齊 欣,張靜靜,2,樊惠中,李 娟,胡 鑫,3,劉 飛,4,朱 波,高 雪,陳 燕,張路培,高會(huì)江,李俊雅*
(1.中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,北京 100193; 2.吉林農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,長(zhǎng)春 130118;3.內(nèi)蒙古民族大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,通遼 028000; 4.河北農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,保定 071000)
?
西門(mén)塔爾牛飽和脂肪酸含量的低密度芯片基因組預(yù)測(cè)
齊欣1,張靜靜1,2,樊惠中1,李娟1,胡鑫1,3,劉飛1,4,朱波1,高雪1,陳燕1,張路培1,高會(huì)江1,李俊雅1*
(1.中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,北京 100193; 2.吉林農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,長(zhǎng)春 130118;3.內(nèi)蒙古民族大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,通遼 028000; 4.河北農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,保定 071000)
旨在探索低密度芯片標(biāo)記的篩選方法并評(píng)估不同低密度芯片的準(zhǔn)確性。本研究采用BovineHD高密度芯片,檢測(cè)西門(mén)塔爾?;蚪M的SNP位點(diǎn)及其與飽和脂肪酸含量的關(guān)聯(lián)性,根據(jù)P值或效應(yīng)值篩選標(biāo)記構(gòu)成低密度芯片,使用IBS聚類分組和隨機(jī)分組進(jìn)行交叉驗(yàn)證,估計(jì)基因組育種值并評(píng)估其準(zhǔn)確性。結(jié)果表明,在14號(hào)染色體的MYC基因附近有5個(gè)位點(diǎn)與飽和脂肪酸性狀顯著相關(guān),可考慮作為西門(mén)塔爾牛脂肪酸含量的候選基因進(jìn)行后續(xù)研究。根據(jù)P值篩選標(biāo)記并使用IBS聚類分組進(jìn)行交叉驗(yàn)證時(shí),估計(jì)基因組育種值準(zhǔn)確性最高,芯片密度達(dá)到7K時(shí)準(zhǔn)確性趨于穩(wěn)定。因此,本研究發(fā)現(xiàn)的標(biāo)記位點(diǎn)可能對(duì)西門(mén)塔爾牛的脂肪酸含量存在一定影響,并且為低密度芯片標(biāo)記位點(diǎn)的篩選提供參考資料。
全基因組關(guān)聯(lián)分析;基因組選擇;低密度芯片;SNP;西門(mén)塔爾牛
近年來(lái)快速發(fā)展的高通量測(cè)序技術(shù)為基因組選擇[1]提供了便利,基因組選擇可以在畜禽出生前或者生長(zhǎng)初期預(yù)測(cè)個(gè)體的育種值,有效縮短世代間隔[2-3]。但是,對(duì)于世代間隔過(guò)短且種用價(jià)值較低的畜禽,如豬、雞、羊等,由于高密度基因分型成本較高,阻礙基因組選擇的實(shí)施。因此,研究者提出使用低密度芯片降低分型成本,以充分發(fā)揮基因組選擇在應(yīng)用中的優(yōu)勢(shì)[4]。
D.Habier等于2009年首次提出利用基因共分離信息及低密度芯片進(jìn)行基因組預(yù)測(cè)的方法,研究表明,對(duì)候選個(gè)體的父母進(jìn)行高密度芯片檢測(cè),可提高候選個(gè)體估計(jì)育種值的準(zhǔn)確性[5]。許多研究者對(duì)此問(wèn)題進(jìn)行討論,但不同方法的表現(xiàn)受到群體結(jié)構(gòu)、性狀特征等因素的影響[6-7]。R.Wellmann等對(duì)篩選低密度芯片在皮特蘭豬實(shí)際群體中進(jìn)行研究,認(rèn)為低密度芯片具有一定可行性[8]。
飽和脂肪酸攝入過(guò)高會(huì)導(dǎo)致血膽固醇、三酰甘油、LDL-C升高,增加患冠心病的風(fēng)險(xiǎn)。為提供迎合健康需求的畜產(chǎn)品,我們展開(kāi)對(duì)牛肉脂肪酸含量的研究。本研究選取821頭肉用西門(mén)塔爾牛,基于BovineHD高密度芯片,針對(duì)飽和脂肪酸含量性狀進(jìn)行全基因組關(guān)聯(lián)分析,篩選低密度芯片標(biāo)記并探索低密度芯片在基因組預(yù)測(cè)中的應(yīng)用。
1.1試驗(yàn)動(dòng)物
本課題組于2008年在內(nèi)蒙古錫林郭勒盟烏拉蓋管理區(qū)構(gòu)建資源群體,現(xiàn)項(xiàng)目戶已達(dá)到15家牧場(chǎng),基礎(chǔ)母??倲?shù)已超過(guò)2 000頭,所用西門(mén)塔爾種公牛數(shù)已達(dá) 35頭。將5~9月齡的犢牛運(yùn)送至北京金維福仁牧場(chǎng),統(tǒng)一飼養(yǎng)管理并集中育肥,在生長(zhǎng)至10~14月齡后進(jìn)行分批屠宰。在屠宰前一周靜脈采血40 mL左右,與ACD抗凝劑混勻于50 mL離心管,-80 ℃保存。胴體排酸24 h后分批分割,取12~13肋間眼肌為樣本進(jìn)行后續(xù)分析。育肥及屠宰期間,試驗(yàn)動(dòng)物均未表現(xiàn)任何疾病癥狀,牛胴體及鮮肉分割嚴(yán)格按照國(guó)家標(biāo)準(zhǔn)GB/T 27643-2011《牛胴體及鮮肉分割》執(zhí)行。
1.2脂肪酸含量測(cè)定
脂肪酸含量使用取樣眼肌,按照國(guó)標(biāo)GB/T 22223-2008要求,參考P.S.Sukhija等的方法[9],采用水解提取-氣相色譜法進(jìn)行測(cè)定:加入內(nèi)標(biāo)物十一碳酸甘油三酯的樣品經(jīng)水解-乙醚溶液提取食品中的脂肪,在堿性條件下皂化和甲酯化,生成脂肪酸甲酯,經(jīng)毛細(xì)管氣相色譜(GC-2014 CAFsc,日本島津公司)和內(nèi)標(biāo)法定量測(cè)定脂肪酸甲酯含量。依據(jù)各種脂肪酸甲酯含量和轉(zhuǎn)化系數(shù)計(jì)算出飽和脂肪酸含量。此后,使用GLM模型來(lái)校正表型:
y=μ+Month+Year+e
其中,y為個(gè)體飽和脂肪酸含量,μ為群體均值,Month為屠宰月齡,Year為出生年,e為剩余殘差。試驗(yàn)中將剩余效應(yīng)e作為校正后的表型y*,用于后續(xù)分析。
1.3DNA提取及770K SNP芯片判型
使用天根試劑盒提取凍存血樣中基因組DNA,檢驗(yàn)基因組DNA質(zhì)量:采用NanoDrop紫外分光光度計(jì)測(cè)量 OD值,A260 nm/A280 nm比值為1.8~2.0判定合格,于-20 ℃冰箱保存。將檢測(cè)合格的樣本進(jìn)行芯片分析。使用Illumina微珠芯片進(jìn)行基因分型,利用GenoStedio和Gene Scan 進(jìn)行初步檢測(cè)。此后,對(duì)SNP進(jìn)行質(zhì)量控制,由PLINK 軟件實(shí)現(xiàn)[10],按照篩選標(biāo)準(zhǔn):檢出率大于90%,最小等位基因頻率大于0.01,哈代溫伯格平衡檢驗(yàn)P值大于10-6進(jìn)行篩選。
芯片質(zhì)量控制前有777 962個(gè)標(biāo)記,質(zhì)量控制后有677 855個(gè)位點(diǎn),其中刪除未落于染色體的標(biāo)記42 669個(gè),刪除檢出率過(guò)低的位點(diǎn)8 621個(gè),刪除最小等位基因頻率過(guò)低位點(diǎn)42 812個(gè),刪除不符合哈代溫伯格平衡位點(diǎn)9 041個(gè)。
1.4統(tǒng)計(jì)分析及位點(diǎn)篩選
使用BayesA 方法計(jì)算標(biāo)記的效應(yīng)值并估計(jì)基因組育種值[1],假定每個(gè)標(biāo)記都有效應(yīng)且服從正態(tài)分布,標(biāo)記效應(yīng)估計(jì)模型:
分別根據(jù)P值及效應(yīng)值來(lái)篩選位點(diǎn),組成新的低密度芯片。根據(jù)t檢驗(yàn)計(jì)算P值及利用BayesA方法估計(jì)效應(yīng)值,按照標(biāo)記的顯著性或效應(yīng)值的絕對(duì)值排序,分別選取前1 000、3 000、5 000、7 000、9 000、11 000、13 000、15 000、30 000個(gè)位點(diǎn)。使用篩選低密度芯片與校正表型重新估計(jì)標(biāo)記效應(yīng)值,計(jì)算個(gè)體基因組育種值(GEBV):
1.5交叉驗(yàn)證
分別根據(jù)同態(tài)一致性(IBS)或隨機(jī)抽取將試驗(yàn)數(shù)據(jù)分為5組,通過(guò)5倍交叉驗(yàn)證來(lái)評(píng)估GEBV的準(zhǔn)確性。在每次預(yù)測(cè)中,使用4組來(lái)估計(jì)標(biāo)記效應(yīng)值,未用于估計(jì)標(biāo)記效應(yīng)的剩余一組作為驗(yàn)證群體。預(yù)測(cè)重復(fù)5次,每次的驗(yàn)證群體不同,因此每一個(gè)體得到由預(yù)測(cè)群體(不包括該個(gè)體)估計(jì)標(biāo)記效應(yīng)值計(jì)算得出的估計(jì)育種值。
IBS聚類分組中,距離矩陣由標(biāo)記基因型計(jì)算的IBS距離組成,由PLINK軟件實(shí)現(xiàn)。IBS距離矩陣計(jì)算公式:fij=∑k[(xi,k-pk)(xj,k-pk)]/[pk×(1-pk)],其中,fij是動(dòng)物i和j間的關(guān)系,xi,k是動(dòng)物i第k個(gè)標(biāo)記的基因型,xj,k是動(dòng)物j第k個(gè)標(biāo)記的基因型,pk是第k個(gè)標(biāo)記的等位基因頻率。
準(zhǔn)確性是估計(jì)基因組育種值(GEBV)與真實(shí)育種值(TBV)的皮爾遜相關(guān)系數(shù),由于肉牛的群體特異性,使用校正表型代替試驗(yàn)動(dòng)物的真實(shí)育種值。
1.6候選基因
利用Ensembl ( http://www.ensembl.org/Sus_scrofa/Info/Index)和NCBI (http://www.ncbi.nlm.nih.gov/)牛參考基因組數(shù)據(jù)庫(kù),搜索關(guān)聯(lián)性顯著SNP所在區(qū)域的已知基因功能,參考QTLdatabase定位的數(shù)量性狀基因座位(QTL),根據(jù)基因注釋與已知QTL分析候選基因。
圖1 Q-Q圖Fig.1 Q-Q plot
通過(guò)分析及多重假設(shè)檢驗(yàn)校正,在橫坐標(biāo)為不同染色體,縱坐標(biāo)為所得P值的負(fù)對(duì)數(shù)的圖2中,表明全基因組水平上有1個(gè)SNP位點(diǎn)與飽和脂肪酸含量顯著關(guān)聯(lián),6個(gè)SNPs與飽和脂肪酸含量潛在顯著關(guān)聯(lián);每個(gè)位點(diǎn)的序列號(hào),所在染色體位置,對(duì)應(yīng)的P值及距離最近基因如表1所示。其中5個(gè)SNPs落在14號(hào)染色體上的MYC基因附近,分別有1個(gè)SNP落在8號(hào)及22號(hào)染色體的TUSC1和ZCWPW2 基因附近。并且,這7個(gè)SNPs位點(diǎn)落在10個(gè)已知的數(shù)量性狀基因座位(QTL)上[11-18],其所在位置詳見(jiàn)表2。
根據(jù)P值和效應(yīng)值篩選位點(diǎn)時(shí),大多數(shù)低密度芯片在1號(hào)染色體上篩選位點(diǎn)最多,占芯片位點(diǎn)數(shù)的0.06左右,在28號(hào)染色體上篩選位點(diǎn)最少,占位點(diǎn)數(shù)的0.01左右;篩選位點(diǎn)數(shù)最多及最少的染色體及其對(duì)應(yīng)的比例見(jiàn)表3。
圖2 飽和脂肪酸的曼哈頓圖Fig.2 Manhattan plot for saturated fatty acid
表1與飽和脂肪酸性狀顯著關(guān)聯(lián)的SNPs(P<10-6)
Table 1Significant SNPs associated with SFA (P<10-6)
標(biāo)記SNP染色體Chromosome位置/bpPositionP值P-value基因GeneBovineHD08000059108189781377.12E-07TUSC1BovineHD140000402014139125284.06E-08MYCBovineHD140000402714139306894.27E-07MYCBovineHD140000402814139338454.27E-07MYCBovineHD140000403614139655139.78E-07MYCBovineHD140000403714139720239.78E-07MYCBovineHD22000008732232317358.71E-07ZCWPW2
表2顯著SNPs對(duì)應(yīng)的已知數(shù)量性狀基因座位(QTL)
Table 2QTLs overlapping with significant SNPs
數(shù)量性狀基因座位性狀染色體起始位置/bp終止位置/bpQTLTraitChromosomeStartpositionEndposition4823肌肉pH898146121963675510823大理石花紋816080022198517852548背膘厚89513215412134521332背膘厚141641277191073423408乳脂產(chǎn)量141641277254487233513乳脂產(chǎn)量141641277282173472733乳脂產(chǎn)量1413394919359925173618乳脂率141641277192042823515乳脂率141641277282173472732乳脂率141339491935992517
比較不同低密度芯片估計(jì)育種值的準(zhǔn)確性(圖3),低密度芯片的標(biāo)記數(shù)目達(dá)到7 000(7K)時(shí)準(zhǔn)確性趨于穩(wěn)定,在13 000(13K)時(shí)準(zhǔn)確性最高。根據(jù)P值篩選位點(diǎn)并且使用IBS分組時(shí),準(zhǔn)確性隨芯片密度上升而提高;另兩種方法在13K時(shí)準(zhǔn)確性達(dá)到最高,此后準(zhǔn)確性略有下降,最大降幅小于0.01。相同位點(diǎn)數(shù)目的低密度芯片,根據(jù)P值篩選比根據(jù)效應(yīng)值篩選準(zhǔn)確性高;使用P值篩選位點(diǎn)時(shí),根據(jù)IBS分組的交叉驗(yàn)證比隨機(jī)分組的準(zhǔn)確性要高。其中按照P值篩選位點(diǎn)并根據(jù)IBS分組時(shí)估計(jì)準(zhǔn)確性最高。
圖3 不同方法估計(jì)GEBV的準(zhǔn)確性Fig.3 Accuracy of genomic evaluated breeding value
表3篩選位點(diǎn)數(shù)最多及最少的染色體及其對(duì)應(yīng)芯片位點(diǎn)總數(shù)的比例
Table 3Chromosome containing maximum and minimum number of selected markers and ratio to number of chip markers
芯片Chip染色體1Chromosome比例Ratio染色體2Chromosome比例Ratio染色體3Chromosome比例Ratio染色體4Chromosome比例Ratio1K50.116170.00810.064280.0113K10.072170.00920.059280.0155K10.068170.01210.058280.0147K10.065280.01210.059280.0147K50.065280.0129K10.062280.01010.060280.01511K10.061280.01110.061280.01613K10.061280.01110.062280.01615K10.060280.01110.061280.01530K20.059280.01210.062280.017
上標(biāo)1,2分別為使用P值篩選位點(diǎn)中含有標(biāo)記最多和最少的染色體,上標(biāo)3、4分別為使用效應(yīng)值篩選位點(diǎn)中含有標(biāo)記最多和最少的染色體
Superscript 1 and 2 represent chromosomes which are corresponding to selected markers on the basis ofP-value containing maximum and minimum number of markers in low density panels.Superscript 3 and 4 represent chromosomes which are corresponding to selected marker on the basis of effect containing maximum and minimum number of markers
目前,牛的基因組選擇主要使用高密度芯片,但國(guó)外已開(kāi)始使用均勻分布的低密度芯片,且對(duì)于豬、雞等世代間隔較短的動(dòng)物,低密度芯片具有更廣闊的應(yīng)用前景[8,19]。篩選標(biāo)記的低密度芯片是由基于性狀特征篩選的SNP組成,這些SNP很可能與控制性狀的QTL呈緊密連鎖或處于高度連鎖不平衡狀態(tài),因此篩選標(biāo)記低密度芯片較均勻分布低密度芯片具有更大的優(yōu)勢(shì),已在許多模擬研究中得到證實(shí)[5,20]。本研究利用西門(mén)塔爾牛試驗(yàn)群體,基于BovineHD高密度芯片進(jìn)行全基因組關(guān)聯(lián)分析,估計(jì)篩選標(biāo)記低密度芯片的基因組育種值準(zhǔn)確性。
本研究發(fā)現(xiàn),14號(hào)染色體的MYC基因與飽和脂肪酸含量顯著相關(guān),該基因與甲狀腺球蛋白基因位于同一條染色體上[21],它編碼多功能的核磷蛋白,參與細(xì)胞的生長(zhǎng)、凋亡和轉(zhuǎn)變,且與人類白血病、淋巴瘤及多種癌癥相關(guān)[22-23]。但是其他研究[24-25]發(fā)現(xiàn)了3個(gè)與脂肪酸含量相關(guān)的候選區(qū)域:19號(hào)染色體上的FASN基因[26-28]、26染色體上的SCD基因[29-30]和29號(hào)染色體上的甲狀腺激素基因。飽和脂肪酸含量性狀屬于中低遺傳力性狀,可能受多基因調(diào)控和影響,并且全基因組關(guān)聯(lián)分析的結(jié)果受試驗(yàn)群體數(shù)量、遺傳背景和群體特性的影響。
根據(jù)P值和效應(yīng)值篩選位點(diǎn)的分布與質(zhì)量控制后的位點(diǎn)基本一致(表3)。高密度芯片在質(zhì)量控制后,1號(hào)染色體含有標(biāo)記較多,占總標(biāo)記數(shù)的0.063(42 639),28號(hào)染色體含有標(biāo)記較少,占總標(biāo)記數(shù)的0.018(12 277);根據(jù)P值及效應(yīng)值篩選位點(diǎn)時(shí),1號(hào)染色體中標(biāo)記分別占芯片標(biāo)記總數(shù)的0.060~0.072和0.058~0.064,28號(hào)染色體中標(biāo)記分別占芯片標(biāo)記總數(shù)的0.010~0.012和0.011~0.017。交叉驗(yàn)證時(shí),根據(jù)IBS距離分組比隨機(jī)分組的準(zhǔn)確性更高,因?yàn)镮BS距離分組提高組內(nèi)個(gè)體的親緣關(guān)系,降低組間個(gè)體的親緣關(guān)系,與P.Boddhireddy 等得到的研究結(jié)果相一致[31]。Z.Zhang 等的模擬研究表明,在一定條件下根據(jù)效應(yīng)值篩選標(biāo)記的低密度芯片相較于均勻分布標(biāo)記具有明顯優(yōu)勢(shì)[20],且S.Bolormaa等提出,可以根據(jù)P值篩選標(biāo)記[32],本研究表明,使用P值篩選位點(diǎn)較使用效應(yīng)值篩選位點(diǎn)準(zhǔn)確性更高。因?yàn)楦鶕?jù)P值篩選的標(biāo)記與性狀顯著相關(guān),與控制性狀的QTL呈緊密連鎖,因此使用這些位點(diǎn)進(jìn)行基因組預(yù)測(cè)能夠得到更好的結(jié)果。但是這并不意味著篩選標(biāo)記絕對(duì)適合低密度標(biāo)記基因組選擇,因?yàn)楹Y選的標(biāo)記具有性狀特異性,針對(duì)特定性狀具有相對(duì)優(yōu)勢(shì),可進(jìn)一步考慮多性狀的低密度芯片或?qū)⒕鶆蚍植嫉臉?biāo)記與篩選標(biāo)記相結(jié)合。
本研究基于BovineHD對(duì)西門(mén)塔爾牛的飽和脂肪酸含量進(jìn)行全基因組關(guān)聯(lián)分析,在14號(hào)染色體的MYC基因附近定位了5個(gè)顯著關(guān)聯(lián)的SNPs位點(diǎn)。分別使用按照顯著性P值和估計(jì)效應(yīng)值篩選標(biāo)記的低密度芯片估計(jì)基因組育種值,按P值篩選標(biāo)記時(shí)估計(jì)基因組育種值準(zhǔn)確性較高。使用低密度芯片針對(duì)經(jīng)濟(jì)性狀的基因組預(yù)測(cè)具有一定的應(yīng)用前景,本研究為標(biāo)記的篩選提供參考。
[1]MEUWISSEN T H,HAYES B J,GODDARD M E.Prediction of total genetic value using genome-wide dense marker maps[J].Genetics, 2001,157(4):1819-1829.
[2]K?NIG S,SIMIANER H,WILLAM A.Economic evaluation of genomic breeding programs[J].JDairySci, 2009,92(1):382-391.
[3]SCHAEFFER L R.Strategy for applying genome-wide selection in dairy cattle[J].JAnimBreedGenet, 2006,123(4):218-223.
[4]GODDARD M E,HAYES B J.Mapping genes for complex traits in domestic animals and their use in breeding programmes[J].NatRevGenet, 2009,10(6):381-391.
[5]HABIER D,F(xiàn)ERNANDO R,KIZILKAYA K,et al.Extension of the bayesian alphabet for genomic selection[J].BMCBioinformatics, 2011,12:186.
[6]CLEVELAND M A,F(xiàn)ORNI S,DEEB N,et al.Genomic breeding value prediction using three Bayesian methods and application to reduced density marker panels[J].BMCProc, 2010,4(Suppl 1):S6.
[7]COSTER A,BASTIAANSEN J W,CALUS M P,et al.QTLMAS 2009:simulated dataset[J].BMCProc, 2010,4 (Suppl 1):S3.
[8]WELLMANN R,PREUSS S,THOLEN E,et al.Genomic selection using low density marker panels with application to a sire line in pigs[J].GenetSelEvol, 2013,45:28.
[9]SUKHIJA P S,PALMQUIST D L.Rapid method for determination of total fatty acid content and composition of feedstuffs and feces[J].JAgricFoodChem, 1988,36(6):1202-1206.
[10]PURCELL S,NEALE B,TODD-BROWN K,et al.PLINK:a tool set for whole-genome association and population-based linkage analyses[J].AmJHumGenet, 2007,81(3):559-575.
[11]ZHANG Q,BOICHARD D,HOESCHELE I,et al.Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree[J].Genetics, 1998,149(4):1959-1973.
[12]CASAS E,STONE R T,KEELE J W,et al.A comprehensive search for quantitative trait loci affecting growth and carcass composition of cattle segregating alternative forms of the myostatin gene[J].JAnimSci, 2001,79(4):854-860.
[13]BOICHARD D,GROHS C,BOURGEOIS F,et al.Detection of genes influencing economic traits in three French dairy cattle breeds[J].GenetSelEvol, 2003,35(1):77-101.
[14]BENNEWITZ J,REINSCH N,GROHS C,et al.Combined analysis of data from two granddaughter designs:A simple strategy for QTL confirmation and increasing experimental power in dairy cattle[J].GenetSelEvol, 2003,35(3):319-338.
[15]CASAS E,SHACKELFORD S D,KEELE J W,et al.Detection of quantitative trait loci for growth and carcass composition in cattle[J].JAnimSci, 2003,81(12):2976-2983.
[16]KAUPE B,BRANDT H,PRINZENBERG E M,et al.Joint analysis of the influence of CYP11B1 and DGAT1 genetic variation on milk production,somatic cell score,conformation,reproduction,and productive lifespan in German Holstein cattle[J].JAnimSci, 2007,85(1):11-21.
[17]GUTIéRREZ-GIL B,WIENER P,NUTE G R,et al.Detection of quantitative trait loci for meat quality traits in cattle[J].AnimGenet, 2008,39(1):51-61.
[18]MCCLURE M C,MORSCI N S,SCHNABEL R D,et al.A genome scan for quantitative trait loci influencing carcass,post-natal growth and reproductive traits in commercial Angus cattle[J].AnimGenet, 2010,41(6):597-607.
[19]WANG C,HABIER D,PEIRIS B L,et al.Accuracy of genomic prediction using an evenly spaced,low-density single nucleotide polymorphism panel in broiler chickens[J].PoultSci, 2013,92(7):1712-1723.
[20]ZHANG Z,DING X,LIU J,et al.Accuracy of genomic prediction using low-density marker panels[J].JDairySci, 2011,94(7):3642-3650.
[21]THREADGILL D W,F(xiàn)RIES R,F(xiàn)ABER L K,et al.The thyroglobulin gene is syntenic with the MYC and MOS protooncogenes and carbonic anhydrase II and maps to chromosome 14 in cattle[J].CytogenetCellGenet, 1990,53(1):32-36.
[22]GOODE E L,CHENEVIX-TRENCH G,SONG H,et al.A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24[J].NatGenet, 2010,42(10):874-879.
[23]LANGE E M,JOHNSON A M,WANG Y,et al.Genome-wide association scan for variants associated with early-onset prostate cancer[J].PLoSOne, 2014,9(4):e93436.
[24]YOKOTA S,SUGITA H,ARDIYANTI A,et al.Contributions of FASN and SCD gene polymorphisms on fatty acid composition in muscle from Japanese Black cattle[J].AnimGenet, 2012,43(6):790-792.
[25]SAATCHI M,GARRICK D J,TAIT R G JR,et al.Genome-wide association and prediction of direct genomic breeding values for composition of fatty acids in Angus beef cattlea[J].BMCGenomics, 2013,14(1):730.
[26]ZHANG S,KNIGHT T J,REECY J M,et al.DNA polymorphisms in bovine fatty acid synthase are associated with beef fatty acid composition[J].AnimGenet, 2008,39(1):62-70.
[27]ABE T,SABURI J,HASEBE H,et al.Novel mutations of the FASN gene and their effect on fatty acid composition in Japanese Black beef[J].BiochemGenet, 2009,47(5-6):397-411.
[28]LI C,ALDAI N,VINSKY M,et al.Association analyses of single nucleotide polymorphisms in bovine stearoyl-CoA desaturase and fatty acid synthase genes with fatty acid composition in commercial cross-bred beef steers[J].AnimGenet, 2012,43(1):93-97.
[29]JACOBS A A,DIJKSTRA J,HENDRIKS W H,et al.Comparison between stearoyl-CoA desaturase expression in milk somatic cells and in mammary tissue of lactating dairy cows[J].JAnimPhysiolAnimNutr(Berl), 2013,97(2):353-362.
[30]ALIM M A,F(xiàn)AN Y P,WU X P,et al.Genetic effects of stearoyl-coenzyme A desaturase (SCD) polymorphism on milk production traits in the Chinese dairy population[J].MolBiolRep, 2012,39(9):8733-8740.
[31]BODDHIREDDY P,KELLY M J,NORTHCUTT S,et al.Genomic predictions in Angus cattle:comparisons of sample size,response variables,and clustering methods for cross-validation[J].JAnimSci, 2014,92(2):485-497.
[32]BOLORMAA S,NETO L R,ZHANG Y D,et al.A genome-wide association study of meat and carcass traits in Australian cattle[J].JAnimSci, 2011,89(8):2297-2309.
(編輯郭云雁)
Genomic Prediction for Saturated Fatty Acid Content in Simmental using Low Density Chip
QI Xin1,ZHANG Jing-jing1,2,F(xiàn)AN Hui-zhong1,LI Juan1,HU Xin1,3,LIU Fei1,4,ZHU Bo1,GAO Xue1,CHEN Yan1,ZHANG Lu-pei1,GAO Hui-jiang1,LI Jun-ya1*
(1.InstituteofAnimalScience,ChineseAcademyofAgriculturalSciences,Beijing100193,China;2.CollegeofAnimalScienceandTechnology,JilinAgriculturalUniversity,Changchun130118,China;3.CollegeofAnimalScienceandTechnology,InnerMongoliaUniversityforNationalities,Tongliao028000,China;4.CollegeofAnimalScienceandTechnology,HebeiAgriculturalUniversity,Baoding071000,China)
The objective of this study was to explore methods of selection markers and evaluate accuracies of low density (LD) chips.SNPs associated with saturated fatty acid(SFA) content were identified using BovineHD panel and genomic breeding value was evaluated using LD panels which were markers selected on the basis ofP-value or effect value on Simmental bulls.Then we evaluated accuracy of genomic prediction via cross-validation (CV) methodologies based on identical by state (IBS) and random sample.A total of 5 SNPs were associated with SFA and adjacent toMYCgene on BTA14,which could be considered as candidate genes.Prediction was the most accurate when markers were selected on the basis ofP-value and CV was IBS-based.The accuracy of genomic value in 7 000 SNPs panel was steady.In conclusion,this study identified several SNPs associated with SFA and provided reference for marker selection in LD panels for further study.
GWAS;genomic selection;low density chip;SNP;Simmental
10.11843/j.issn.0366-6964.2016.08.003
2015-03-06
農(nóng)業(yè)部專項(xiàng)(CARS-38);國(guó)家自然科學(xué)基金(31372294);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程經(jīng)費(fèi)(cxgc-ias-03)
齊欣(1989-),女,天津人,碩士生,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail:qixin8906@sina.com
李俊雅,E-mail:JL1@iascaas.net.cn
S823.92;S813.3
A
0366-6964(2016)08-1539-07