• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    敵百蟲與敵敵畏的吸收光譜和發(fā)射光譜特征*

    2016-09-01 10:02:02李麗清程學(xué)禮趙燕云
    廣州化工 2016年10期
    關(guān)鍵詞:敵百蟲化工學(xué)院泰安

    李麗清,程學(xué)禮,趙燕云

    (泰山學(xué)院化學(xué)化工學(xué)院, 山東 泰安 271000)

    ?

    敵百蟲與敵敵畏的吸收光譜和發(fā)射光譜特征*

    李麗清,程學(xué)禮,趙燕云

    (泰山學(xué)院化學(xué)化工學(xué)院, 山東泰安271000)

    用G09程序包研究了敵百蟲和敵敵畏的吸收光譜及熒光/磷光光譜,并從分子軌道角度解釋了吸收光譜特征。含時密度泛函結(jié)果揭示了:① 水能夠明顯地增強敵百蟲和敵敵畏的吸收和發(fā)射光譜;②由于缺乏nπ*或ππ*躍遷,無論在水中還是在氣相中敵百蟲的吸收和發(fā)射光譜都很弱,因此需要引入印跡分子以改變其光譜特征;③ 敵敵畏的S0→S3躍遷產(chǎn)生了在184.38 nm處的最強吸收峰,被指認為從HOMO到LUMO的ππ*躍遷。

    敵百蟲;敵敵畏;熒光;發(fā)射光譜

    Dipterex and dichlorvos are the most commonly used organophosphorous pesticides. It is also a broad-spectrum insecticide with various action modes, short half lives, low dosage but high toxicity[1-10]. Although the agricultural use of most organochlorine pesticides has been diminishing gradually, significant levels of dipterex and dichlorvos are still in the environment due to their persistence[11]. However, the most serious issue is the abuse of dipterex and dichlorvos. Nowadays, dipterex and dichlorvos are still used widely in most rural and Western areas of China. As a result, pesticide residues attracted more and more attention[12-14], especially after the export of Chinese agricultural products has been influenced significantly since the Japanese Positive list system for Agricultural Chemical Residues in Foods was put in practice in 2006[15]. Therefore it is crucial to improve the ultrasensitive techniques to detect the residue levels of dipterex in agricultural products[16-18].

    The determination of ultra trace organophosphorus pesticides in farm produce is a great challenge. At present, multifarious spectroscopic techniques are still the most effective detecting methods, and are the staple for analyzing pesticide residues[19-21]. Due to its simplicity, low cost, high sensitivity and selectivity, chemiluminescence-based detection has become a quite useful detecting tool in flow injection, column liquid chromatographic and in capillary electrophoresis systems[22-23]. In the detection of trace amounts of dipterex and dichlorvos in agricultural products, it is essential to explore the absorption and fluorescence emission spectroscopic characters of dipterex and dichlorvos. We have reported a density functional theory (DFT) investigation on the spectroscopic characteristics and absorption spectra of dipterex and dichlorvos without considering any solvents[24]. In nature, dipterex and dichlorvos diffuse into surface water and groundwater at first before contaminating our environment, and most of the on-site detective operations about dipterex and dichlorvos will be implemented under aqueous solution, so the effect of water must be considered. At the present work, we will carry out further theoretical explorations into the absorption and fluorescence emission spectroscopic characters of dipterex and dichlorvos, which are very helpful to understand and interpret the available experimental data, and will provide new insights and theoretical bases on the detection of ultra trace dipterex and dichlorvos.

    1 Computational methods

    All calculations were performed with G09 program package at 6-31G(d,p) basis set level. First of all, we oriented the methyl, trichloromethyl and hydroxyl groups in dipterex and dichlorvos to optimize various geometries in gas phase at M062X/6-31G(d,p) level to search the most stable ground-state configurations. The reason we selected the M06-2X[25]hybrid exchange-correlation meta-GGA functionals is that this functional suite has good performance in main-group thermochemistry[26-27].Then the most stable ground states of dipterex and dichlorvos after re-optimization with the conductor-like screening model (CPCM)[28-29]were selected in this study to investigate the absorption and fluorescence emission spectroscopic characters. In other words, in combination with the CPCM solvation model to consider the effect of bulk water in aqueous solutions, the M06-2X functionals were employed to re-optimize the ground states, and to compute the absorption and emission spectra, while the configuration interaction single-excitation (CIS)[30-31]was utilized to locate the structural geometries of singlet and triplet excited states of dipterex and dichlorvos. We employed time-dependent M06-2X functionals to calculate the absorption and emission spectra because time-dependent density functional theory (TD-DFT) methods have been proved to be reliable[32]. In this study, the input parameters and settings were the default if not specified. The computational results will be compared with our previous work[24]without considering water as solvent.

    2 Results and discussion

    2.1Ground state structures

    Fig.1 Structural parameters and frontier orbitals (represented as 0.02e isosurfaces) of the most stable trichlorphon and dichlorvos obtained by full optimization with CPCM solvation model at M062X/6-31G (d,p) level(Bond lengths are in 10-1 nm and bond angles in degrees)

    The structural parameters as well as the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) of ground-state dipterex and dichlorvos are depicted in Fig.1. In comparison with our previous results[24], solvent water has minor influence on the optimized geometric configurations and frontier orbitals. Fig.1 shows that the formation of a hydrogen bonding between P=O and O-H stabilizes trichlorphon, and in the most stable structure the O-C-C-Cl dihedral angle is nearly 180 degrees. Compared with dipterex, dichlorvos has an apparent delocalized bond, and its LUMO and HOMO on the C=C double bond are of π*anti-bonding and π bonding characters, respectively.

    2.2Absorption spectra

    The predicted UV-Vis spectra of dipterex and dichlorvos in aqueous solution are illustrated in Fig.2 and Fig.3, wherein the spectra of natural dipterex and dichlorvos in gas phase are also listed. Their molar absorbance coefficients (ε) and oscillator strengths (f) in water are much higher than those in natural states. However, our simulations also reveal that water as solvent can not alter the shapes of frontier orbitals, but can strengthen the molar absorbance and make the absorption red-shifted. In this work, we will use the results and molecular orbitals obtained in water to discuss the absorption and emission mechanisms.

    Fig.2 Absorption spectra of trichlorphon in water and in gas phase in ultraviolet region 150-240 nm determined at TD-M062X/6-31G(d,p) level (The half-bandwidths were set as 3000 cm-1)

    Fig.3 Absorption spectra of dichlorvos in water and in gas phase in ultraviolet region 150-230 nm determined at TD-M062X/6-31G (d,p) level(The half-bandwidths were set as 3000 cm-1)

    The absorption spectra of dipterex in water and gas phase are very weak. Our calculations predicted that the S1absorption at 199.50 nm is very weak (f=0.0006), and the excitation from ground state (S0) to S2at 191.86 nm (f=0.0053) is vey close to the S0→S3excitation at 191.48 nm (f=0.0044), compared with those excitations in gas phase at 200.58 (f=0.0005), 192.42 (f=0.0038) and 192.32 nm (f=0.0029), respectively, as shown in Fig.2. The S0→S1excitation is assigned to the nσ*(C-Cl bonds) transition, but S0→S2and S0→S3excitations are designated as nσ*and σσ*transitions. The weak absorption spectra of dipterex may be attributed to the fact that there are no nπ*or ππ*transitions.

    Molecular orbitals involved in the lowest transitions of dichlorvos absorption spectra are illustrated in Fig.4, and their vertical transition energies (E), absorption wavelengths (λ), oscillator strengths (f) and transition state assignments are listed in Table 1. From Fig.4 and Table 1 it can be seen that, the first two singlet transitions are of πσ*characters, so they both have very low oscillator strengths. The strongest absorption peak at 184.38 nm is assigned to the S3state involving the ππ*transition from HOMO to LUMO. Compared with the results in gas phase[24], the wavelength of this absorption peak is only slightly blue-shifted, but the oscillator strength is increased significantly from 0.4827 to 0.6125.

    Fig.4 Excitation states and molecular orbitals depicted as 0.02e isosurface involved in the lowest transitions of dichlorvos absorption spectra at TD-M062X/6-31G(d,p) level

    TransitionstatesE/eVλ/nmfStateassignmentS1(HOMO→LUMO+1)6.0439205.140.0024πσ*(95.6%)S2(HOMO→LUMO+2)6.3029196.710.0007πσ*(85.9%)S3(HOMO→LUMO)6.7244184.380.6125ππ*(98.6%)

    2.3Emission spectra

    The CIS-optimized singlet and triplet excited states of dipterex and dichlorvos combined with CPCM solvation model are shown in Fig.5 and Fig.6. The theoretical calculation will predict the fluorescence and phosphorescence spectra in water and in gas phase. In theses excited states, a C-Cl bond is extended significantly and highly activated. In fact, dipterex and dichlorvos are almost destroyed. Due to the fact that the strongest absorption of dipterex is assigned to the S0→S3excitation, we optimized the singlet S1-S3and T1, T2triplet excited states to ascertain its emission spectra. We also located the T3excited state of dipterex, but from the molecular orbitals of emission spectra it can be seen that this state is a resonance structure of T2.

    Fig.5 Structural geometries of the excited states of dipterex optimized at CIS/6-31G(d,p) level in aqueous solutions

    Fig.6 Structural parameters of S1 and T1 states of dichlorvos optimized at CIS/6-31G(d,p) level in aqueous solutions

    Fig.7 Emission spectra of dipterex in gas phase (dashed lines) and in water (solid lines). The half-bandwidths were set as 3000 cm-1

    Based on the singlet and triplet geometries, the fluorescence and phosphorescence characters of dipterex and dichlorvos in gas phase and in water were calculated and compared, as illustrated in Fig.7 and Fig.8. The S1fluorescence of dipterex in water differs markedly with that in gas phase: the emission spectrum in gas phase is a broad band in the infrared region, while in water it is a sharp peak. Compared with the T1and T2emission spectra of dipterex in water, the peaks in gas phase is red-shifted distinctly, and the emission intensities are much lower.

    Fig.8 S1 and T1 emission spectra of dichlorvos in gas phase (dashed lines) and in water (solid lines)(The half-bandwidths were set as 3000 cm-1)

    The lowest-lying fluorescence and phosphorescence intensities of dichlorvos in water and in gas phase are much lower than the corresponding ones of dipterex. Fig.8 shows that the fluorescence spectrum of dichlorvos in gas phase is very weak, and differs distinctly from the spectrum in water.

    3 Conclusion

    The absorption and emission spectra of dipterex and dichlorvos in water were investigated systematically with TD-DFT method, and compared with those in gas phase. Water as solvent significantly enhances the absorption and fluorescence/phosphorescence intensities, and the peaks are red-shifted in comparison with those in gas phase. Moreover, the S1fluorescence spectra of dipterex and dichlorvos in water are different notably from those in gas phase. Our calculations predicted that the absorption of dipterex is relatively weak due to lack of nπ*or ππ*transitions, but its fluorescence and phosphorescence spectra are very strong. However, in contrast to dipterex, dichlorvos has strong absorption spectra but low emission spectra. The strongest absorption peak of dichlorvos at 184.38 nm is the S3excitation involving the ππ*transition from HOMO to LUMO.

    References

    [1]Mattson A M, Spillane J T, Pearce G W. Organophosphorous insecticides, dimethyl 2,2-dichlorovinyl phosphate (DDVP), organic phosphorus compound highly toxic to insects[J]. J. Agr. Food Chem, 1955, 3: 319-321.

    [2]Westlake W E. Pesticides. Anal. Chem, 1957, 29: 679-683.

    [3]Ishmael J, MacGregor J A, Manley A. Dichlorvos-a comprehensive review of 11 rodent carcinogenicity studies[J]. Regul. Toxicol. Pharm., 2006, 44: 238-248.

    [4]Guo J-X, Wu J J-Q, Wright J B, et al. Mechanistic insight into acetylcholinesterase inhibition and acute toxicity of organophosphorus compounds: a molecular modeling study[J]. Chem. Res. Toxicol., 2006, 19: 209-216.

    [5]Kim N, Park I-S, Kim D-K. High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor[J]. Biosens. Bioelectron., 2007, 22: 1593-1599.

    [6]Zhou S, Wang L, Li L, et al. Stereoisomeric separation and bioassay of a new organophosphorus compound, O,S-Dimethyl-N-(2,2,2-trichloro-1-methoxyethyl)phosphoramidothioate: some implications for chiral switch[J]. J. Agr. Food Chem., 2009, 57: 6920-6926.

    [7]Xu Z, Fang G, Wang S. Molecularly imprinted solid phase extraction coupled to high-performance liquid chromatography for determination of trace dichlorvos residues in vegetables[J]. Food Chem., 2010, 119: 845-850.

    [8]Meng L, Qiao X, Song J, et al. Study of an online molecularly imprinted solid phase extraction coupled to chemiluminescence sensor for the determination of trichlorfon in vegetables[J]. J. Agr. Food Chem., 2011, 59: 12745-12751.

    [9]Sch?fer R B, von der Ohe P C, Kühne R, Schüürmann G, Liess M. Occurrence and toxicity of 331 organic pollutants in large rivers of North Germany over a decade (1994 to 2004)[J]. Environ. Sci. Technol., 2011, 45: 6167-6174.

    [10]Shamsipur M, Sarkouhi M, Hassan J. Selective monitoring of organophosphorus pesticides by31P-NMR spectroscopy: application to purity assay of technical products and concentration determination of formulated samples[J]. Appl. Magn. Reson., 2012, 42: 227-237.

    [11]Sherma J, Zweig G. Pesticides. Anal. Chem., 1983, 55: 57R-70R.

    [12]Sch?ning M J, Krause R, Block K, et al. A dual amperometric/potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides[J]. Sensor. Actuat. B: Chem., 2003, 95: 291-296.

    [13]Cheng X, Zhang Z, Tian S. A novel long path length absorbance spectroscopy for the determination of ultra trace organophosphorus pesticides in vegetables and fruits[J]. Spectrochim. Acta A, 2007, 67: 1270-1275.

    [14]Zhang H-X, Wei R-B, Chen C-Z, et al. A novel fluorescent epoxy resin for organophosphate pesticide detection[J]. Chin. Chem. Lett., 2015, 26: 39-42.

    [15]Wang S, Wang Z, Zhang Y, et al. Pesticide residues in market foods in Shaanxi Province of China in 2010[J]. Food Chem., 2013, 138: 2016-2025.

    [16]Hall G L, Mourer C R, Shibamoto T, Fitzell D. Development and validation of an analytical method for naled and dichlorvos in air[J]. J. Agr. Food Chem., 1997, 45: 145-148.

    [17]Guan H, Zhang F, Yu J, et al. The novel acetylcholinesterase biosensors based on liposome bioreactors-chitosan nanocomposite film for detection of organophosphates pesticides[J]. Food Res. Int., 2012, 49: 15-21.

    [18]Yang L, Li H, Zeng F, et al. Determination of 49 organophosphorus pesticide residues and their metabolites in fish, egg, and milk by dual gas chromatography-dual pulse flame photometric detection with gel permeation chromatography cleanup[J]. J. Agr. Food Chem., 2012, 60: 1906-1913.

    [19]Feigenbrugel V, Loew C, Le Calvé S, et al. Near-UV molar absorptivities of acetone, alachlor, metolachlor, diazinon and dichlorvos in aqueous solution[J]. J. Photochem. Photobio. A, 2005,174: 76-81.

    [20]Xue L, Cai J, Li J, et al. Application of particle swarm optimization (PSO) algorithm to determine dichlorvos residue on the surface of navel orange with Vis-NIR spectroscopy[J]. Procedia Eng., 2012, 29: 4124-4128.

    [21]Guo X, Zhang X, Cai Q, et al. Developing a novel sensitive visual screening card for rapid detection of pesticide residues in food[J]. Food Control, 2013, 30: 15-23.

    [22]Noda I. Recent developments in two-dimensional (2D) correlation spectroscopy[J]. Chin. Chem. Lett., 2015, 26: 167-172.

    [23]Fang M, Lei F, Zhou J, et al. Rapid, simple and selective determination of 2,4-dinitrophenol by molecularly imprinted spin column extraction coupled with fluorescence detection[J]. Chin. Chem. Lett., 2014, 25: 1492-1494.

    [24]Li L-Q, Cheng X-L, Zhao Y-Y, et al. Density functional theory investigations on the spectroscopic characteristics and luminescent mechanisms of dipterex and dichlorvos[J]. Spectrosc. Spect. Anal., 2014, 34: 122-127.

    [25]Zhao Y, Truhlar D G. Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers[J]. J. Phys. Chem. A, 2006, 110: 5121-5129.

    [26]Zhao Y, Truhlar D. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor. Chem. Acc., 2008, 120: 215-241.

    [27]Hohenstein E G, Chill S T, Sherrill C D. Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules[J]. J. Chem. Theory Comput., 2008, 4: 1996-2000.

    [28]Cossi M, Scalmani G, Rega N, et al. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model[J]. J. Comp. Chem., 2003 24: 669-681.

    [29]Ho J, Coote M L. A universal approach for continuum solvent pKa calculations: are we there yet?[J]. Theor. Chem. Acc., 2010, 125: 3-21.

    [30]Foresman J B, Head-Gordon M, Pople J A et al. Toward a systematic molecular orbital theory for excited states[J]. J. Phys. Chem., 1992, 96: 135-149.

    [31]Zhang L, Li H, Chen X, et al. Absorption and fluorescence emission spectroscopic characters of size-expanded yDNA bases and effect of deoxyribose and base pairing[J]. J. Phys. Chem. B, 2009, 113: 1173-1181.

    [32]Liu H, Li G, Zhang L, et al. Electronic promotion effect of double proton transfer on conduction of DNA through improvement of transverse electronic communication of base pairs[J]. J. Chem. Phys., 2011, 135: 134315-134325.

    Absorption and Emission Spectroscopic Characters of Dipterex and Dichlorvos*

    LILi-qing,CHENGXue-li,ZHAOYan-yun

    (School of Chemistry and Chemical Engineering, Taishan University, Shandong Tai’an 271000, China)

    The absorption and fluorescence/phosphorescence spectra of dipterex and dichlorvos were explored with G09 program package, and the absorption characters were interpreted by molecular orbitals. The TD-DFT results revealed that water can observably strengthen the absorption and emission spectra of dipterex and dichlorvos. The absorption and emission spectra of dipterex in water and in gas phase were both very weak because there are no nπ*or ππ*transitions, so imprinted molecules should be introduced to alter its spectroscopic characters. The S0→S3excitation caused the strongest absorption of dichlorvos at 184.38 nm, which was assigned to the ππ*transition from HOMO to LUMO.

    dipterex; dichlorvos; fluorescence; emission spectra

    國家自然科學(xué)基金資助項目(11174215和21203084);山東省自然科學(xué)基金聯(lián)合專項(ZR2012BL03和ZR2012BL10);山東省高校科研發(fā)展計劃項目(J13LD05)。

    李麗清(1963-), 女,博士,教授。

    程學(xué)禮(1975-),男,博士,副教授。

    O611.3; TP183

    A

    1001-9677(2016)010-0052-05

    猜你喜歡
    敵百蟲化工學(xué)院泰安
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    敵百蟲連續(xù)化造粒工藝
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    幾種魚類用藥 注意事項
    泰安雜記
    文苑(2019年20期)2019-11-16 08:52:42
    阿根廷可能禁止敵敵畏和敵百蟲的使用
    食品與機械(2018年3期)2018-05-31 06:22:05
    Transform Yourself into a Butterfly
    《化工學(xué)報》贊助單位
    泰安無性系引種品種的紅茶適制性初步研究
    午夜福利乱码中文字幕| 90打野战视频偷拍视频| 国产精品免费视频内射| 男男h啪啪无遮挡| √禁漫天堂资源中文www| 日韩伦理黄色片| 精品福利永久在线观看| 黄色一级大片看看| h视频一区二区三区| 亚洲少妇的诱惑av| 国产精品一二三区在线看| av国产久精品久网站免费入址| 亚洲欧洲精品一区二区精品久久久 | 一级爰片在线观看| 久久久久国产精品人妻一区二区| 看免费av毛片| 男女高潮啪啪啪动态图| 久久久久视频综合| av福利片在线| 免费观看av网站的网址| 岛国毛片在线播放| 十八禁网站网址无遮挡| av视频免费观看在线观看| 欧美成人午夜免费资源| 人妻系列 视频| 黄色视频在线播放观看不卡| 欧美 亚洲 国产 日韩一| 男女高潮啪啪啪动态图| 日韩精品有码人妻一区| 成人黄色视频免费在线看| 亚洲av电影在线进入| 大香蕉久久网| 成年女人在线观看亚洲视频| 亚洲国产精品国产精品| 亚洲欧美一区二区三区国产| 欧美国产精品va在线观看不卡| 久久国产亚洲av麻豆专区| 校园人妻丝袜中文字幕| 亚洲欧洲日产国产| 亚洲av.av天堂| 女人精品久久久久毛片| 精品久久久久久电影网| 久久精品久久久久久噜噜老黄| 亚洲精品aⅴ在线观看| 男女下面插进去视频免费观看| 久久99一区二区三区| 高清黄色对白视频在线免费看| 精品国产乱码久久久久久男人| 国产av码专区亚洲av| 亚洲激情五月婷婷啪啪| 亚洲一区二区三区欧美精品| 久久人妻熟女aⅴ| 精品国产一区二区三区久久久樱花| 色94色欧美一区二区| 国产免费现黄频在线看| 久久久国产精品麻豆| 国产精品一区二区在线观看99| 国产一区二区激情短视频 | 久久鲁丝午夜福利片| 日本黄色日本黄色录像| 久久久久精品人妻al黑| 精品酒店卫生间| 五月开心婷婷网| 国产精品av久久久久免费| 亚洲av电影在线进入| 天堂中文最新版在线下载| 狠狠婷婷综合久久久久久88av| 亚洲第一区二区三区不卡| 18在线观看网站| 哪个播放器可以免费观看大片| 欧美日韩精品成人综合77777| 色婷婷av一区二区三区视频| 亚洲内射少妇av| 国产精品一区二区在线不卡| 中文字幕av电影在线播放| 免费观看无遮挡的男女| 男男h啪啪无遮挡| 国产在视频线精品| 欧美国产精品va在线观看不卡| 色婷婷久久久亚洲欧美| 午夜激情av网站| 另类精品久久| 自线自在国产av| 国产亚洲av片在线观看秒播厂| 亚洲欧美色中文字幕在线| 久热这里只有精品99| 80岁老熟妇乱子伦牲交| 久热这里只有精品99| 宅男免费午夜| 国产一区二区激情短视频 | 亚洲激情五月婷婷啪啪| 观看av在线不卡| 亚洲一级一片aⅴ在线观看| 精品一区在线观看国产| 亚洲av电影在线观看一区二区三区| 免费观看无遮挡的男女| 亚洲精品国产av成人精品| 中文字幕精品免费在线观看视频| a 毛片基地| 亚洲精品在线美女| 18禁观看日本| 天天影视国产精品| 美女中出高潮动态图| kizo精华| 国产伦理片在线播放av一区| 亚洲国产精品999| 国产探花极品一区二区| 午夜福利,免费看| 日韩,欧美,国产一区二区三区| 国产精品一区二区在线观看99| 亚洲第一区二区三区不卡| 99国产综合亚洲精品| 久久99一区二区三区| 中文天堂在线官网| 欧美日韩视频精品一区| 成人国语在线视频| 成人国语在线视频| 一级毛片电影观看| 亚洲av电影在线观看一区二区三区| 日韩成人av中文字幕在线观看| 精品卡一卡二卡四卡免费| www日本在线高清视频| 午夜激情av网站| 在线免费观看不下载黄p国产| 香蕉精品网在线| 日韩一卡2卡3卡4卡2021年| 国产成人精品无人区| 亚洲欧美一区二区三区黑人 | 国产免费一区二区三区四区乱码| 久久97久久精品| 丰满少妇做爰视频| www日本在线高清视频| 久久久久久免费高清国产稀缺| 久久久久久人妻| 国产一区有黄有色的免费视频| 亚洲欧美成人精品一区二区| 日韩在线高清观看一区二区三区| 成年人免费黄色播放视频| 国产免费现黄频在线看| 亚洲精品乱久久久久久| 久久精品亚洲av国产电影网| 这个男人来自地球电影免费观看 | 成人毛片a级毛片在线播放| 日本av免费视频播放| 亚洲国产av新网站| 国产精品一区二区在线不卡| 好男人视频免费观看在线| 99久国产av精品国产电影| 丰满饥渴人妻一区二区三| 97在线人人人人妻| 蜜桃在线观看..| 精品国产露脸久久av麻豆| 一区二区三区精品91| 亚洲色图 男人天堂 中文字幕| 免费不卡的大黄色大毛片视频在线观看| 久久热在线av| 亚洲欧美清纯卡通| 亚洲欧美精品综合一区二区三区 | 伦精品一区二区三区| 精品国产一区二区三区久久久樱花| 街头女战士在线观看网站| 亚洲av福利一区| 久久99热这里只频精品6学生| 亚洲精品日本国产第一区| 飞空精品影院首页| 人妻 亚洲 视频| av有码第一页| freevideosex欧美| 少妇人妻 视频| 搡老乐熟女国产| 亚洲欧美清纯卡通| 婷婷成人精品国产| 新久久久久国产一级毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本-黄色视频高清免费观看| 欧美亚洲 丝袜 人妻 在线| 欧美日韩精品成人综合77777| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人爽av亚洲精品天堂| av不卡在线播放| 三上悠亚av全集在线观看| 少妇的逼水好多| 免费观看av网站的网址| 观看av在线不卡| 一级毛片电影观看| 亚洲欧美清纯卡通| 国产精品久久久久久精品古装| 男女午夜视频在线观看| 国产午夜精品一二区理论片| 国产熟女欧美一区二区| 免费观看a级毛片全部| 一边亲一边摸免费视频| 黄片播放在线免费| www日本在线高清视频| 欧美成人午夜免费资源| 日韩欧美一区视频在线观看| 岛国毛片在线播放| 亚洲精品,欧美精品| 日韩中文字幕视频在线看片| 啦啦啦视频在线资源免费观看| 日韩 亚洲 欧美在线| 自线自在国产av| 另类亚洲欧美激情| 一级毛片黄色毛片免费观看视频| 一区二区三区精品91| 成年女人毛片免费观看观看9 | 色吧在线观看| 夫妻午夜视频| 精品国产国语对白av| 国产一级毛片在线| 秋霞伦理黄片| 亚洲成av片中文字幕在线观看 | 日韩不卡一区二区三区视频在线| 精品久久蜜臀av无| 91精品国产国语对白视频| 国产片特级美女逼逼视频| 久久久久久人妻| 免费在线观看完整版高清| 中文字幕另类日韩欧美亚洲嫩草| 成人手机av| 美女国产视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 欧美人与善性xxx| 你懂的网址亚洲精品在线观看| 两个人免费观看高清视频| 亚洲精品在线美女| 少妇的逼水好多| 亚洲欧美精品自产自拍| 人人妻人人澡人人看| 97在线视频观看| 春色校园在线视频观看| 黄色 视频免费看| 人妻 亚洲 视频| 日本免费在线观看一区| 久久久精品国产亚洲av高清涩受| 亚洲国产精品一区三区| 99九九在线精品视频| 亚洲国产成人一精品久久久| 国产午夜精品一二区理论片| 亚洲欧美精品自产自拍| 少妇的丰满在线观看| 一级毛片我不卡| 国产欧美日韩一区二区三区在线| 少妇被粗大的猛进出69影院| 最近最新中文字幕大全免费视频 | 97在线人人人人妻| 在线精品无人区一区二区三| 伊人亚洲综合成人网| 自拍欧美九色日韩亚洲蝌蚪91| 男男h啪啪无遮挡| 性色av一级| 亚洲欧美成人精品一区二区| 91午夜精品亚洲一区二区三区| 色哟哟·www| 国产在视频线精品| 国产精品久久久久久久久免| 国产精品国产av在线观看| 中文字幕人妻丝袜制服| 视频区图区小说| 91久久精品国产一区二区三区| 亚洲欧美中文字幕日韩二区| 国产淫语在线视频| 亚洲欧美一区二区三区黑人 | 香蕉精品网在线| 高清视频免费观看一区二区| 最新的欧美精品一区二区| 亚洲精品国产色婷婷电影| 九色亚洲精品在线播放| 一级爰片在线观看| 国产av码专区亚洲av| 99热网站在线观看| 国产成人av激情在线播放| 久久久精品区二区三区| 国产午夜精品一二区理论片| 一级片免费观看大全| 欧美另类一区| 国产精品免费视频内射| 高清视频免费观看一区二区| 亚洲美女视频黄频| 亚洲,一卡二卡三卡| av不卡在线播放| 一二三四在线观看免费中文在| 精品卡一卡二卡四卡免费| 男人操女人黄网站| 精品亚洲成a人片在线观看| 日韩中文字幕视频在线看片| 热99久久久久精品小说推荐| 99精国产麻豆久久婷婷| 99热国产这里只有精品6| 我的亚洲天堂| 一区二区三区激情视频| 久久av网站| 久久99精品国语久久久| 国产视频首页在线观看| 免费黄色在线免费观看| 热99久久久久精品小说推荐| 18在线观看网站| 美女xxoo啪啪120秒动态图| 最近的中文字幕免费完整| 国产又色又爽无遮挡免| a级毛片在线看网站| 亚洲精品国产一区二区精华液| 曰老女人黄片| 免费少妇av软件| 欧美精品人与动牲交sv欧美| 激情五月婷婷亚洲| 亚洲一区中文字幕在线| 国产日韩欧美在线精品| 国产成人精品久久久久久| 亚洲国产欧美在线一区| 女性被躁到高潮视频| 亚洲国产看品久久| freevideosex欧美| 在线观看美女被高潮喷水网站| 国产精品一二三区在线看| 亚洲在久久综合| 少妇人妻久久综合中文| 久久国内精品自在自线图片| 久久久久久久亚洲中文字幕| 黑丝袜美女国产一区| 可以免费在线观看a视频的电影网站 | 日本免费在线观看一区| 亚洲成国产人片在线观看| 国产精品嫩草影院av在线观看| 亚洲三级黄色毛片| av网站免费在线观看视频| 国产精品 欧美亚洲| 建设人人有责人人尽责人人享有的| 成年女人在线观看亚洲视频| 国产精品av久久久久免费| 大码成人一级视频| 亚洲欧美精品综合一区二区三区 | 女人被躁到高潮嗷嗷叫费观| h视频一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 七月丁香在线播放| 99久国产av精品国产电影| 美女中出高潮动态图| 麻豆av在线久日| 在线观看美女被高潮喷水网站| 晚上一个人看的免费电影| 久久鲁丝午夜福利片| 美女国产视频在线观看| 欧美国产精品va在线观看不卡| 日韩视频在线欧美| 国产成人精品久久二区二区91 | 在线天堂最新版资源| 免费不卡的大黄色大毛片视频在线观看| 老司机亚洲免费影院| 午夜福利一区二区在线看| 亚洲精品视频女| 我的亚洲天堂| 久久久久久久大尺度免费视频| 99精国产麻豆久久婷婷| 男女边吃奶边做爰视频| 精品少妇一区二区三区视频日本电影 | 亚洲综合色网址| 亚洲欧美日韩另类电影网站| 99re6热这里在线精品视频| 日本wwww免费看| 久久久久国产精品人妻一区二区| 成人亚洲精品一区在线观看| 两性夫妻黄色片| 一二三四中文在线观看免费高清| 韩国精品一区二区三区| 寂寞人妻少妇视频99o| 综合色丁香网| 亚洲美女搞黄在线观看| 成年美女黄网站色视频大全免费| 国产成人一区二区在线| 精品国产乱码久久久久久小说| 亚洲国产最新在线播放| 巨乳人妻的诱惑在线观看| 免费人妻精品一区二区三区视频| 免费观看性生交大片5| 欧美成人午夜免费资源| 一级毛片黄色毛片免费观看视频| 国产精品欧美亚洲77777| 国产一级毛片在线| 亚洲一码二码三码区别大吗| 国产人伦9x9x在线观看 | 香蕉国产在线看| 国产精品久久久久久av不卡| 亚洲国产看品久久| 久久99蜜桃精品久久| 天天躁日日躁夜夜躁夜夜| 国产日韩欧美在线精品| 亚洲av中文av极速乱| 卡戴珊不雅视频在线播放| 国产午夜精品一二区理论片| 只有这里有精品99| 性色avwww在线观看| 久久毛片免费看一区二区三区| 男人操女人黄网站| 中文字幕精品免费在线观看视频| 欧美激情 高清一区二区三区| 免费播放大片免费观看视频在线观看| 热99国产精品久久久久久7| 亚洲,欧美,日韩| 成人国产av品久久久| 日本黄色日本黄色录像| 国产国语露脸激情在线看| 丝袜脚勾引网站| 精品人妻熟女毛片av久久网站| 国产精品人妻久久久影院| 国产黄色视频一区二区在线观看| 美女高潮到喷水免费观看| 日韩大片免费观看网站| 天堂俺去俺来也www色官网| 美女脱内裤让男人舔精品视频| 91久久精品国产一区二区三区| 久久久久久人妻| 亚洲精品aⅴ在线观看| 卡戴珊不雅视频在线播放| 亚洲国产看品久久| 一区在线观看完整版| 午夜福利影视在线免费观看| 午夜福利一区二区在线看| 久久99蜜桃精品久久| 精品久久久精品久久久| 成人午夜精彩视频在线观看| 精品国产一区二区久久| 国产黄色视频一区二区在线观看| 国产精品.久久久| 国产精品免费视频内射| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人爽人人夜夜| 国产精品人妻久久久影院| 女的被弄到高潮叫床怎么办| 成人毛片60女人毛片免费| 国产1区2区3区精品| 考比视频在线观看| 日韩大片免费观看网站| 蜜桃国产av成人99| 人体艺术视频欧美日本| 国产成人av激情在线播放| 国产又爽黄色视频| 精品国产乱码久久久久久小说| 久久久久精品性色| 国产一区二区激情短视频 | 中国国产av一级| 天天躁夜夜躁狠狠躁躁| 欧美精品人与动牲交sv欧美| 色播在线永久视频| 亚洲精华国产精华液的使用体验| 精品久久久久久电影网| 久久人人爽人人片av| 亚洲人成77777在线视频| av一本久久久久| 天美传媒精品一区二区| 精品亚洲成国产av| 超色免费av| www日本在线高清视频| 国产一区二区三区综合在线观看| 欧美少妇被猛烈插入视频| 亚洲伊人色综图| 黄片无遮挡物在线观看| av电影中文网址| 国产成人一区二区在线| 大码成人一级视频| 老熟女久久久| 国产黄频视频在线观看| 色婷婷久久久亚洲欧美| 国产白丝娇喘喷水9色精品| 精品第一国产精品| 精品国产一区二区三区四区第35| 国产欧美日韩综合在线一区二区| a 毛片基地| 欧美最新免费一区二区三区| 高清不卡的av网站| 免费在线观看完整版高清| 精品一区在线观看国产| 久久久精品免费免费高清| 一级片'在线观看视频| 亚洲国产精品国产精品| 看非洲黑人一级黄片| 国产亚洲一区二区精品| 国产女主播在线喷水免费视频网站| 精品卡一卡二卡四卡免费| 性高湖久久久久久久久免费观看| 我的亚洲天堂| 国产精品不卡视频一区二区| 亚洲精品国产一区二区精华液| 久久久国产欧美日韩av| 亚洲av成人精品一二三区| 日韩中文字幕欧美一区二区 | 国产精品一二三区在线看| 国产成人精品久久久久久| 日日摸夜夜添夜夜爱| 亚洲精品美女久久久久99蜜臀 | 在线观看免费视频网站a站| 亚洲国产av影院在线观看| 激情视频va一区二区三区| 午夜福利网站1000一区二区三区| 午夜老司机福利剧场| 久久久国产精品麻豆| 天美传媒精品一区二区| 18禁国产床啪视频网站| 久久久精品94久久精品| 精品视频人人做人人爽| 中文字幕色久视频| 亚洲少妇的诱惑av| 精品久久久久久电影网| 在线亚洲精品国产二区图片欧美| 久久99蜜桃精品久久| 少妇人妻精品综合一区二区| 亚洲av欧美aⅴ国产| 精品久久久精品久久久| 免费大片黄手机在线观看| 丰满乱子伦码专区| 一区福利在线观看| 成年女人毛片免费观看观看9 | 下体分泌物呈黄色| 亚洲人成77777在线视频| 啦啦啦在线免费观看视频4| 亚洲精品美女久久久久99蜜臀 | 国产av码专区亚洲av| 久久精品国产综合久久久| 日韩熟女老妇一区二区性免费视频| 国产日韩一区二区三区精品不卡| 精品人妻在线不人妻| 日本猛色少妇xxxxx猛交久久| 免费少妇av软件| 菩萨蛮人人尽说江南好唐韦庄| 欧美 日韩 精品 国产| av免费观看日本| 久久久久久人人人人人| 91aial.com中文字幕在线观看| 妹子高潮喷水视频| 在线观看免费日韩欧美大片| 欧美精品亚洲一区二区| 边亲边吃奶的免费视频| 亚洲国产精品成人久久小说| 中文字幕人妻丝袜制服| 一本久久精品| 肉色欧美久久久久久久蜜桃| 少妇猛男粗大的猛烈进出视频| 在线天堂中文资源库| 校园人妻丝袜中文字幕| 亚洲精品美女久久久久99蜜臀 | 99re6热这里在线精品视频| 中国国产av一级| 尾随美女入室| 精品第一国产精品| 亚洲视频免费观看视频| 精品一区在线观看国产| 日韩欧美一区视频在线观看| 国产精品 欧美亚洲| 久久婷婷青草| 久久久精品94久久精品| 久久狼人影院| 欧美中文综合在线视频| 青春草视频在线免费观看| 午夜久久久在线观看| 国产精品香港三级国产av潘金莲 | 国产毛片在线视频| 多毛熟女@视频| 国产淫语在线视频| 欧美日韩亚洲国产一区二区在线观看 | 啦啦啦在线免费观看视频4| 久久精品国产亚洲av涩爱| 久久久久久久久免费视频了| 亚洲成av片中文字幕在线观看 | 欧美日韩精品网址| 亚洲av欧美aⅴ国产| 欧美精品亚洲一区二区| 日韩av不卡免费在线播放| 国产乱来视频区| 欧美亚洲 丝袜 人妻 在线| 婷婷成人精品国产| 哪个播放器可以免费观看大片| 久久久久久久国产电影| 婷婷色综合大香蕉| 久久久久久久大尺度免费视频| 欧美人与性动交α欧美精品济南到 | 侵犯人妻中文字幕一二三四区| 免费人妻精品一区二区三区视频| 人妻系列 视频| 男人操女人黄网站| 美女视频免费永久观看网站| 日产精品乱码卡一卡2卡三| 丰满饥渴人妻一区二区三| 超色免费av| 欧美成人精品欧美一级黄| 99香蕉大伊视频| 欧美日韩亚洲高清精品| 少妇人妻 视频| 国产乱人偷精品视频| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区蜜桃| 日韩制服骚丝袜av| 欧美av亚洲av综合av国产av | www.熟女人妻精品国产| 另类亚洲欧美激情| 国产日韩一区二区三区精品不卡| 十八禁网站网址无遮挡| 国精品久久久久久国模美| 90打野战视频偷拍视频| videossex国产| 国产成人精品无人区| 韩国av在线不卡| av在线观看视频网站免费| 女人被躁到高潮嗷嗷叫费观| 国产国语露脸激情在线看| 一个人免费看片子| 高清av免费在线| 一区福利在线观看| 91久久精品国产一区二区三区| 国产不卡av网站在线观看| 久久久久久人人人人人| 精品一区二区免费观看| 欧美精品高潮呻吟av久久| 精品久久蜜臀av无| 一区福利在线观看| 在线观看国产h片|