夫妻午夜视频| 欧美 日韩 精品 国产| 纵有疾风起免费观看全集完整版 | 又大又黄又爽视频免费| 人妻夜夜爽99麻豆av| 亚洲av成人av| 三级毛片av免费| 久久亚洲国产成人精品v| 91午夜精品亚洲一区二区三区| 日日摸夜夜添夜夜爱| 欧美成人午夜免费资源| 人体艺术视频欧美日本| 国产成人免费观看mmmm| 一区二区三区乱码不卡18| 又爽又黄a免费视频| 只有这里有精品99| 大香蕉97超碰在线| 在线观看人妻少妇| 午夜日本视频在线| 欧美日韩精品成人综合77777| 精品一区在线观看国产| 一二三四中文在线观看免费高清| 97精品久久久久久久久久精品| 日本一本二区三区精品| 尾随美女入室| 色综合色国产| av免费观看日本| 免费看美女性在线毛片视频| 久久99热6这里只有精品| 日韩视频在线欧美| 身体一侧抽搐| 美女黄网站色视频| 欧美xxxx黑人xx丫x性爽| 嘟嘟电影网在线观看| 搞女人的毛片| 日日啪夜夜撸| 一级a做视频免费观看| 亚洲最大成人手机在线| 国产大屁股一区二区在线视频| 国产黄片美女视频| 久久久午夜欧美精品| 激情五月婷婷亚洲| 久久久久精品性色| 精品久久久噜噜| 国产一级毛片七仙女欲春2| 亚洲一级一片aⅴ在线观看| 亚洲国产最新在线播放| 伦精品一区二区三区| 黑人高潮一二区| 禁无遮挡网站| 激情 狠狠 欧美| 国产精品熟女久久久久浪| 国产淫语在线视频| 午夜日本视频在线| 亚洲国产最新在线播放| 国产又色又爽无遮挡免| 99热网站在线观看| 亚洲精品成人av观看孕妇| 国产片特级美女逼逼视频| 狠狠精品人妻久久久久久综合| 精品酒店卫生间| 在线免费观看的www视频| av国产久精品久网站免费入址| 狂野欧美激情性xxxx在线观看| 免费在线观看成人毛片| 成人亚洲精品一区在线观看 | 国产精品美女特级片免费视频播放器| 国产白丝娇喘喷水9色精品| 国产高清国产精品国产三级 | 国产一区二区亚洲精品在线观看| 91精品国产九色| 身体一侧抽搐| av国产久精品久网站免费入址| 免费少妇av软件| 日本午夜av视频| 在线免费十八禁| 夫妻性生交免费视频一级片| 天堂√8在线中文| 亚洲一区高清亚洲精品| 国产成人一区二区在线| 美女黄网站色视频| 嘟嘟电影网在线观看| 色网站视频免费| 啦啦啦中文免费视频观看日本| 80岁老熟妇乱子伦牲交| 国产精品久久久久久精品电影| 久久精品国产亚洲网站| 国产爱豆传媒在线观看| 国产黄色小视频在线观看| 十八禁国产超污无遮挡网站| freevideosex欧美| 亚洲va在线va天堂va国产| 国内精品一区二区在线观看| 日韩一本色道免费dvd| 18禁裸乳无遮挡免费网站照片| 精品一区二区三卡| 日韩不卡一区二区三区视频在线| 少妇熟女欧美另类| 成人毛片60女人毛片免费| 一个人观看的视频www高清免费观看| 亚洲在线观看片| 欧美三级亚洲精品| 永久免费av网站大全| 国产亚洲最大av| 日韩亚洲欧美综合| 色5月婷婷丁香| 久久精品综合一区二区三区| 久久久成人免费电影| 亚洲成人久久爱视频| 特级一级黄色大片| 少妇被粗大猛烈的视频| 在线免费观看不下载黄p国产| 天堂中文最新版在线下载 | 成人漫画全彩无遮挡| 青青草视频在线视频观看| 观看美女的网站| 久久精品久久久久久噜噜老黄| 91久久精品国产一区二区三区| 精品人妻一区二区三区麻豆| 精品一区二区三区人妻视频| 一个人免费在线观看电影| 国产欧美日韩精品一区二区| 97超视频在线观看视频| 亚洲久久久久久中文字幕| 亚洲欧美日韩无卡精品| 97精品久久久久久久久久精品| 麻豆久久精品国产亚洲av| 大片免费播放器 马上看| 日韩,欧美,国产一区二区三区| av一本久久久久| 国产成人精品一,二区| 久久久久久伊人网av| 久久精品国产亚洲av天美| 欧美日韩精品成人综合77777| 欧美丝袜亚洲另类| 22中文网久久字幕| 大香蕉97超碰在线| 欧美三级亚洲精品| 亚洲va在线va天堂va国产| 国产精品一区二区在线观看99 | or卡值多少钱| kizo精华| 亚洲国产精品成人综合色| 欧美日韩一区二区视频在线观看视频在线 | 免费观看性生交大片5| 精品不卡国产一区二区三区| 国产黄色视频一区二区在线观看| 日本午夜av视频| 丝袜喷水一区| 我要看日韩黄色一级片| 欧美最新免费一区二区三区| 国产美女午夜福利| 国产一区二区在线观看日韩| 国产色婷婷99| 免费大片18禁| 亚洲成人av在线免费| 国产成人aa在线观看| 日本午夜av视频| 国产精品麻豆人妻色哟哟久久 | 成人亚洲精品一区在线观看 | 久久久久久国产a免费观看| 国产伦在线观看视频一区| 国产精品久久久久久av不卡| 久久久久久九九精品二区国产| 蜜桃亚洲精品一区二区三区| 最近最新中文字幕免费大全7| 久久久久久久久中文| 亚洲国产精品成人综合色| 国产精品一区二区性色av| 人妻系列 视频| 日韩制服骚丝袜av| 成人午夜精彩视频在线观看| 一个人观看的视频www高清免费观看| 寂寞人妻少妇视频99o| 国产69精品久久久久777片| 亚洲av.av天堂| 亚洲人成网站在线观看播放| 一个人观看的视频www高清免费观看| 我的老师免费观看完整版| 免费看日本二区| 亚州av有码| 国产成人一区二区在线| 午夜老司机福利剧场| 日韩精品青青久久久久久| 久久久久久久国产电影| 高清av免费在线| 伊人久久精品亚洲午夜| 国产老妇伦熟女老妇高清| 亚洲熟女精品中文字幕| 欧美一级a爱片免费观看看| 天美传媒精品一区二区| 身体一侧抽搐| 中文字幕制服av| 午夜激情久久久久久久| 看免费成人av毛片| 国产亚洲av嫩草精品影院| 黄片无遮挡物在线观看| 亚洲人成网站高清观看| 校园人妻丝袜中文字幕| 成人毛片60女人毛片免费| 国产精品蜜桃在线观看| 国产黄a三级三级三级人| 大香蕉久久网| 乱系列少妇在线播放| 精品国产三级普通话版| 亚洲人成网站在线观看播放| 久久午夜福利片| 亚洲激情五月婷婷啪啪| av黄色大香蕉| xxx大片免费视频| 亚洲欧美日韩东京热| 一级毛片我不卡| 自拍偷自拍亚洲精品老妇| 老女人水多毛片| 欧美日韩视频高清一区二区三区二| 色网站视频免费| 国产亚洲一区二区精品| 亚州av有码| 欧美人与善性xxx| 老司机影院成人| 国产不卡一卡二| 成人午夜精彩视频在线观看| 97热精品久久久久久| av在线观看视频网站免费| 亚洲精品一区蜜桃| 美女xxoo啪啪120秒动态图| 一级毛片黄色毛片免费观看视频| 国产精品国产三级国产专区5o| 免费电影在线观看免费观看| 99re6热这里在线精品视频| 亚洲精品日本国产第一区| 少妇丰满av| 波多野结衣巨乳人妻| 亚洲精品影视一区二区三区av| 国产高潮美女av| 日本三级黄在线观看| 舔av片在线| 免费观看av网站的网址| 欧美 日韩 精品 国产| 夫妻午夜视频| 美女脱内裤让男人舔精品视频| 美女高潮的动态| 中文精品一卡2卡3卡4更新| 色综合色国产| 亚洲人与动物交配视频| 日本wwww免费看| 色5月婷婷丁香| 国产老妇伦熟女老妇高清| 少妇被粗大猛烈的视频| 久久久久久久久中文| 男插女下体视频免费在线播放| 免费观看a级毛片全部| 日韩一区二区视频免费看| 国模一区二区三区四区视频| 国产一区二区三区av在线| 一级毛片aaaaaa免费看小| 亚洲高清免费不卡视频| av播播在线观看一区| 国产探花在线观看一区二区| 精品久久久久久久末码| 亚洲精品,欧美精品| 大又大粗又爽又黄少妇毛片口| 国产成人a∨麻豆精品| 自拍偷自拍亚洲精品老妇| 大又大粗又爽又黄少妇毛片口| 六月丁香七月| 亚洲自拍偷在线| av专区在线播放| 成人无遮挡网站| av免费观看日本| 看黄色毛片网站| 亚洲av免费高清在线观看| 国产不卡一卡二| 日韩成人伦理影院| 亚洲国产色片| 我的女老师完整版在线观看| 一个人看视频在线观看www免费| 日韩 亚洲 欧美在线| 97超视频在线观看视频| 女人久久www免费人成看片| 99热这里只有是精品在线观看| 九色成人免费人妻av|