• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    陽離子表面活性劑和有機(jī)酸混合水溶液的熱響應(yīng)特性

    2016-09-05 13:04:01韓傳紅耿培培陳肖肖郭曉冬張軍紅魏西蓮聊城大學(xué)化學(xué)與化工學(xué)院山東省化學(xué)儲能與新型電池技術(shù)重點(diǎn)實(shí)驗(yàn)室山東聊城252059
    物理化學(xué)學(xué)報(bào) 2016年4期
    關(guān)鍵詞:聊城水溶液有機(jī)酸

    韓傳紅 耿培培 郭 嚴(yán) 陳肖肖 郭曉冬 張軍紅 劉 杰 魏西蓮(聊城大學(xué)化學(xué)與化工學(xué)院,山東省化學(xué)儲能與新型電池技術(shù)重點(diǎn)實(shí)驗(yàn)室,山東聊城252059)

    陽離子表面活性劑和有機(jī)酸混合水溶液的熱響應(yīng)特性

    韓傳紅耿培培郭嚴(yán)陳肖肖郭曉冬張軍紅劉杰魏西蓮*
    (聊城大學(xué)化學(xué)與化工學(xué)院,山東省化學(xué)儲能與新型電池技術(shù)重點(diǎn)實(shí)驗(yàn)室,山東聊城252059)

    用穩(wěn)態(tài)和動態(tài)流變學(xué)方法研究了陽離子表面活性劑十六烷基三甲基溴化銨(CTAB)和有機(jī)酸3-甲基水楊酸(3MS)的混合水溶液隨濃度和溫度變化的流變特性。在加熱過程中混合溶液呈現(xiàn)三種不同類型的溫度響應(yīng)。其中最有趣的是,當(dāng)3MS的濃度在80與100 mmol?kg-1之間時(shí),有淺藍(lán)色的稀溶液出現(xiàn)。隨著溫度的升高,樣品由淺藍(lán)色溶液轉(zhuǎn)化成透明的粘彈性溶液,同時(shí)聚集態(tài)從囊泡轉(zhuǎn)變成長的蠕蟲狀膠束,且開始轉(zhuǎn)化的溫度隨溶液中3MS濃度的增加而升高。利用流變溫度掃描和電導(dǎo)率測定對此轉(zhuǎn)變進(jìn)行了驗(yàn)證。定性解釋這個(gè)轉(zhuǎn)化是因?yàn)樵诟邷叵挛降?MS分子從囊泡上解吸被溶解到水相中。

    表面活性劑;膠束;囊泡;熱敏性;流變性能

    [Article]

    www.whxb.pku.edu.cn

    In aqueous solutions of cationic surfactants,organic acids containing unsaturated hydrocarbon rings,such as salicylic acid, hydroxynaphthalene carboxylic acid,and their carboxylate were generally selected to co-construct variable self-assembled structures.When such hydrotropes are added to aqueous surfactant solutions,various self-assembled structures such as micelles (spherical,rod-like,wormlike,and disklike),vesicles,liquid crystals,gels,and lamellar structures can form10-14.Among these self-assembled structures,vesicles and micelles are considered to be two of the most useful structures for prospective applications. Vesicles are hollow spheres enclosed by a single bilayer or multilayers of amphiphilic molecules and are commonly used as encapsulating agents for the controlled release of drugs15.Wormlike micelles are of interest because of their complex flow behaviors and viscoelastic properties16,17,and have universal applications in drag reduction and the thickening of chemical formulations.

    Nuclear magnetic resonance(NMR)studies on a cetyltrimethylammonium(CTA+)-salicylate system indicate that the salicylate anion binds between the adjacent surfactant head groups.The―OH and COO-functional groups protrude out and away from the micellar surface18,19.This binding mode means that the anion can interact strongly with the cationic surfactant,both electrostatically and hydrophobically,and promote micellar growth1.Davis20and Raghavan3et al.studied the mixtures of CTAB and 5-methylsalicylic acid(5MS).On increasing the temperature,the structures of CTAB/5MS are transformed into worm-like micelles from the initial spherical or unilamellar vesicles,depending on the molar ratio.In addition,Davis et al.21also reported that in dilute aqueous cetyltrimethylammonium chloride (CTAC)/sodium 3-methylsalicylate(CH3Sal-)solution,the selfassembled morphology can transform from vesicles to cylindrical micelles upon shearing.In view of this,what about the mixed system of CTAB and 3-methylsalicylic acid(3MS)?Here,we explored the mixed CTAB/3MS system in details.Major differences in CTAB/3MS,CTAB/4MS,and CTAB/5MS solutions were compared and studied.Surprisingly,we found that transitions from spherical micelles to worm-like micelles and then to vesicles could also occur in the CTAB/3MS solutions by changing the system composition.Furthermore,altering the temperature induces the transition of vesicles to long micelles.The arguments based on the adsorption equilibrium of the anions and the packing parameter of the aggregates were used to explain these results.

    2 Materials and methods

    2.1Materials

    Analytical grade cetyltrimethylammonium bromide(99% CTAB,Shanghai Ziyi Reagent Co.,Ltd.),and 3,4,and 5-methylsalicylic acid(98%3MS,99%4MS and 98%5MS,Aladdin Chemistry Co.,Ltd.)were used without further purification.The water used in solution preparation was redistilled from alkaline potassium permanganate.

    2.2Rheological measurements

    Samples were prepared by mixing CTAB,3MS/4MS/5MS,and water at the given molality.The samples were homogenized using a magnetic stirrer,and were stored in a constant-temperature water bath at 25°C to allow temperature equilibration.A stress-controlled rheometer(AR2000ex,TAinstruments,USA)with a coneplate geometry of 2°cone angle and 20 mm diameter was used for rheological measurements.The gap between the center of the cone and plate is 50μm.The measuring unit was equipped with a temperature unit(Peltier plate),which provides both rapid change and accurate control of the temperature(uncertainty:±0.05°C) over extended time periods.All measurements were repeated twice to ensure reproducibility.

    2.3Electrical conductivity

    The electric conductivity of the mixed solutions was measured over the 15-55°C temperature range using a Model DDSJ-308A conductivity meter(Shanghai Leici instruments,China).An ultrathermostat was used to raise and maintain the temperatures of systems.Sampleswithcertaincombinationwerestirred throughout to ensure homogeneity.

    2.4Polarizing optical microscopy

    Optical analyses were carried out with a polarizing optical microscope(BK-POL,OPTEC instruments,China).The samples were spread on a microscope slide and a cover slip placed over it. Images were recorded at a magnification of 100×as movies with a digital camera.

    2.5Cryogenic transmission electron microscopy (cryo-TEM)

    Samples for cryo-TEM measurement were prepared in a controlled environment vitrification system(CEVS,Tecnai 20,FEI, Holland).Adrop of solution(1-5 μL)was placed on a TEM grid covered with a perforated carbon film and blotted with a filter paper to form a thin solution film on the grid.Samples were quenched rapidly in liquid ethane to form a vitrified sample and then transferred to liquid nitrogen until examination.The cryogenic temperature is below-166°C.Images were recorded on a high-resolution cooled charge-coupled device(CCD)camera.

    3 Results and discussion

    3.1Studies at room temperature for CTAB/3MS solution

    At a fixed CTAB concentration(CCTAB)of 100 mmol?kg-1,the mixed aqueous solutions of CTAB/3MS showed interesting physicochemical properties as a function of 3MS concentration(C3MS).When C3MS/CCTAB?0.7,the samples formed a transparent homogeneous phase,but the solutions became slightly blue and turbid when this ratio reached 0.8.The difference in the appearance suggests that the system is sensitive to counterion concentration.

    To comprehend the microstructure of the system,the rheological properties of the aqueous solutions were systematically studied using steady-state and frequency sweep measurements. Fig.1a shows the zero-shear viscosity,η0,over a range of 3MS concentrations with a constant CTAB concentration of 100 mmol?kg-1.The viscosity of the sample is very low in 3MS concentrations of less than 30 mmol?kg-1.When the concentration of 3MS becomes 40 mmol?kg-1,the viscosity exhibits a dramatic increase of several orders of magnitude and achieves a maximum when the C3MS/CCTABratio is 0.5.The increased viscosity is observed within a narrow range of concentrations,which illustrates the sensitivity of the system to changes of the counterion concentration1.The zero-shear viscosity of a solution containing 3MS(30 mmol?kg-1) is approximately 4 Pa?s,and the steady viscosity of the solution (Fig.2a)exhibits shear thinning behavior above the critical shear rate,γc.Long micelles begin to form when the concentration of 3MS is 30 mmol?kg-122,23.The presence of a viscosity maximum, which is usually considered to signify a transition from linear to branched micelles,is ubiquitous in the literature on worm-like micelles.In the CTAB/3MS system,nevertheless,unusual results with increasing C3MSare observed.The aqueous solutions of CTAB (100 mmol?kg-1)and 3MS(30 mmol?kg-1)have the appearance of a sticky,flowing solution.The dynamic rheological spectra (Fig.2b)show the typical characteristics of viscoelastic worm-like micelle solutions24.At higher 3MS concentrations,the appearanceand rheological properties of the solutions resemble those of gel. The samples can support their own weight for a sustained period when inverted(see the inset in Fig.1a).Furthermore,the steadyshear viscosity measurements(Fig.3a)show no visible plateaus, and the viscosity of the solutions becomes quite high at a 3MS concentration of 40-50 mmol?kg-1.For the solution that contains 50 mmol?kg-13MS,no crossover point is detected over the experimentally accessible range of dynamic frequency indicating a very long relaxation time(tR),but it does show plateau in the elastic modulus(G′)curve.Also,G′exceeds the viscous modulus (G″)throughout the examined frequencies(Fig.3b).This is in accordance with the gel-like behavior25,26.The results for G′and G″indicate that at C3MS=40,50 mmol?kg-1,both the CTAB/3MS solutions form entanglement networks.Whenη0reaches its peak, a strong electrostatic screening effect caused by the electrostatic interaction should occur between the cation of CTAB and the anion of 3MS.This is the expected behavior for these salicylic acid derivatives3,20,27.A possible electrostatic interaction between the molecules is shown in Fig.1b using a mole ratio of CTAB/ 3MS=0.5.In theory,the 3MS embedded in micelles should increase the effective area of the head group of the micelles and has a negative effect on the growth of the micelles,because of the methyl group positioned ortho to the hydrophilic hydroxyl group. The maximum point ofη0should be an equilibrium state for the two opposing driving forces.Further increasing the 3MS con-centration causes a precipitous drop in viscosity.The explanation for this in the literature is that some mixtures of surfactants and additives change the shapes of the aggregates from linear structures to branched worm-like micelles28,29.However,it seems clear that the sharply drop of η0owes to the damage of the network structure by the increase of the 3MS concentration.Of particular interest is the observation that when the concentration of 3MS is greater than 80 mmol?kg-1,the samples show a bluish hue and very low viscosity like water.These bluish hued solutions are birefringent under dark field microscopy using crossed polarizer. As shown in Fig.4,photographs of the samples present distinct Maltese cross pattern.The Maltese cross texture demonstrates the existence of a lamellar phase30,31.Besides,the bluish color is a manifestation of the Tyndall effect due to the presence of large scatterers in solution,and is often seen in solutions containing vesicles32.

    Fig.1 (a)Zero-shear viscosity(η0)of the CTAB(100 mmol?kg-1) solution as a function of C3MSat 25°C;(b)schematic illustration of a possible electrostatic interaction between the molecules and of the transition from rod-like micelle to viscoelastic micelles

    Fig.2 Rheological behaviors of a CTAB(100 mmol?kg-1)and 3MS(30 mmol?kg-1)sample at 25°C (a)apparent viscosity(η)versus shear rate(γ); (b)G′and G?versus shear frequency(ω)

    Fig.3 Curves of apparent viscosity(η)versus shear rate(γ)(a) and variations of G′and G?with the shear frequency(b),for mixed aqueous solutions of CTAB(100 mmol?kg-1)with 3MS at 40 and 50 mmol?kg-1at 25°C

    For the sake of comparing the impact of the position that the methyl group relative to the hydrophilic hydroxyl group,the rheological properties of the CTAB/4MS and CTAB/5MS mixed solutions at several of the same concentrations were also studied using steady-state and frequency sweep measurements.Although the similar trends in the variation of zero-shear viscosity(η0)with the MS concentrations are observed in the CTAB/5MS and CTAB/ 4MS solutions,the influence of the distance between the methyl group and the hydrophilic hydroxyl group is distinct.Two rheological parameters,η0,and relaxation time(tR)for three mixed systems are reported in Table 1.It is not hard to find that in terms of the same conditions,the CTAB/3MS solutions have the greatest η0and the longest tR;the CTAB/5MS solutions take the second place and the CTAB/4MS solutions have the lowest values.This is because the methyl group on 3MS positions ortho to the hydrophilic hydroxyl group,so 3MS has the smallest stereo-hindrance that it can be more easily embedded in micelles and has a stronger electrostatic screening effect.This result is more effective promotion for the growth of micelles,thus increases the viscosity and relaxation time of the solution.

    Fig.4 Polarization photographs of aqueous mixtures of CTAB(100 mmol?kg-1)and 3MS at 25°C (a)80 mmol?kg-1;(b)90 mmol?kg-1

    Table 1 Zero-shear viscosity(η0)and relaxation time(tR)of mixed aqueous solutions of 100 mmol?kg-1CTAB with varying 3MS/4MS/5MS concentrations at 25°C

    To obtain more information about the microstructure of this system,we applied the cryogenic transmission electron microscopy(Cryo-TEM)method.Samples that contain CTAB(100 mmol?kg-1)and 3MS/4MS(either 40 or 100 mmol?kg-1)were prepared.The cryo-TEM image(Fig.5a)clearly shows that the worm-like micelles have formed in the CTAB/3MS solution (C3MS=40 mmol?kg-1),which is consistent with the results of the rheological measurements.Fig.5b shows a mass of vesicles withan average vesicle diameter of approximately 100-150 nm. However,it is worth mentioning that many multilayer vesicles are also observed(red arrow in Fig.5b),which is detected in neither the CTAB/5MS solution in the literature3nor the CTAB/4MS solution(Fig.5c).Unilaminar vesicles mainly form in the CTAB/ 4MS and CTAB/5MS solutions and this difference also reflects on the appearance(Fig.6),the turbid state might be due to the formation of multilayer vesicles in CTAB/3MS mixed solution.An increase in the concentration of 3MS changes the viscosity and the aggregation(transform from short micelles to worm-like micelles, and finally change to vesicles)of the solutions.The reason for this is the change in the effective head-group area of the CTAB/3MS mixed systems.The morphology of the self-assembled aggregates is controlled by the spontaneous curvature of the liquid-micelle interface and depends on the packing parameter,where v represents the hydrophobic chain volume,a is the average area per polar head,and l is the surfactant alkyl chain length33.In dilute solution(C3MS<20 mmol?kg-1),although the binding of 3MS molecules to CTAB micelles causes a screening of the headgroup charge and a reduction of effective head-group area,the effect is weaker than the effect that an increase in the effective head-group area caused by the embedded 3MS molecules in CTAB micelles. As a result,the effective head-group area still increases and the shapes of micelles remain spherical.When the 3MS concentration is greater than 30 mmol?kg-1,most of the head-group charges are screened.As a result,a reduces and p increases and worm-like micelles form.However,when C3MSincreases beyond 80 mmol? kg-1,the head-group area is further reduced.This is because the resultant molecular geometry screens the electrostatic repulsion between the head groups so that they can pack more tightly together.This leads to the formation of low-curvature aggregates. If p is within 0.5

    Fig.5 Cryo-TEM micrographs of aqueous CTAB(100 mmol?kg-1)mixed with 3MS/4MS (a)3MS:40 mmol?kg-1;(b)3MS:100 mmol?kg-1;(c)4MS:100 mmol?kg-1

    Fig.6 Appearances of CTAB(100 mmol?kg-1)with 3MS(left), 4MS(middle),and 5MS(right)(100 mmol?kg-1)mixed solutions

    3.2Effect of temperature on the CTAB/3MS system

    Ten samples containing 100 mmol?kg-1CTAB and varying concentrations of 3MS have been investigated at room temperature.Typically,when a micellar solution is heated,the micellar contour length,L,decays exponentially with temperature16,34.The reduction in micellar length leads to an exponential decrease in rheological properties such as zero-shear viscosity η0and relaxation timetR34-36.Indeed,when C3MSwas lower than 40 mmol?kg-1, h0decayed exponentially with temperature(Fig.7a),which is in accordance with Arrhenius′law.However,for two samples in which C3MSequal to 10 and 20 mmol?kg-1,the influence of temperature was scarcely observed because of the low viscosity.When C3MSwas higher than 50 mmol?kg-1,large changes were observed in the rheological properties.

    As shown in Fig.7b,we can observe that for samples containing 3MS in the concentration range of 50-70 mmol?kg-1,the zeroshear viscosities increase with increasing temperature until they reach a maximum,and then,on further heating,decrease.The temperature corresponding to the η0maximum increases with increasing concentration of3MS(see the plot t1vs C in Fig.7d). Similar trend can be obtained from the dynamic rheological determination for these samples with increasing temperature.Fig.8 shows the dynamic rheological spectra at various temperatures for the solutions of CTAB(100 mmol?kg-1)and 3MS(60 mmol?kg-1).The plots show elastic modulus G′and viscosity modulus G″as a function of frequencyω.We note that the sample exhibits the viscoelastic response expected of worm-like micelles:elastic behavior at highwor at short timescales(G′dominating over G″), and viscous behavior at lowωor long timescales(G″e(cuò)xceeds G′)24.The dynamic rheology measurements,thus,reveal an increase in the relaxation time,τR,up to 30°C,followed by a decrease at higher temperatures.The steady-shear rheological data under different temperatures for solutions containing CTAB(100 mmol?kg-1)and 3MS(60 mmol?kg-1)are shown in Fig.9.On the one hand,in all cases,a Newtonian plateau appears at low shearrates,followed by shear thinning at higher shear rates.The zeroshear viscosity,η0,obtained from the steady-shear viscosity measurements increases at 20-30°C and then decreases at higher temperatures(Fig.7b).On the other hand,the viscosity at high shear rates is much less sensitive to temperature,a feature that has also been seen in other studies on worm-like micellar solutions34,37.

    Fig.7 Zero-shear viscosity as a function of temperature for different CTAB/3MS solutions at a fixed 100 mmol?kg-1CTAB content(a-c),and the temperature corresponding to theη0maximum(d)

    3MS is slightly soluble in cold water,but soluble in hot water. Thus,at room temperature,dissociated anionic 3MS partitions almost to the micelles with the aromatic portion submerged in the hydrophobicinteriorofthemicelles.Thesolubilityof3MSinwater increases with increasing temperature,which means a downward trend that anionic 3MS binds to the micelles.This may cause some of the weakly binding counterions to desorb fromthe micelles and be released into solutions.Consequently,as the temperature increases,the negative charges of the micellar surface reduce and, simultaneously,theheadgroupareaalsochanges.Theoveralleffect of this is to reduce the interfacial curvature of the aggregates leading to micelle growth with increasing temperature3,38-40.In addition,there is another competing temperature effect caused by the increased solubility of 3MS at higher temperatures.The micellar surface is considerably positively charged resulting in increased electrostatic repulsion.Therefore,the head group area will increase and impede the growth of micelles.When 3MS is in the state of high concentration,the temperature should be increased to dissolve excess 3MS in order that the quantity of 3MS in micelles can reach its optimal value and the most stable structure of CTAB(100 mmol?kg-1)micelles can form,which will also result in the maximum viscosity.Therefore,theη0maximum increases at higher temperatures with increasing 3MS concentration (Fig.7d).

    Fig.8 Dynamic rheological curves of the sample containing CTAB(100 mmol?kg-1)and 3MS(60 mmol?kg-1)as a function of temperature

    For the Fig.7c,the zero-shear viscosities of the samples containing 3MS in the range of 80 to 100 mmol?kg-1also increasewith increasing temperature until they reach a maximum,and then decrease on further heating.Unlike the aforementioned samples, however,these samples are bluish dilute solutions at room temperature,which gradually become pale,transparent viscoelastic solutions on increasing the temperature.It is worth mentioning that the transform is thermo-reversible,that is,vesicles convert to worm-like micelles on heating and can be re-formed on cooling. Moreover,the onset of the transition and,correspondingly,the location of the viscosity peak shift to higher temperatures as increasing the concentration of 3MS.Corresponding phenomena are also observed in the temperature ramp scan and conductivity test. As shown in Fig.10a,at low temperatures the samples maintain low viscosity,and the viscosity increases rapidly to a peak when the temperature reaches a certain number.The turning temperature for the three samples containing a fixed[CTAB]and varying [3MS](80,90,and 100 mmol?kg-1)is 25,40,and 50°C,respectively.The resulting transition temperature point basically squares with that of Fig.7c,and becomes larger with increasing [3MS].The transition for each sample was also determined with the aid of electrical conductivity measurements by plotting the specific conductivities(κ)of solutions as a function of temperature.As shown in Fig.10b,the specific conductivities are gradually enhanced.This is because the solubility of 3MS in water increases with increasing temperature resulting in the fact that the anionic weakly bound 3MS with micelles desorbs to water and,thereby, makes contribution for the conductive ability enhancement of solution.For each sample,reproducible breaks were observed in the conductivity curves indicating the onset of transitions that vesicles convert to worm-like micelles,which is corresponding to the result above.Among the three samples,the steady-shear viscosity of the mixture of CTAB(100 mmol?kg-1)and 3MS(100 mmol?kg-1)is shown in Fig.11.The viscosity of this solution is independent of shear rate at low temperature,and its value is only 0.01 Pa?s at 30°C.This rheological behavior is due to the presence of vesicles(Fig.5b).With increasing temperature,the sample switches to a shear-thinning response and,at 50°C,the zero-shear viscosity is several orders of magnitude higher.Therefore,these samples should undergo a transition from vesicles to worm-like micelles.

    Fig.9 Steady-shear viscosity of a mixed solution of CTAB(100 mmol?kg-1)and 3MS(60 mmol?kg-1)as a function of shear rate(γ)at different temperatures

    Fig.10 Viscosity(a)and conductivity(b)as a function of temperature for three CTAB/3MS solutions containing 100 mmol?kg-1CTAB and varying concentrations of 3MS

    Fig.11 Steady-shear rheology(viscosity as a function of shear rate)for a sample containing CTAB(100 mmol?kg-1)with 3MS (100 mmol?kg-1)at various temperatures

    The reason for the change in structure from vesicles to wormlike micelles is,again,the temperature dependent change in 3MS solubility.At low temperatures,almost an equimolar amount of 3MS is adsorbed at the aggregate surface because of the low solubility of 3MS.This means that most of 3MS molecules are associated with CTAB and the formation of vesicles is on account of the hydrophobic and electrostatic interactions.Heating increases the solubility of 3MS and some of the weakly bound 3MS molecules will disassociate from the vesicles.This desorption changes the molecular geometry and,hence,reduces the inter-facial curvature of the aggregates.Accordingly,the behavior induces a transition from vesicles to worm-like micelles3.

    Asimilar trend in the changes to aggregate morphology can be obtained by varying the concentration of CTAB in samples.This method can provide a new way to use small molecules to control aggregates in surfactant solutions such as worm-like micelles and vesicles.The method can be applied by adding 3MS to a fixed CTAB solution or changing the temperature of the solutions and then may have utilization in many different fields.Among all the factors,the C3MS/CCTABratio is probably the most important element.Indeed,repeated experiments at different CTAB concentrations have confirmed that the C3MS/CCTABratio largely controls the onset of the vesicle-to-micelle transition.

    4 Conclusions

    This work has demonstrated that aqueous mixed solutions of 3-methylsalicylic acid(3MS),which contains an unsaturated hydrocarbon ring,and a cationic surfactant CTAB can form spherical micelles,worm-like micelles or multilaminate vesicles.It is all up to the solution composition.More specifically,the transition of spherical micelles to worm-like micelles and even micelles to vesicles on increasing the concentration of 3MS depends on the change in the effective head-group area of surfactant molecules. Additionally,short micelles can transform into long micelles upon heating because of the increase in 3MS solubility,which causes being some 3MS molecules to dissociate from the micelle surface. When heated,it is interesting to note that the vesicles can evolve into micelles and that the thermal response causes the solutions to switch from low-viscosity Newtonian fluid to viscoelastic,shearthinning fluid.The vesicle-to-micelle transition also originates because of the desorption of bound 3MS molecules from the vesicles at high temperatures.In summary,both the onset and magnitude of the viscosity increase are tunable via sample composition and temperature.We hope that these results can shed light on a better understanding of structure-property relationships in surfactant-hydrotrope systems.

    References

    (1)Trickett,K.;Eastoe,J.Adv.Colloid Interface 2008,144,66. doi:10.1016/j.cis.2008.08.009

    (2)Chu,Z.L.;Dreiss,C.A.;Feng,Y.J.Chem.Soc.Rev.2013,42, 7174.doi:10.1039/c3cs35490c

    (3)Davies,T.S.;Ketner,A.M.;Raghavan,S.R.J.Am.Chem. Soc.2006,128,6669.doi:10.1021/ja060021e

    (4)Lee,H.Y.;Diehn,K.K.;Sun,K.S.;Chen,T.H.;Raghavan,S. R.J.Am.Chem.Soc.2011,133,8461.doi:10.1021/ja202412z

    (5)Zhao,L.;Wang,K.;Xu,L.M.;Liu,Y.;Zhang,S.;Li,Z.B.; Yan,Y.;Huang,J.B.Soft Matter 2012,8,9079.doi:10.1039/ C2SM25334H

    (6)Zhang,Y.M.;Feng,Y.J.;Wang,J.Y.;He,S.;Guo,Z.R.;Chu, Z.L.;Dreiss,C.A.Chem.Commun.2013,49,4902.doi: 10.1039/c3cc41059e

    (7)Tsuchiya,K.;Orihara,Y.;Kondo,Y.;Yoshino,N.;Ohkubo,T.; Sakai,H.;Abe,M.J.Am.Chem.Soc.2004,126,12282.

    (8)Liu,C.C.;Hao,J.C.J.Phys.Chem.B.2011,115,980.doi: 10.1021/jp107946n

    (9)Jiang,L.X.;Wang,K.;Ke,F.Y.;Liang,D.H.;Huang,J.B. Soft Matter 2009,5,599.doi:10.1039/B813498G

    (10)Singh,M.;Ford,C.;Agarwal,V.;Fritz,G.;Bose,A.;John,V. T.;McPherson,G.L.Langmuir 2004,20,9931.doi:10.1021/ la048967u

    (11)Zhai,L.M.;Herzog,B.;Drechsler,M.;Hoffmann,H.J.Phys. Chem.B 2006,110,17697.doi:10.1021/jp0680591

    (12)Buwalda,R.T.;Stuart,M.C.A.;Engberts,J.B.F.N. Langmuir 2000,16,6780.doi:10.1021/la000164t

    (13)Grabner,D.;Zhai,L.;Talmon,Y.;Schmidt,J.;Freiberger,N.; Glatter,O.;Herzog,B.;Hoffmann,H.J.Phys.Chem.B 2008, 112,2901.doi:10.1021/jp0749423

    (14)Horbaschek,K.;Hoffmann,H.;Thunig,C.J.Colloid Interface Sci.1998,206,439.doi:10.1006/jcis.1998.5690

    (15)Ghosh,R.;Dey,J.Langmuir 2014,30,13516.doi:10.1021/ la5022214

    (16)Cates,M.E.;Candau,S.J.J.Phys.Condens.Matter 1990,2, 6869.doi:10.1088/0953-8984/2/33/001

    (17)Magid,L.J.J.Phys.Chem.B 1998,102,4064.doi:10.1021/ jp9730961

    (18)Olsson,U.;Soderman,O.;Guering,P.J.Phys.Chem.1986, 90,5223.doi:10.1021/j100412a066

    (19)Rao,U.R.K.;Manohar,C.;Valaulikar,B.S.;Iyer,R.M. J.Phys.Chem.1987,91,3286.doi:10.1021/j100296a036

    (20)Lin,Z.;Cai,J.J.;Scriven,L.E.;Davis,H.T.J.Phys.Chem. 1994,98,5984.doi:10.1021/j100074a027

    (21)Zheng,Y.;Lin,Z.;Zakin,J.L.;Talmon,Y.;Davis,H.T.; Scriven,L.E.J.Phys.Chem.B 2000,104,5263.doi:10.1021/ jp0002998

    (22)Acharya,D.P.;Kunieda,H.J.Phys.Chem.B 2003,107, 10168.doi:10.1021/jp0353237

    (23)Shrestha,R.G.;Shrestha,L.K.;Aramaki,K.J.Colloid Interface Sci.2007,311,276.doi:10.1016/j.jcis.2007.02.050

    (24)Wei,X.L.;Ping,A.L.;Du,P.P.;Liu,J.;Sun,D.Z.;Zhang,Q. F.;Hao,H.G.;Yu,H.J.Soft Matter 2013,9,8454.doi: 10.1039/c3sm51017d

    (25)Thurn,H.;Lobl,M.;Hoffmann,H.J.Phys.Chem.1985,89, 517.doi:10.1021/j100249a030

    (26)Lin,Y.Y.;Qiao,Y.;Tang,P.F.;Li,Z.B.;Huang,J.B.Soft Matter 2011,7,2762.doi:10.1039/c0sm01050b

    (27)Shikata,T.;Hirata,H.;Kotaka,T.Langmuir 1989,5,398.doi: 10.1021/la00086a020

    (28)Hoffmann,H.Structure and Flow in Surfactant Solutions; Herb,C.A.,Prud′homme.,R.K.Eds.;American Chemical Society:Washington,DC,1994;pp 2-31.

    (29)Lin,Z.Langmuir 1996,12,1729.doi:10.1021/la950570q

    (30)Regev,O.;Guillemet,F.Langmuir 1999,15,4357.doi:10.1021/la980935h

    (31)Li,X.;Dong,S.L.;Hao,J.C.Soft Matter 2009,5,990.doi: 10.1039/b815640a

    (32)Jiang,L.X.;Deng,M.L.;Wang,Y.L.;Liang,D.H.;Yan,Y.; Huang,J.B.J.Phys.Chem.B 2009,113,7498.

    (33)Nagarajan,R.Langmuir 2002,18,31.doi:10.1021/la010831y

    (34)Raghavan,S.R.;Kaler,E.W.Langmuir 2001,17,300.doi: 10.1021/la0007933

    (35)Makhloufi,R.;Cressely,R.Colloid Polym.Sci.1992,270, 1035.doi:10.1007/BF00655973

    (36)Ponton,A.;Schott,C.;Quemada,D.Colloids Surf.A 1998, 145,37.doi:10.1016/S0927-7757(98)00681-5

    (37)Kalur,G.C.;Frounfelker,B.D.;Cipriano,B.H.;Norman,A. I.;Raghavan,S.R.Langmuir 2005,21,10998.doi:10.1021/ la052069w

    (38)Hassan,P.A.;Valaulikar,B.S.;Manohar,C.;Kern,F.; Bourdieu,L.;Candau,S.J.Langmuir 1996,12,4350.doi: 10.1021/la960269p

    (39)Menon,S.V.G.;Manohar,C.;Lequeux,F.Chem.Phys.Lett. 1996,263,727.doi:10.1016/S0009-2614(96)01279-1

    (40)Narayanan,J.;Mendes,E.;Manohar,C.Int.J.Mod.Phys.B 2002,16,375.doi:10.1142/S0217979202009895

    Thermoresponsive Properties of a Mixed Aqueous Solution of Cationic Surfactant and Organic Acid

    HAN Chuan-HongGENG Pei-PeiGUO YanCHEN Xiao-XiaoGUO Xiao-Dong ZHANG Jun-HongLIU JieWEI Xi-Lian*
    (Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology,College of Chemistry and Chemical Engineering,Liaocheng University,Liaocheng 252059,Shandong Province,P.R.China)

    Rheologicalpropertiesofaqueousmixturesofthetraditionalcationicsurfactant cetyltrimethylammonium bromide(CTAB)and organic acid 3-methylsalicylic acid(3MS)were studied as a function of concentration and temperature using steady-state and frequency sweep-rheological measurements. Upon being heated,the solutions exhibited three different types of response.Among them,the most interesting response was that light blue dilute solutions formed over the 3MS concentration range of 80 to 100 mmol?kg-1. These samples changed from dilute pale blue solutions to transparent viscoelastic ones as their aggregation state transitioned from vesicles to long worm-like micelles with increasing temperature.Moreover,the threshold temperature of the transition increased with 3MS concentration.The results of rheological temperature scanning and conductivity measurements verified this trend.Aqualitative explanation for this transformation is that bound 3MS molecules dissociate from the vesicles and join the bulk aqueous phase at high temperature.

    :Surfactant;Micelle;Vesicle;Thermoresponsive;Rheological property

    1 Introduction

    The aggregate morphology of surfactants in solution can significantly affect their physicochemical properties.Typically,dilute solutions of many surfactants exhibit low viscosity because of theformation of spherical micelles or vesicles.However,in some cases,such as with particular additives,the surfactants can assemble into other types of aggregates displaying exceptional viscoelasticities1.In recent years,the self-assembly of amphiphiles and different additives in solutions has attracted considerable attention2.These self-assembled morphologies in solutions can be manipulated by tuning the environmental conditions,such as temperature,additives,illumination,pH,gases,electric field,force field,and etc3-9.

    October 21,2015;Revised:January 4,2016;Published on Web:January 5,2016.*Corresponding author.Email:weixilian123@126.com;Tel:+86-635-8230613. The project was supported by the National Natural Science Foundation of China(21473084,21073081,21373106,ZR2012BQ013),Scientific Research(LDSY2014008)and Experimental Technology Science Research Project(314011402)of Liaocheng University,China.

    O648

    10.3866/PKU.WHXB201601051

    國家自然科學(xué)基金(21473084,21073081,21373106,ZR2012BQ013),聊城大學(xué)科研課題(LDSY2014008)和實(shí)驗(yàn)技術(shù)(314011402)資助項(xiàng)目

    猜你喜歡
    聊城水溶液有機(jī)酸
    聊城高新區(qū)多措并舉保障貧困戶“居住無憂”
    關(guān)注新生兒有機(jī)酸血癥
    聊城,宛在水中央
    走向世界(2018年11期)2018-12-26 01:12:44
    聊城 因水而生 有水則靈
    走向世界(2018年11期)2018-12-26 01:12:44
    新動能,新聊城
    走向世界(2018年11期)2018-12-26 01:12:32
    金銀花總有機(jī)酸純化工藝的優(yōu)化
    中成藥(2018年5期)2018-06-06 03:12:15
    DMAC水溶液乙酸吸附分離過程
    聚焦水溶液中的三大守恒關(guān)系
    TEA水溶液的流變性研究
    白茶中的有機(jī)酸高效液相色譜分析方法的建立
    欧美黄色淫秽网站| 好男人在线观看高清免费视频| 可以免费在线观看a视频的电影网站| 国产av麻豆久久久久久久| 熟女电影av网| 亚洲成人国产一区在线观看| 一本久久中文字幕| 国产又黄又爽又无遮挡在线| 日本黄色视频三级网站网址| 宅男免费午夜| 高清毛片免费观看视频网站| 精品第一国产精品| 在线观看www视频免费| 日韩精品青青久久久久久| 男女床上黄色一级片免费看| 好男人在线观看高清免费视频| 久久午夜综合久久蜜桃| 动漫黄色视频在线观看| 国产精品久久久人人做人人爽| 成人午夜高清在线视频| 禁无遮挡网站| 日韩有码中文字幕| 欧美一级毛片孕妇| 久久久久久久久免费视频了| 啦啦啦观看免费观看视频高清| 国产熟女xx| 亚洲一区中文字幕在线| 亚洲一区中文字幕在线| 亚洲色图av天堂| 欧美精品亚洲一区二区| 一边摸一边做爽爽视频免费| 国产精品一区二区精品视频观看| 亚洲av五月六月丁香网| 在线国产一区二区在线| 九色国产91popny在线| 亚洲男人的天堂狠狠| 黑人欧美特级aaaaaa片| 无限看片的www在线观看| 婷婷丁香在线五月| 欧美性长视频在线观看| 国产不卡一卡二| 久久精品国产亚洲av高清一级| 一进一出好大好爽视频| 一本一本综合久久| 日日夜夜操网爽| 亚洲电影在线观看av| 他把我摸到了高潮在线观看| 亚洲五月天丁香| 午夜成年电影在线免费观看| 熟女电影av网| 九色成人免费人妻av| 日韩大码丰满熟妇| 夜夜躁狠狠躁天天躁| 日韩中文字幕欧美一区二区| 岛国视频午夜一区免费看| 午夜免费激情av| 观看免费一级毛片| 一进一出抽搐gif免费好疼| 午夜福利欧美成人| 日韩三级视频一区二区三区| 啪啪无遮挡十八禁网站| 少妇的丰满在线观看| 黄色a级毛片大全视频| 国产精品国产高清国产av| www.自偷自拍.com| 日本免费a在线| 国产成人欧美在线观看| 日韩国内少妇激情av| 97人妻精品一区二区三区麻豆| 丝袜美腿诱惑在线| 蜜桃久久精品国产亚洲av| 国语自产精品视频在线第100页| 国内揄拍国产精品人妻在线| 毛片女人毛片| 男男h啪啪无遮挡| 嫩草影视91久久| 国产亚洲欧美在线一区二区| 免费在线观看成人毛片| 亚洲国产精品合色在线| 1024香蕉在线观看| 免费在线观看黄色视频的| 国产精品野战在线观看| 亚洲欧美日韩无卡精品| 亚洲精华国产精华精| 国产片内射在线| 麻豆成人av在线观看| 亚洲成人国产一区在线观看| 亚洲色图 男人天堂 中文字幕| 国产探花在线观看一区二区| 国产av在哪里看| 国内毛片毛片毛片毛片毛片| 国产久久久一区二区三区| 黄色成人免费大全| 哪里可以看免费的av片| 国产麻豆成人av免费视频| 免费一级毛片在线播放高清视频| 天天躁狠狠躁夜夜躁狠狠躁| 18美女黄网站色大片免费观看| 欧美另类亚洲清纯唯美| 在线观看66精品国产| 91麻豆精品激情在线观看国产| 午夜免费激情av| 亚洲av成人精品一区久久| 老司机靠b影院| 国产一区二区激情短视频| 午夜免费激情av| 国内久久婷婷六月综合欲色啪| av福利片在线观看| 亚洲国产欧洲综合997久久,| 亚洲成a人片在线一区二区| 超碰成人久久| 国产免费av片在线观看野外av| 久久天躁狠狠躁夜夜2o2o| 正在播放国产对白刺激| 999精品在线视频| 亚洲国产欧美人成| 久久久久九九精品影院| 免费观看精品视频网站| 人人妻,人人澡人人爽秒播| 久久人妻福利社区极品人妻图片| 国产av一区在线观看免费| 成人特级黄色片久久久久久久| 亚洲av成人av| 首页视频小说图片口味搜索| 久久久久国产精品人妻aⅴ院| 久久精品国产亚洲av香蕉五月| www.www免费av| 精品国产乱子伦一区二区三区| 91字幕亚洲| 久久人妻福利社区极品人妻图片| 成人18禁在线播放| 老汉色∧v一级毛片| 色综合站精品国产| 99热这里只有精品一区 | 亚洲国产欧美网| 天天躁狠狠躁夜夜躁狠狠躁| 日本一二三区视频观看| 亚洲av片天天在线观看| 久久99热这里只有精品18| 给我免费播放毛片高清在线观看| 亚洲午夜理论影院| 丰满的人妻完整版| bbb黄色大片| 无限看片的www在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 久久精品亚洲精品国产色婷小说| 国产91精品成人一区二区三区| 一级作爱视频免费观看| 一区二区三区国产精品乱码| 午夜两性在线视频| 国产一区在线观看成人免费| 露出奶头的视频| 禁无遮挡网站| 91麻豆av在线| 亚洲av中文字字幕乱码综合| 午夜激情av网站| 精品电影一区二区在线| 午夜福利18| 一二三四社区在线视频社区8| 黄频高清免费视频| 久久这里只有精品19| 在线国产一区二区在线| 男女做爰动态图高潮gif福利片| 青草久久国产| 欧美性长视频在线观看| 天堂√8在线中文| 老司机午夜十八禁免费视频| 欧美成人午夜精品| 日韩欧美免费精品| 日本三级黄在线观看| 久久婷婷成人综合色麻豆| 91成年电影在线观看| 国产成人欧美在线观看| 在线观看66精品国产| 宅男免费午夜| 国产私拍福利视频在线观看| 成人手机av| 黑人操中国人逼视频| 欧美黑人精品巨大| 一进一出抽搐动态| 国产精品免费视频内射| 亚洲av电影在线进入| 亚洲av电影不卡..在线观看| 精品一区二区三区视频在线观看免费| 国产精品自产拍在线观看55亚洲| 国产久久久一区二区三区| 999精品在线视频| 免费看美女性在线毛片视频| 精品久久久久久久久久久久久| 日本免费一区二区三区高清不卡| 久久天躁狠狠躁夜夜2o2o| 国产精品野战在线观看| 亚洲激情在线av| 精品一区二区三区四区五区乱码| 日韩中文字幕欧美一区二区| 狠狠狠狠99中文字幕| 淫妇啪啪啪对白视频| 无遮挡黄片免费观看| www.www免费av| 一级毛片精品| 美女午夜性视频免费| tocl精华| 国内精品一区二区在线观看| a级毛片a级免费在线| 色尼玛亚洲综合影院| www.自偷自拍.com| 欧美成狂野欧美在线观看| 亚洲专区字幕在线| 国产三级黄色录像| 精品第一国产精品| 久久精品夜夜夜夜夜久久蜜豆 | 在线十欧美十亚洲十日本专区| 国产精品一区二区三区四区久久| www.精华液| 好男人电影高清在线观看| 母亲3免费完整高清在线观看| 成人欧美大片| 黄色女人牲交| 精品午夜福利视频在线观看一区| 97碰自拍视频| 久久久久九九精品影院| 熟妇人妻久久中文字幕3abv| 亚洲精品国产精品久久久不卡| 免费看日本二区| 757午夜福利合集在线观看| 少妇被粗大的猛进出69影院| 欧美黄色淫秽网站| 91字幕亚洲| 18美女黄网站色大片免费观看| 9191精品国产免费久久| 黄色视频不卡| 亚洲天堂国产精品一区在线| 午夜a级毛片| 久久久精品国产亚洲av高清涩受| 黄色 视频免费看| av视频在线观看入口| 国产激情欧美一区二区| 亚洲男人天堂网一区| 精品欧美一区二区三区在线| 婷婷精品国产亚洲av在线| 一本久久中文字幕| 岛国在线观看网站| 舔av片在线| 国产精品一区二区免费欧美| 日韩欧美一区二区三区在线观看| 成人亚洲精品av一区二区| 亚洲 国产 在线| 久久精品成人免费网站| 欧美不卡视频在线免费观看 | 亚洲av五月六月丁香网| 日本免费a在线| 亚洲 欧美一区二区三区| 欧美黑人精品巨大| 特大巨黑吊av在线直播| 午夜福利在线在线| 亚洲人成电影免费在线| 国产99白浆流出| 色播亚洲综合网| netflix在线观看网站| 岛国视频午夜一区免费看| 特大巨黑吊av在线直播| 精品久久久久久,| 欧美日韩一级在线毛片| 日本黄大片高清| 母亲3免费完整高清在线观看| 韩国av一区二区三区四区| 国产高清视频在线观看网站| 成人18禁高潮啪啪吃奶动态图| 巨乳人妻的诱惑在线观看| 热99re8久久精品国产| 亚洲国产高清在线一区二区三| av视频在线观看入口| 欧美高清成人免费视频www| 男女床上黄色一级片免费看| 成人18禁高潮啪啪吃奶动态图| 欧美在线黄色| 久久草成人影院| 国产三级中文精品| 国产精品美女特级片免费视频播放器 | 美女扒开内裤让男人捅视频| 在线视频色国产色| 久久久久久亚洲精品国产蜜桃av| av天堂在线播放| 最近在线观看免费完整版| 亚洲欧美精品综合一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 18美女黄网站色大片免费观看| 熟妇人妻久久中文字幕3abv| 免费看美女性在线毛片视频| netflix在线观看网站| 亚洲av成人av| 夜夜躁狠狠躁天天躁| 婷婷六月久久综合丁香| 亚洲avbb在线观看| 亚洲国产看品久久| 欧美一级毛片孕妇| 搡老岳熟女国产| 亚洲欧美激情综合另类| 一区二区三区高清视频在线| 成年人黄色毛片网站| 国产精品一区二区精品视频观看| 啪啪无遮挡十八禁网站| www日本在线高清视频| 成在线人永久免费视频| 黑人操中国人逼视频| 哪里可以看免费的av片| 看免费av毛片| 国产av不卡久久| 欧美国产日韩亚洲一区| 色哟哟哟哟哟哟| 欧美性猛交黑人性爽| 国产单亲对白刺激| 国产成+人综合+亚洲专区| 在线观看一区二区三区| 成熟少妇高潮喷水视频| 色噜噜av男人的天堂激情| 欧美色欧美亚洲另类二区| 老熟妇仑乱视频hdxx| 久久性视频一级片| 熟女电影av网| 高清毛片免费观看视频网站| 国产精品久久久久久久电影 | 宅男免费午夜| 国产区一区二久久| 亚洲中文字幕一区二区三区有码在线看 | 欧美一区二区精品小视频在线| 日韩高清综合在线| 全区人妻精品视频| 91国产中文字幕| 麻豆成人av在线观看| 亚洲黑人精品在线| 国产精品一区二区精品视频观看| av超薄肉色丝袜交足视频| 又黄又爽又免费观看的视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区二区三区视频在线观看免费| 制服诱惑二区| 国产高清视频在线播放一区| 亚洲人成网站在线播放欧美日韩| 一边摸一边抽搐一进一小说| 亚洲人成网站在线播放欧美日韩| 男人的好看免费观看在线视频 | 一进一出抽搐动态| 久久欧美精品欧美久久欧美| 99热6这里只有精品| 精品电影一区二区在线| 久久久精品国产亚洲av高清涩受| 人人妻,人人澡人人爽秒播| 国产成人av教育| 午夜福利高清视频| 一级作爱视频免费观看| 精品电影一区二区在线| 非洲黑人性xxxx精品又粗又长| 精品电影一区二区在线| 非洲黑人性xxxx精品又粗又长| 亚洲专区中文字幕在线| 很黄的视频免费| 欧美又色又爽又黄视频| 精品一区二区三区四区五区乱码| 最好的美女福利视频网| 老司机午夜福利在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成人免费av一区二区三区| 97人妻精品一区二区三区麻豆| 又爽又黄无遮挡网站| 久久国产乱子伦精品免费另类| 久久久久久亚洲精品国产蜜桃av| 97人妻精品一区二区三区麻豆| 国产单亲对白刺激| 男人舔女人下体高潮全视频| 国产精品永久免费网站| 宅男免费午夜| 一级毛片女人18水好多| 色综合站精品国产| 香蕉久久夜色| 两个人视频免费观看高清| 欧美精品啪啪一区二区三区| 亚洲精品粉嫩美女一区| 一卡2卡三卡四卡精品乱码亚洲| 神马国产精品三级电影在线观看 | 日韩 欧美 亚洲 中文字幕| 欧美成人免费av一区二区三区| 国产真人三级小视频在线观看| 老司机福利观看| 在线观看一区二区三区| 精品久久久久久久久久久久久| 一进一出好大好爽视频| 色综合欧美亚洲国产小说| 亚洲一区二区三区不卡视频| 国产91精品成人一区二区三区| 亚洲精品国产一区二区精华液| 亚洲专区中文字幕在线| 国产熟女午夜一区二区三区| 此物有八面人人有两片| 狂野欧美激情性xxxx| 五月伊人婷婷丁香| 在线播放国产精品三级| 国产精品一区二区三区四区久久| 国产1区2区3区精品| 91成年电影在线观看| 亚洲国产日韩欧美精品在线观看 | 女生性感内裤真人,穿戴方法视频| 亚洲av中文字字幕乱码综合| 免费看美女性在线毛片视频| 亚洲av五月六月丁香网| 午夜免费激情av| 999精品在线视频| 亚洲人成电影免费在线| 国产精品影院久久| 特大巨黑吊av在线直播| 香蕉av资源在线| 99热这里只有是精品50| 久久精品综合一区二区三区| 一本大道久久a久久精品| 最近最新中文字幕大全免费视频| 搡老熟女国产l中国老女人| 19禁男女啪啪无遮挡网站| 国产高清有码在线观看视频 | 精品久久蜜臀av无| 悠悠久久av| 嫁个100分男人电影在线观看| 成人高潮视频无遮挡免费网站| 男女床上黄色一级片免费看| 法律面前人人平等表现在哪些方面| 又粗又爽又猛毛片免费看| 色精品久久人妻99蜜桃| 女人爽到高潮嗷嗷叫在线视频| 99热只有精品国产| 人妻久久中文字幕网| 老司机靠b影院| 1024视频免费在线观看| 国产激情欧美一区二区| 国产精品,欧美在线| 成人亚洲精品av一区二区| 麻豆成人午夜福利视频| 成人一区二区视频在线观看| 国内揄拍国产精品人妻在线| 成年免费大片在线观看| 午夜视频精品福利| 亚洲真实伦在线观看| 日本 欧美在线| 国产伦一二天堂av在线观看| 淫秽高清视频在线观看| 一级毛片女人18水好多| 久久天堂一区二区三区四区| 色av中文字幕| 久久人人精品亚洲av| 久久久精品国产亚洲av高清涩受| 亚洲中文字幕一区二区三区有码在线看 | 动漫黄色视频在线观看| 在线观看午夜福利视频| 老司机在亚洲福利影院| 51午夜福利影视在线观看| 91九色精品人成在线观看| 欧美日韩中文字幕国产精品一区二区三区| 观看免费一级毛片| 久久精品夜夜夜夜夜久久蜜豆 | 久久精品亚洲精品国产色婷小说| АⅤ资源中文在线天堂| www.精华液| 丁香欧美五月| 少妇的丰满在线观看| 国产精品影院久久| 99精品久久久久人妻精品| 身体一侧抽搐| 欧美乱妇无乱码| 国产午夜福利久久久久久| 丝袜人妻中文字幕| 一级黄色大片毛片| a级毛片在线看网站| 国产伦一二天堂av在线观看| 国产亚洲欧美在线一区二区| 九色国产91popny在线| 亚洲av美国av| 一卡2卡三卡四卡精品乱码亚洲| 18禁观看日本| 制服诱惑二区| 国产精品免费视频内射| 欧美在线一区亚洲| 色老头精品视频在线观看| 国内毛片毛片毛片毛片毛片| 一区二区三区国产精品乱码| 亚洲国产欧美人成| 九色国产91popny在线| av欧美777| 日韩大尺度精品在线看网址| 国产真人三级小视频在线观看| 国产精品亚洲av一区麻豆| 99国产极品粉嫩在线观看| 无人区码免费观看不卡| 国产一区二区三区视频了| 又大又爽又粗| 国内精品一区二区在线观看| 在线观看美女被高潮喷水网站 | 老司机福利观看| 亚洲自拍偷在线| 久久久精品国产亚洲av高清涩受| 亚洲一区二区三区色噜噜| 毛片女人毛片| 精品不卡国产一区二区三区| 亚洲黑人精品在线| 不卡av一区二区三区| 99国产综合亚洲精品| 91在线观看av| 琪琪午夜伦伦电影理论片6080| 国内精品久久久久精免费| 五月玫瑰六月丁香| 亚洲天堂国产精品一区在线| 国产主播在线观看一区二区| 亚洲欧美精品综合久久99| 18禁黄网站禁片免费观看直播| 欧美极品一区二区三区四区| 国产又色又爽无遮挡免费看| 亚洲国产精品久久男人天堂| 国产欧美日韩一区二区三| 色尼玛亚洲综合影院| 国产一区在线观看成人免费| 91麻豆av在线| 国产成人啪精品午夜网站| 一进一出抽搐gif免费好疼| 欧美乱妇无乱码| 久热爱精品视频在线9| 麻豆av在线久日| 欧美成人午夜精品| 日韩高清综合在线| 国产视频一区二区在线看| 久久久久九九精品影院| 熟女电影av网| 久久久久九九精品影院| 在线观看66精品国产| 精品久久久久久久末码| 久久国产精品影院| 日韩大码丰满熟妇| 国产亚洲av高清不卡| 99riav亚洲国产免费| 亚洲电影在线观看av| 精品欧美国产一区二区三| 亚洲成人久久性| 欧美日韩福利视频一区二区| 国内少妇人妻偷人精品xxx网站 | 两性夫妻黄色片| 99久久久亚洲精品蜜臀av| 国产麻豆成人av免费视频| 国产男靠女视频免费网站| 老司机午夜福利在线观看视频| 国产精品香港三级国产av潘金莲| 日本在线视频免费播放| 亚洲,欧美精品.| 精品国内亚洲2022精品成人| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕av在线有码专区| 久久人妻福利社区极品人妻图片| 天天一区二区日本电影三级| 母亲3免费完整高清在线观看| 女同久久另类99精品国产91| 两性夫妻黄色片| 99久久久亚洲精品蜜臀av| 美女 人体艺术 gogo| 色综合亚洲欧美另类图片| 欧美乱码精品一区二区三区| 给我免费播放毛片高清在线观看| 巨乳人妻的诱惑在线观看| 国产精品电影一区二区三区| 日本 欧美在线| av天堂在线播放| 欧美久久黑人一区二区| а√天堂www在线а√下载| 午夜视频精品福利| 国产精品永久免费网站| 久久中文字幕人妻熟女| 999精品在线视频| 欧美极品一区二区三区四区| 亚洲无线在线观看| 全区人妻精品视频| 99久久综合精品五月天人人| 国产亚洲欧美在线一区二区| 精品不卡国产一区二区三区| 国产成人欧美在线观看| 亚洲精品粉嫩美女一区| 久久国产精品影院| 久久精品国产99精品国产亚洲性色| 天堂√8在线中文| 国产精品一区二区精品视频观看| 99久久精品国产亚洲精品| 五月玫瑰六月丁香| 免费无遮挡裸体视频| 老司机午夜十八禁免费视频| 88av欧美| 成年版毛片免费区| 在线看三级毛片| 国产高清视频在线观看网站| 手机成人av网站| 99久久精品国产亚洲精品| 天堂动漫精品| 婷婷精品国产亚洲av| 国产区一区二久久| 床上黄色一级片| 在线观看免费视频日本深夜| 久久草成人影院| 色综合站精品国产| 久久精品91蜜桃| 99热这里只有精品一区 | 亚洲五月天丁香| 午夜福利18| 丁香六月欧美| 嫁个100分男人电影在线观看| 巨乳人妻的诱惑在线观看| 中文字幕av在线有码专区| 久久性视频一级片| 午夜a级毛片| 亚洲一区二区三区不卡视频| 欧美日韩一级在线毛片| 午夜免费观看网址| 在线十欧美十亚洲十日本专区|