丁奠元, 馮 浩,3*, 趙 英, 杜 璇
(1西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院, 陜西楊凌 712100; 2西北農(nóng)林科技大學(xué)中國(guó)旱區(qū)節(jié)水農(nóng)業(yè)研究院, 陜西楊凌712100; 3中國(guó)科學(xué)院水利部水土保持研究所, 陜西楊凌 712100; 4西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院, 陜西楊凌 712100)
?
氨化秸稈還田對(duì)土壤孔隙結(jié)構(gòu)的影響
丁奠元1,2, 馮 浩1,2,3*, 趙 英2,4, 杜 璇1,2
(1西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院, 陜西楊凌 712100; 2西北農(nóng)林科技大學(xué)中國(guó)旱區(qū)節(jié)水農(nóng)業(yè)研究院, 陜西楊凌712100; 3中國(guó)科學(xué)院水利部水土保持研究所, 陜西楊凌 712100; 4西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院, 陜西楊凌 712100)
【目的】土壤孔隙性質(zhì)是土壤結(jié)構(gòu)性的反映,直接影響著土壤的肥力和水分有效性。定量研究氨化秸稈還田對(duì)土壤不同大小等級(jí)孔隙數(shù)量和孔隙分布的影響,可以為土壤培肥提供科學(xué)依據(jù)?!痉椒ā坎捎檬覂?nèi)試驗(yàn)方法,設(shè)置氨化秸稈加入量為土壤總質(zhì)量的 0(CK)、 0.384%(S1)、 0.575%(S2)、 0.767%(S3)4個(gè)處理,室內(nèi)培養(yǎng)。在培養(yǎng)0、60、120和180 d,取樣測(cè)定土壤水分特征曲線(SWRC)數(shù)據(jù),利用雙指數(shù)土壤水分特征曲線模型(DE模型,Double-exponential water retention equation),分析氨化秸稈對(duì)土壤剩余孔隙、基質(zhì)孔隙和結(jié)構(gòu)孔隙的影響; 基于DE模型的微分函數(shù),探究不同氨化秸稈處理對(duì)土壤孔隙分布的影響?!窘Y(jié)果】不同處理的土壤水分特征曲線SWRC實(shí)測(cè)值和DE模型模擬值之間的均方根誤差介于0.0036和0.0041 cm3/cm3之間,R2介于0.998和0.999之間,土壤含水量模擬值和實(shí)測(cè)值非常接近1 ∶1,表明DE模型可以準(zhǔn)確反映添加氨化秸稈后土壤含水量隨吸力的變化規(guī)律,較準(zhǔn)確地估算土壤不同大小等級(jí)孔隙數(shù)量變化。培養(yǎng)120 d內(nèi),氨化秸稈對(duì)土壤剩余孔隙、基質(zhì)孔隙和結(jié)構(gòu)孔隙影響不顯著; 培養(yǎng)180 d時(shí),各處理土壤結(jié)構(gòu)孔隙度表現(xiàn)出隨著氨化秸稈添加量的增加而增加的趨勢(shì); 此時(shí)S3對(duì)土壤剩余孔隙影響不顯著,顯著減小了土壤的基質(zhì)孔隙度(P<0.05),極顯著地增加了土壤的結(jié)構(gòu)孔隙度(P<0.01)。在孔隙分布中,氨化秸稈促進(jìn)了土壤已有孔隙向較大孔隙的發(fā)育,顯著增加了土壤結(jié)構(gòu)孔隙分布數(shù)量; 隨著氨化秸稈添加量的增加,土壤結(jié)構(gòu)孔隙的分布數(shù)量越大,且峰值出現(xiàn)的越早。氨化秸稈增加了土壤中有機(jī)質(zhì)含量; 土壤結(jié)構(gòu)孔隙和總孔隙均與有機(jī)質(zhì)含量呈顯著的正相關(guān)關(guān)系(P<0.05); 有機(jī)質(zhì)可以黏結(jié)團(tuán)聚土壤的礦物顆粒,有效地促進(jìn)了土壤結(jié)構(gòu)孔隙的發(fā)育; 氨化秸稈對(duì)土壤孔隙的影響隨著時(shí)間的進(jìn)行越來越明顯。【結(jié)論】氨化秸稈增加了土壤中有機(jī)質(zhì)含量,促進(jìn)了土壤孔隙結(jié)構(gòu)的發(fā)育,增加了土壤的結(jié)構(gòu)孔隙度和總孔隙度,這對(duì)改良和培肥土壤、改善土壤耕性具有重要意義。
氨化秸稈; 土壤孔隙; 土壤孔隙分布; 結(jié)構(gòu)孔隙; 基質(zhì)孔隙
農(nóng)作物秸稈是農(nóng)業(yè)生產(chǎn)中的主要廢棄物之一,資源豐富,含有豐富的氮、磷、鉀和微量元素成分。秸稈直接還田有利于提高土壤肥力[1-2],改善土壤理化性狀[3-5],提高作物產(chǎn)量[6-7]。但是直接還田的秸稈分解緩慢,其肥效發(fā)揮作用也慢,容易誘發(fā)病蟲害,并且產(chǎn)生與作物爭(zhēng)氮的問題[8-9]。秸稈氨化技術(shù)可以有效地降低秸稈的C/N,降低秸稈中的纖維素和半纖維素含量[10],加快秸稈的腐解速度[11-12],是一種能夠充分發(fā)揮秸稈改良土壤結(jié)構(gòu)與土壤水分性狀的綜合措施[13]。對(duì)于氨化秸稈還田,前人的研究多集中在氨化秸稈處理對(duì)土壤的水力學(xué)特性[13-14]、養(yǎng)分保持特性[15]、團(tuán)聚體特性[16-17]以及農(nóng)田土壤水分變化特征[18]的影響上,對(duì)于氨化秸稈如何影響土壤孔隙結(jié)構(gòu)、改變土壤的孔隙分布的研究鮮有報(bào)道。然而土壤孔隙性質(zhì)作為土壤其它性質(zhì)的基礎(chǔ),反映了土壤結(jié)構(gòu)性,直接影響了土壤的肥力和水分狀況[19]。鑒于以上研究現(xiàn)狀,為了深入研究氨化秸稈對(duì)土壤孔隙性質(zhì)影響,筆者通過室內(nèi)試驗(yàn),基于雙指數(shù)土壤水分特征曲線模型[20](DE, the double-exponential water retention equation),探究不同用量氨化秸稈在不同培養(yǎng)時(shí)間內(nèi)對(duì)土壤孔隙結(jié)構(gòu)及其分布的影響,以期為氨化秸稈改良農(nóng)田土壤孔隙性質(zhì)提供理論依據(jù)。
1.1試驗(yàn)材料
試驗(yàn)在西北農(nóng)林科技大學(xué)中國(guó)旱區(qū)節(jié)水農(nóng)業(yè)研究院進(jìn)行,供試土壤源自陜西三原西張示范田20—40 cm 土層土壤,平均容重為1.30 g/cm3,風(fēng)干碾碎后,過2 mm篩備用。土壤中有機(jī)質(zhì)為25.9 g/kg、堿解氮92.7 mg/kg、有效磷(P2O5) 59.9 mg/kg、速效鉀(K2O) 523.9 mg/kg,供試土壤屬于高等肥力塿土,質(zhì)地為粉砂壤土,其中砂粒(20.05 mm)7.47%、粉粒(0.050.002 mm)85.97%、黏粒(<0.002 mm)6.56%。
本試驗(yàn)以前茬小麥秸稈為主要原料(小麥秸稈的C/N 為85.06),首先將秸稈粉碎成粉末,為保證材料的一致性,將粉末狀秸稈過 1 mm 篩備用; 將5%的尿素溶液均勻噴灑在秸稈上,攪拌均勻后,放入密閉容器內(nèi),將密閉容器放入恒溫人工氣候箱內(nèi),溫度控制在40℃±2℃,培養(yǎng)48 h后取出,進(jìn)行試驗(yàn),此時(shí)氨化后秸稈的C/N 為35.6。
1.2試驗(yàn)設(shè)計(jì)與測(cè)定項(xiàng)目
試驗(yàn)設(shè)置4個(gè)處理,其中以不添加氨化秸稈為對(duì)照處理(CK),其余氨化秸稈處理分別為秸稈還田總量的 50%(S1)、75%(S2)、100% (S3),即各處理加入氨化秸稈量(濕重)分別占土壤總質(zhì)量的 0%、0.384%、0.575%、0.767%。
裝土容器采用直徑10 cm、 高35 cm的PVC管,裝土高度為30 cm。為保證各處理土壤與氨化秸稈充分完全混合,每6 cm為一層計(jì)算土壤質(zhì)量(共5層),每層土壤分別與對(duì)應(yīng)質(zhì)量的氨化秸稈充分?jǐn)嚢杌旌希謱犹钛b到PVC管中。通過搗錘控制土壤的緊實(shí)度,控制其容重為1.3 g/cm3。裝土之前PVC管底部用細(xì)紗布封閉,管內(nèi)均勻涂抹薄層凡士林,管底部放一層濾紙,并且每次裝土前必須保證下層土壤表面打毛。
各處理土柱吸水至飽和后,放入恒溫人工氣候箱里進(jìn)行培養(yǎng)(氣候箱底座放有塑料薄膜,防止土柱水分流出)。為了模擬夏玉米季節(jié)的高溫多雨的生長(zhǎng)環(huán)境,培養(yǎng)箱溫度設(shè)置為35℃±2℃,相對(duì)濕度為70%。
培養(yǎng)過程中依據(jù)CK處理的含水量變化控制灌水,每天定時(shí)對(duì)CK處理土柱稱重,當(dāng)其含水量低于80%田間持水量(060 d為28.8%,60120 d為20.8%,120180 d為17.4%),對(duì)所有土柱進(jìn)行灌水,將土柱吸水飽和后繼續(xù)放入恒溫人工氣候箱里繼續(xù)進(jìn)行培養(yǎng)。每個(gè)處理設(shè)12個(gè)重復(fù),共48個(gè)土柱,試驗(yàn)歷時(shí)6個(gè)月。
在培養(yǎng)0、60、120和180 d時(shí),每個(gè)處理分別取出3個(gè)土柱,用環(huán)刀法從土柱取土(取土深度510 cm),用離心機(jī)(HITACHI himac CR21GII)測(cè)定土壤水分特征曲線(20、30、50、100、300、500、700、1000、1200和1500 kPa); 與此同時(shí),測(cè)定土壤容重,并利用土壤密度推求土壤總孔隙度。
1.3數(shù)據(jù)分析方法
根據(jù)土壤孔隙的性質(zhì)和大小,土壤孔隙從小到大依次可以分為剩余孔隙(residual pore)、基質(zhì)孔隙(matrix pore),結(jié)構(gòu)孔隙(structural pore)和大孔隙(macro-pore)[20-21]。剩余孔隙為土壤中極微小的孔隙,基質(zhì)孔隙為土壤礦物顆粒之間的孔隙,結(jié)構(gòu)孔隙為土壤微、小團(tuán)聚之間的孔隙[20]。根據(jù)以上孔隙分類,Dexter等[20]提出雙指數(shù)土壤水分特征曲線模型(DE模型),表達(dá)式如下:
(1)
式中,θ為土壤體積含水量(cm3/cm3);C、A1和A2分別表示土壤的剩余孔隙度(%)、基質(zhì)孔隙度(%)和結(jié)構(gòu)孔隙度(%, 此處包括大孔隙);h1和h2分別為A1和A2排空水時(shí)對(duì)應(yīng)的土壤吸力(hPa);e為自然常數(shù)。DE模型作為一個(gè)能夠反映土壤不同等級(jí)孔隙數(shù)量的土壤水分特征曲線(SWRC)模型,已經(jīng)得到較廣泛的應(yīng)用研究[22-24]。
假設(shè)土壤在失水過程是從大孔隙到小孔隙依次進(jìn)行,且在土壤中水的接觸角為0°??紫兜奈(hPa)和孔隙半徑r(cm)存在以下關(guān)系[25-26]:
(2)
式(2)表明,土壤孔隙的半徑跟吸力成反比例關(guān)系,即較小吸力對(duì)應(yīng)土壤較大孔隙,較大吸力對(duì)應(yīng)土壤較小孔隙。SWRC 的微分函數(shù)與土壤的孔隙分布密切相關(guān)[27],SWRC可以表示土壤孔隙數(shù)量的累積量與土壤孔隙吸力之間的關(guān)系。根據(jù)這種關(guān)系,SWRC的微分函數(shù)就可以表示土壤孔隙數(shù)量分布與土壤孔隙吸力之間的關(guān)系。通過式(2)換算,SWRC的微分函數(shù)可以反應(yīng)土壤不同大小孔隙的數(shù)量分布情況。
DE模型的微分函數(shù)為:
(3)
通過單峰或者雙峰曲線,DE模型的微分函數(shù)可以較好反應(yīng)土壤孔隙分布的變化特征[20]。本研究基于Origin? 8.0(OriginLab Corporation, Northampton, MA, U.S.A.)利用DE模型對(duì)實(shí)測(cè)的不同氨化秸稈處理的SWRC進(jìn)行擬合,驗(yàn)證DE模型對(duì)土壤SWRC模擬效果; 并在此基礎(chǔ)上估算、對(duì)比氨化秸稈對(duì)土壤剩余孔隙度、基質(zhì)孔隙度和結(jié)構(gòu)孔隙度的影響; 將DE模型的參數(shù)代入式(3)中,探究不同氨化秸稈處理對(duì)土壤孔隙分布的影響。
試驗(yàn)中采用Excel 2010、SPSS 15.0和SigmaPlot 10.0分別對(duì)數(shù)據(jù)進(jìn)行處理、分析和作圖。
2.1DE模型的驗(yàn)證
前人對(duì)DE模型SWRC的模擬效果已經(jīng)進(jìn)行了大量的驗(yàn)證[22-24],土壤施加氨化秸稈后,DE模型依然能夠較好地模擬土壤SWRC(圖1),不同處理的SWRC的實(shí)測(cè)值和DE模型模擬值之間的均方根誤差介于0.0036和0.0041 cm3/cm3之間,R2介于0.998和0.999之間,土壤含水量的模擬值和實(shí)測(cè)值非常接近1 ∶1的線(圖2),這表明DE模型不僅可以準(zhǔn)確地反映添加氨化秸稈后土壤含水量隨吸力的變化規(guī)律,還可以較準(zhǔn)確地估算土壤不同大小等級(jí)孔隙數(shù)量變化。
2.2氨化秸稈對(duì)土壤不同大小等級(jí)孔隙數(shù)量的影響
土壤的剩余孔隙在培養(yǎng)開始(0 d)時(shí),各處理差異很小(圖3 a),S2和S3處理的剩余孔隙度略大于CK和S1處理; 培養(yǎng)60 d時(shí),與培養(yǎng)0 d相比,各處理剩余孔隙度均增大,其中CK達(dá)到顯著性差異(P<0.05),此時(shí)S1的值最小,其它處理相差很小; 培養(yǎng)120 d的剩余孔隙度和培養(yǎng)60 d的相差不大,剩余孔隙度總體上表現(xiàn)出隨著氨化秸稈添加量的增多而減小的趨勢(shì); 培養(yǎng)180 d時(shí),與培養(yǎng)120 d時(shí)相比,CK處理的剩余孔隙變化不大,而S1、S2和S3處理的剩余孔隙度均減小,剩余孔隙度更明顯地表現(xiàn)出隨著氨化秸稈添加量的增多而減小的趨勢(shì)。土壤剩余孔隙在不同培養(yǎng)時(shí)間內(nèi)、不同處理之間均沒有達(dá)到顯著性差異。
土壤的基質(zhì)孔隙在培養(yǎng)0 d時(shí),各處理之間差異很小(圖3 b),S3處理的值略大于其它處理; 培養(yǎng)60 d時(shí),與培養(yǎng)0 d時(shí)相比,各處理的基質(zhì)孔隙度均顯著性增加(P<0.05),處理之間差異不明顯; 培養(yǎng)120 d的基質(zhì)孔隙度和培養(yǎng)60 d時(shí)的差異很小,處理之間差異也不顯著; 培養(yǎng)180 d時(shí),與培養(yǎng)120 d時(shí)相比,CK和 S2基質(zhì)孔隙度變化不大,而S1和S3的基質(zhì)孔隙度均減小,其中S3達(dá)到了顯著性差異(P<0.05); 此時(shí),與CK相比,S3 的基質(zhì)孔隙度顯著減小(P<0.05)。
圖3 不同大小等級(jí)土壤孔隙隨培養(yǎng)時(shí)間的變化Fig.3 Changes of different sizes of soil pores with the duration of incubation[注(Note): 柱上不同小寫字母表示同一時(shí)間不同處理在5%水平上差異顯著The different small letters above the bars mean significant differences among treatments at the same duration of incubation at the 5% level.]
土壤的結(jié)構(gòu)孔隙在培養(yǎng)0 d時(shí),各處理之間差異不顯著(圖3 c),S3處理的值較其它略小; 培養(yǎng)60 d時(shí),與培養(yǎng)0 d相比,各處理的結(jié)構(gòu)孔隙度均極顯著地減小(P<0.01),與CK相比,S1、S2和S3結(jié)構(gòu)孔隙度均較大,其中,S1達(dá)到了顯著性差異(P<0.05); 培養(yǎng)120 d時(shí),各處理之間土壤結(jié)構(gòu)孔隙度差異不顯著,其中S3結(jié)構(gòu)孔隙較大; 培養(yǎng)180 d時(shí),與培養(yǎng)120 d時(shí)相比,CK、S1和S2的土壤結(jié)構(gòu)孔隙度均顯著性減小(P<0.05),S3的變化不大; 各處理結(jié)構(gòu)孔隙度表現(xiàn)出隨著氨化秸稈添加量的增加而增加的趨勢(shì),其中,S3同其它處理相比,極顯著地增加了土壤的結(jié)構(gòu)孔隙度(P<0.01)。
土壤總孔隙在培養(yǎng)0 d時(shí),S2和S3略大于CK和S1(圖3 d); 培養(yǎng)60 d時(shí),與培養(yǎng)0 d相比,各處理土壤總孔隙度均極顯著減小(P<0.01),其中S1和S2的總孔隙度大于CK和S3; 培養(yǎng)120 d時(shí),與培養(yǎng)60 d時(shí)相比,S1和S2的總孔隙度略為減小,而CK和S3的總孔隙度顯著增大(P<0.05); 培養(yǎng)180 d時(shí),與培養(yǎng)120 d時(shí)相比,各處理的總孔隙度顯著減少(P<0.05),此時(shí)與CK相比,S1的總孔隙度略小,S2和S3的總孔隙度較大。土壤總孔隙度在不同處理之間均沒有達(dá)到顯著性差異。
2.3氨化秸稈對(duì)土壤孔隙分布影響
氨化秸稈各處理的土壤孔隙分布在不同培養(yǎng)時(shí)期均呈現(xiàn)明顯雙峰變化(圖4)。對(duì)于DE模型微分函數(shù)的雙峰曲線,由式(1)和(3)可以得出,第一個(gè)峰的范圍表示土壤結(jié)構(gòu)孔隙的分布,第二個(gè)峰的范圍表示土壤基質(zhì)孔隙的分布,峰值(最大值)出現(xiàn)的位置表示土壤孔隙分布的集中位置,處理峰值出現(xiàn)越早(h越小),說明此處理土壤孔隙分布越偏向大孔隙。
在培養(yǎng)0 d時(shí)(圖4a),各處理間土壤結(jié)構(gòu)孔隙和基質(zhì)孔隙分布沒有顯著差異,此時(shí)氨化秸稈處理對(duì)土壤孔隙分布影響不大。培養(yǎng)60 d時(shí)(圖4b),對(duì)于土壤結(jié)構(gòu)孔隙(第一個(gè)峰的范圍內(nèi)),S1處理的孔隙分布數(shù)量最多,分布范圍最大,其次是S2處理; 峰值出現(xiàn)的位置(h的大小)為S2 培養(yǎng)120 d時(shí)(圖4 c),對(duì)于土壤結(jié)構(gòu)孔隙,S3孔隙分布數(shù)量和分布范圍顯著地大于其它處理,但相對(duì)于CK處理,S1、S2和S3孔隙分布的峰值均推遲出現(xiàn); 對(duì)于土壤基質(zhì)孔隙,各處理孔隙數(shù)量差別不大,CK處理的峰值較早出現(xiàn),氨化秸稈處理峰值推遲出現(xiàn)。在培養(yǎng)180 d時(shí)(圖4 d),對(duì)于土壤結(jié)構(gòu)孔隙,氨化秸稈處理的孔隙分布數(shù)量和分布范圍均大于CK處理,隨著氨化秸稈添加量的增加,孔隙的分布數(shù)量越大,且峰值出現(xiàn)的越早; 對(duì)于土壤基質(zhì)孔隙,CK處理的孔隙分布數(shù)量均大于氨化秸稈處理,此時(shí)S3處理孔隙分布數(shù)量最少,但此時(shí)氨化秸稈處理峰值均早于CK處理出現(xiàn),峰值出現(xiàn)的位置為S3 圖4 不同氨化秸稈處理土壤孔隙分布隨培養(yǎng)時(shí)間的變化Fig. 4 Changes of soil pore distribution in different ammoniated straw treatments with duration of incubation 土壤中施加氨化秸稈以后,DE模型依然能夠較好的模擬其土壤水分特征曲線,表明DE模型對(duì)添加土壤改良劑的土壤具有良好的適用性。與此同時(shí),DE模型也較好的反映了氨化秸稈對(duì)不同等級(jí)土壤孔隙數(shù)量和分布的影響,因此,DE模型可以作為一個(gè)有效估算和評(píng)價(jià)土壤孔隙結(jié)構(gòu)的工具。 從0 d到60 d內(nèi),各處理在經(jīng)過交替性膨脹、收縮、團(tuán)聚后,土壤的剩余孔隙和基質(zhì)孔隙均增大,土壤的結(jié)構(gòu)孔隙明顯減小,原因可能是培養(yǎng)過程中有機(jī)質(zhì)迅速礦化,較高的含水量使得表層土壤對(duì)下層土壤存在一定的壓實(shí)作用,這種壓實(shí)作用在土壤培養(yǎng)初期(60 d以內(nèi))作用較明顯,增大了土壤的剩余孔隙和基質(zhì)孔隙,減小了土壤結(jié)構(gòu)孔隙。這與Dexter[20]等的研究結(jié)論一致,土壤的壓實(shí)作用主要減小的是土壤的結(jié)構(gòu)孔隙。隨著試驗(yàn)的進(jìn)行(60 d以后),土壤的有機(jī)質(zhì)繼續(xù)礦化,壓實(shí)作用逐漸減小,而氨化秸稈的作用逐漸加強(qiáng),使得土壤剩余孔隙和基質(zhì)孔隙相對(duì)CK處理減小(圖3 a和b),而結(jié)構(gòu)孔隙明顯增加(圖3 c)。 土壤孔隙分布影響著土壤中水、肥、氣、熱等肥力因素的變化與供應(yīng)狀況,是農(nóng)業(yè)生產(chǎn)上是非常重要的土壤物理屬性指標(biāo)[19]。培養(yǎng)180 d時(shí),氨化秸稈對(duì)土壤孔隙分布的影響非常明顯,不僅使得土壤的結(jié)構(gòu)孔隙數(shù)量增多,還使得結(jié)構(gòu)孔隙和基質(zhì)孔隙峰值顯著提前。這表明氨化秸稈施入土壤中,整體上促進(jìn)了土壤孔隙結(jié)構(gòu)的發(fā)育,使得已有土壤孔隙向更大孔隙發(fā)展。 大量研究表明,秸稈還田可以有效地增加土壤中的有機(jī)質(zhì)含量[5,28],并且促進(jìn)土壤中微生物的生長(zhǎng)[29]。土壤孔隙度跟土壤的緊實(shí)度密切相關(guān),Soane[30]總結(jié)土壤中有機(jī)質(zhì)對(duì)土壤緊實(shí)度的影響得出,土壤有機(jī)質(zhì)存在長(zhǎng)鏈分子,這種分子能夠有效地束縛和黏結(jié)礦物顆粒,促進(jìn)土壤團(tuán)聚結(jié)構(gòu)的形成和發(fā)育; 同時(shí),土壤有機(jī)質(zhì)有效地促進(jìn)了土壤微生物的生長(zhǎng),微生物的菌絲可以有效的黏結(jié)土壤的礦物顆粒,促進(jìn)新的土壤結(jié)構(gòu)的形成,影響土壤的緊實(shí)度。在土壤有機(jī)質(zhì)和微生物的共同作用下,氨化秸稈加強(qiáng)了土壤顆粒團(tuán)聚作用,加快了土壤孔隙結(jié)構(gòu)的形成,促進(jìn)了土壤已有孔隙向更大孔隙發(fā)育。 為了進(jìn)一步分析氨化秸稈對(duì)土壤孔隙的影響,本研究分析了土壤剩余孔隙度、基質(zhì)孔隙度、結(jié)構(gòu)孔隙度和總孔隙度隨土壤有機(jī)質(zhì)的變化情況(圖5)。通過分析發(fā)現(xiàn),土壤的剩余孔隙和基質(zhì)孔隙與有機(jī)質(zhì)含量沒有顯著相關(guān)關(guān)系(圖5 a和b),而土壤結(jié)構(gòu)孔隙和總孔隙均與有機(jī)質(zhì)含量呈顯著的正相關(guān)關(guān)系(圖5 c和d,P<0.05)。由此可以推測(cè),氨化秸稈施入土壤中以后,增加了土壤中有機(jī)質(zhì)含量,增加了微生物的數(shù)量和活性,加強(qiáng)了土壤的礦物顆粒之間的黏結(jié)和團(tuán)聚作用,有效地促進(jìn)了土壤團(tuán)聚結(jié)構(gòu)[16-17]和孔隙結(jié)構(gòu)發(fā)育,通過增加土壤的結(jié)構(gòu)孔隙,進(jìn)而增加了土壤的總孔隙。 圖5 培養(yǎng)時(shí)間內(nèi)不同等級(jí)土壤孔隙隨土壤有機(jī)質(zhì)含量的變化Fig. 5 Change of different sizes of soil pores with soil organic matter content during incubation Kutilek[21]指出結(jié)構(gòu)孔隙中的水分運(yùn)動(dòng)形式為優(yōu)先流(preferential flow),根據(jù)毛管孔隙和非毛管孔隙的定義,結(jié)構(gòu)孔隙屬于土壤非毛管孔隙。本研究中土壤施入氨化秸稈,極顯著地增加了土壤的結(jié)構(gòu)孔隙,促進(jìn)了土壤非毛管孔隙的發(fā)育,這與李鳳博等[31]研究結(jié)果一致。土壤非毛管孔隙的增加,有助于提高土壤蓄水性能[32],增強(qiáng)土壤的通透性[33]和滲透性[34]。因此土壤中施加氨化秸稈,對(duì)于增加土壤水分的入滲量[14],調(diào)節(jié)土壤水分狀況[16],補(bǔ)給作物根層水分,促進(jìn)作物根系生長(zhǎng)[35]具有重要意義。 本試驗(yàn)著重研究短期(180 d)內(nèi)氨化秸稈對(duì)土壤孔隙結(jié)構(gòu)的影響,氨化秸稈對(duì)土壤其它物理化學(xué)性質(zhì)的影響(土壤的導(dǎo)水率、微生物生長(zhǎng)和養(yǎng)分的保持特性等),以及大田中氨化秸稈對(duì)土壤的改良作用,還需要進(jìn)一步研究。 土壤中施加氨化秸稈,可以促進(jìn)土壤孔隙的進(jìn)一步發(fā)育,整體上促進(jìn)了土壤已有孔隙向更大孔隙發(fā)展; 通過增加土壤中有機(jī)質(zhì)含量,黏結(jié)團(tuán)聚土壤的礦物顆粒,氨化秸稈有效地促進(jìn)了土壤結(jié)構(gòu)孔隙的發(fā)育,進(jìn)而增加了土壤的總孔隙度,同時(shí)氨化秸稈對(duì)土壤孔隙的影響隨著時(shí)間的進(jìn)行越來越明顯。因此,氨化秸稈還田在改良和培肥土壤、改善土壤耕性、提高農(nóng)田土壤水分利用效率和提高旱地農(nóng)業(yè)生產(chǎn)潛力上具有重要的應(yīng)用價(jià)值。 [1]劉世平, 陳后慶, 聶新濤, 等. 稻麥兩熟制不同耕作方式與秸稈還田土壤肥力的綜合評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2008, 24(5): 51-56. Liu S P, Chen H Q, Nie X T,etal. Comprehensive evaluation of tillage and straw returning on soil fertility in a wheat-rice double cropping system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(5): 51-56. [2]楊志臣, 呂貽忠, 張鳳榮, 等. 秸稈還田和腐熟有機(jī)肥對(duì)水稻土培肥效果對(duì)比分析[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2008, 24(3): 214-218. Yang Z C, Lü Y Z, Zhang F R,etal. Comparative analysis of the effects of straw-returning and decomposed manure on paddy soil fertility betterment[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(3): 214-218. [3]陳文超, 朱安寧, 張佳寶, 等. 保護(hù)性耕作對(duì)潮土團(tuán)聚體組成及其有機(jī)碳含量的影響[J]. 土壤, 2014, 46(1): 35-40. Chen W C, Zhu A N, Zhang J Betal. Effects of conservation tillage on the composition and organic carbon content of soil aggregates in Fluvo-aquic soil[J]. Soils, 2014, 46(1): 35-40. [4]勞秀榮, 孫偉紅, 王真, 等. 秸稈還田與化肥配合施用對(duì)土壤肥力的影響[J]. 土壤學(xué)報(bào), 2003, 40(4): 618-623. Lao X R, Sun W H, Wang Z,etal. Effect of matching use of straw and chemical fertilizer on soil fertility[J]. Acta Pedologica Sinica, 2003, 40(4): 618-623. [5]魏燕華, 趙鑫, 翟云龍, 等. 耕作方式對(duì)華北農(nóng)田土壤固碳效應(yīng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2013, 29(17): 87-95. Wei Y H, Zhao X, Zhai Y L,etal. Effects of tillages on soil organic carbon sequestration in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(17): 87-95. [6]周懷平, 解文燕, 關(guān)春林, 等. 長(zhǎng)期秸稈還田對(duì)旱地玉米產(chǎn)量、效益及水分利用的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2013, 19(2): 321-330. Zhou H P, Xie W Y, Guan C L,etal. Effects of long-term straw-returning on corn yield, economic benefit and water use in arid farming areas[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(2): 321-330. [7]趙士誠, 曹彩云, 李科江, 等. 長(zhǎng)期秸稈還田對(duì)華北潮土肥力、氮庫組分及作物產(chǎn)量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2014, 20(6): 1441-1449. Zhao S C, Cao C Y, Li K J,etal. Effects of long-term straw return on soil fertility, nitrogen pool fractions and crop yields on a fluvo-aquic soil in North China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1441-1449. [8]李偉, 藺樹生, 譚豫之, 等. 作物秸稈綜合利用的創(chuàng)新技術(shù)[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2000, 16(1): 14-17. Li W, Lin S S, Tan Y Z,etal. Innovated techniques on comprehensive utilization of crop straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2000, 16(1): 14-17. [9]胡立峰, 裴寶琦, 翟學(xué)軍. 論秸稈功能演化及秸稈腐解劑效應(yīng)[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2009, 25(19): 134-138. Hu L F, Pei B Q, Zhai X J. Function evolvement of straw and effect of effective microorganisms[J]. Chinese Agricultural Science Bulletin, 2009, 25(19): 134-138. [10]李鵬, 孫可偉. 秸稈的綜合利用[J]. 中國(guó)資源綜合利用, 2006, (24): 22-24. Li P, Sun K W. The complex utilization of straw[J]. China Resources Comprehensive Utilization, 2006, (24): 22-24. [11]陳中玉, 張祖立, 白小虎. 農(nóng)作物秸稈的綜合開發(fā)利用[J]. 農(nóng)機(jī)化研究, 2007, (5): 194-196. Chen Z Y, Zhang Z L, Bai X H. Comprehensive exploitation and utilization of crop straw[J]. Journal of Agricultural Mechanization Research, 2007, (5): 194-196. [12]黃婷. 秸稈綜合利用途徑研究[J]. 安徽農(nóng)業(yè)科學(xué), 2007, 35(36): 12004-12005. Huang T. Research on the integrated utilization of crop straw[J]. Journal of Anhui Agricultural Sciences, 2007, 35(36): 12004-12005. [13]王增麗, 王珍, 馮浩. 秸稈粉碎氨化還田對(duì)土壤體積質(zhì)量及持水特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2011, 27(11): 211-215. Wang Z L, Wang Z, Feng H. Effects of pulverized and ammoniated straw on soil bulk density and water-holding characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(11): 211-215. [14]王 珍, 馮 浩. 秸稈不同還田方式對(duì)土壤入滲特性及持水能力的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2010, 26(4): 75-80. Wang Z, Feng H. Effect of straw-incorporation on soil infiltration characteristics and soil water holding capacity[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 75-80. [15]李玉梅, 馮浩, 吳淑芳. 秸稈粉碎氨化還田對(duì)土壤養(yǎng)分淋溶損失的影響[J]. 水土保持學(xué)報(bào), 2010, 24(1): 12-15. Li Y M, Feng H, Wu S F. Effect of straw returning after comminution and amination on soil nutrient leaching loss[J]. Journal of Soil and Water Conservation, 2010, 24(1): 12-15. [16]余坤, 馮浩, 王增麗, 等. 氨化秸稈還田改善土壤結(jié)構(gòu)增加冬小麥產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(15): 165-173. Yu K, Feng H, Wang Z L,etal. Ammoniated straw improving soil structure and winter wheat yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(15): 165-173. [17]師學(xué)珍, 王增麗, 馮浩. 秸稈不同處理方式對(duì)黃綿土團(tuán)聚體特性的影響[J]. 中國(guó)土壤與肥料, 2014, (4): 12-17. Shi X Z, Wang Z L, Feng H. Effect of different straw incorporation practice on the characteristics of aggregates in loess soil[J]. Soil and Fertilizer Sciences in China, 2014, (4): 12-17. [18]王增麗, 馮浩, 余坤, 等. 輪作條件下秸稈施用方式對(duì)農(nóng)田水分及作物產(chǎn)量的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2013, 44(12): 114-119. Wang Z L, Feng H, Yu K,etal. Effects of different straw utilization on farmland moisture and crop yield with rotation of summer maize and winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 114-119. [19]黃昌勇. 土壤學(xué)[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2000. Huang C Y. Soil science[M]. Beijing: China Agriculture Press, 2000. [20]Dexter A, Czy? E, Richard G,etal. A user-friendly water retention function that takes account of the textural and structural pore spaces in soil[J]. Geoderma, 2008, 143(3-4): 243-253. [21]Kutilek M. Soil hydraulic properties as related to soil structure[J]. Soil and Tillage Research, 2004, 79(2): 175-184. [22]Dexter A, Richard G. The saturated hydraulic conductivity of soils with n-modal pore size distributions[J]. Geoderma, 2009, 154(1-2): 76-85. [23]Dexter A, Richard G. Tillage of soils in relation to their bi-modal pore size distributions[J]. Soil and Tillage Research, 2009, 103(1): 113-118. [24]Dexter A, Richard G., Arrouays D,etal. Complexed organic matter controls soil physical properties[J]. Geoderma, 2008, 144: 620-627. [25]Brutsaert W. Probability laws for pore-size distributions[J]. Soil Science, 1966, 101(2): 85-92. [26]Kosugi K. Lognormal distribution model for unsaturated soil hydraulic properties[J]. Water Resources Research, 1996, 32(9): 2697-2703. [27]Kosugi K. Three-parameter lognormal distribution model for soil water retention[J]. Water Resources Research, 1994, 30(4): 891-901. [28]勞秀榮, 吳子一, 高燕春. 長(zhǎng)期秸稈還田改土培肥效應(yīng)的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2002, 18(2): 49-52. Lao X R, Wu Z Y, Gao Y C. Effect of long-term returning straw to soil on soil fertility[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(2): 49-52. [29]楊濱娟, 黃國(guó)勤, 錢海燕. 秸稈還田配施化肥對(duì)土壤溫度, 根際微生物及酶活性的影響[J]. 土壤學(xué)報(bào), 2014, 51(1): 150-157. Yang B J, Huang G Q, Qian H Y. Effects of straw incorporation plus chemical fertilizer on soil temperature, root micro-organisms and enzyme activities[J]. Acta Pedologica Sinica, 2014, 51(1): 150-157. [30]Soane B D. The role of organic matter in soil compatibility: a review of some practical aspects[J]. Soil and Tillage Research, 1990, 16(1): 179-201. [31]李鳳博, 牛永志, 高文玲, 等. 耕作方式和秸稈還田對(duì)直播稻田土壤理化性質(zhì)及其產(chǎn)量的影響[J]. 土壤通報(bào), 2008, 39(3): 549-552. Li F B, Niu Y Z, Gao W L,etal. Effects of tillage styles and straw return on soil properties and crop yields in direct seeding rice[J]. Chinese Journal of Soil Science, 2008, 39(3): 549-552. [32]彭達(dá), 張紅愛, 楊加志. 廣東省林地土壤非毛管孔隙度分布規(guī)律初探[J]. 廣東林業(yè)科技, 2006, 22(1): 56-59. Peng D, Zhang H A, Yang J Z. Studies on the noncapillary porosity of woodland soil of Guangdong province[J]. Guangdong Forestry Science and Technology, 2006, 22(1): 56-59. [33]彭舜磊, 由文輝, 沈會(huì)濤. 植物群落演替對(duì)土壤飽和導(dǎo)水率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2010, 26(11): 78-84. Peng S L, You W H, Shen H T. Effect of syndynamic on soil saturated hydraulic conductivity[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(11): 78-84. [34]張治偉, 朱章雄, 王燕, 等. 巖溶坡地不同利用類型土壤入滲性能及其影響因素[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2010, 26(6): 71-76. Zhang Z W, Zhu Z X, Wang Y,etal.Soil infliction capacity and its influencing factors of different land use types in Karst slope[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(6): 71-76. [35]李篤仁, 高緒科, 汪德水. 土壤緊實(shí)度對(duì)作物根系生長(zhǎng)的影響[J]. 土壤通報(bào), 1982, (3): 20-22. Li D R, Gao X K, Wang D S. Effect of Soil compactness on crop root growth[J]. Chinese Journal of Soil Science, 1982, (3): 20-22. Effect of ammoniated straw returning on soil pore structure DING Dian-yuan1,2, FENG Hao1,2,3*, ZHAO Ying2,4, DU Xuan1,2 (1CollegeofWaterResourceandArchitecturalEngineering,NorthwestAgricultureandForestryUniversity,Yangling,Shaanxi712100,China; 2InstituteofWaterSavingAgricultureinAridAreasofChina,NorthwestAgriculturalandForestUniversity,Yangling,Shaanxi712100,China; 3InstituteofWaterandSoilConservation,ChineseAcademyofSciencesandMinistryofWaterResources,Yangling,Shaanxi712100,China; 4CollegeofNaturalResourcesandEnvironment,NorthwestAgricultureandForestryUniversity,Yangling,Shaanxi712100,China) 【Objectives】 Property of soil pores reflects the adaptability of soil structure. Addition of organic materials into soil can improve soil structure, soil permeability, soil water holding capacity and nutrient retention capacity. The objective of this study was to investigate effects of addition of ammoniated straw on soil pore distribution and soil pore structure, especially soil total porosity, residual porosity, matrix porosity and structural porosity relative to amounts of ammoniated straw addition. 【Methods】 Incubation method was used and the ammoniated straw was added in percentages to the soil weight 0% (CK), 0.384% (S1), 0.575% (S2) and 0.767% (S3)). In 0, 60, 120 and 180 d of incubation, soil water content were measured and soil water retention curve (SWRC) were set up. Based on SWRC, the double-exponential water retention equation (DE model) was used to calculate soil residual porosity, matrix porosity and structural porosity, with which to evaluate effects of ammoniated straw on various grades of soil porosities. Meanwhile, the differential equation of the DE model was used to calculate distributions of different soil pores. 【Results】The root mean square errors of the measured and estimated SWRCs vary in the range between 0.0036 and 0.0041 cm3/cm3, the coefficients of determination R2vary in the range between 0.998 and 0.999, and the measured and estimated water contents of SWRC are close to the line of 1 ∶1, which indicates that the DE model is good enough to be used to fit the measured SWRCs of soils mixed with ammoniated straw and to efficiently estimate the changes of different soil porosities with time. The ammoniated straw has less effect on the soil residual, matrix and structural porosities within 120 d. On the 180 d, the soil structural porosities are increased with the increase of ammoniated straw. Meanwhile, the S3 treatment has less effect on the soil residual pore, significantly decreases the soil matrix porosities (P<0.05) and significantly increases the structural porosities (P<0.01). All the treatments with ammoniated straw significantly increase the ranges and quantity of soil structural pores compared with CK on the 180 d. The quantity of soil structural pores is increased with the increase of ammoniated straw in the soil pore distribution, and the peak value of soil structural pores in the soil pore distribution is moved forward with the increase of ammoniated straw. The ammoniated straw significantly promotes soil pores tending to bigger ones, and the effect could be enhanced with the increase of the ammoniated straw. In addition, the ammoniated straw could increase the soil organic matter content. There is a significant positive correlation between the soil organic matter content and the soil structural porosity and as well as the soil total porosity. The relationships between the soil organic matter content and the soil residual or matrix porosities are unclear. The ammoniated straw promotes the development of soil pore structure by increasing soil organic matter content that could bond and aggregate soil particles. The ammoniated straw increases the soil total porosity by increasing soil structural porosity, and the effect becomes more significant with the time. 【Conclusions】 The ammoniated straw could promote the development of soil pore structure by increasing soil organic matter content, and significantly increase soil structural porosity and total porosity, which is of great significance in improving soil fertility and soil workability. ammoniated straw; soil pore; soil pore distribution; soil structural pore; soil matrix pore 2015-03-11接受日期: 2015-07-15 國(guó)家863計(jì)劃項(xiàng)目(2013AA102904); 黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室主任基金(K318009902-1427); “111”項(xiàng)目(B12007) 資助。 丁奠元(1989—), 男, 山東濰坊人, 博士研究生, 主要從事水土資源高效利用研究。 E-mail: ding@nwsuaf.edu.cn E-mail: nercwsi@vip.sina.com S143; S154.36; S511 A 1008-505X(2016)03-0650-093 討論
4 結(jié)論