• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dietary supplementation in patients with alcoholic liver disease: a review on current evidence

    2016-08-26 08:13:27ZeinabGhorbaniMasoomehHajizadehandAzitaHekmatdoostTehranIran

    Zeinab Ghorbani, Masoomeh Hajizadeh and Azita HekmatdoostTehran, Iran

    ?

    Dietary supplementation in patients with alcoholic liver disease: a review on current evidence

    Zeinab Ghorbani, Masoomeh Hajizadeh and Azita Hekmatdoost
    Tehran, Iran

    BACKGROUND: Alcoholic liver disease (ALD) is one of the main causes of liver disease worldwide. Although the pathogenesis of ALD has not yet been well elucidated, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species play a pivotal role in the clinical and pathological spectrum of the disease. This review summarizes the existing evidences on dietary supplements considered to have antioxidant, and/or anti-inflammatory properties, and their role in the management of ALD and the proposed mechanisms.

    DATA SOURCES: The present study reviewed all studies published in PubMed, ScienceDirect and Scopus, from 1959 to 2015, indicating the role of different dietary supplementation in attenuation of many pathophysiological processes involved in development and progression of ALD. Full-texts of citations were used except for those that were published in languages other than English.

    RESULTS: Significant progress has been made to understand the key events and molecular players for the onset and progression of ALD from both experimental and clinical studies;however, there is no successful treatment currently available. The present review discussed the role of a variety of dietary supplements (e.g. vitamin A, carotenoids, vitamins B3, C and E, in addition to antioxidants and anti-inflammatory agents)in treating ALD. It has been shown that supplementation with some carotenoids, vitamin B3, vitamin C, silymarin, curcumin,probiotics, zinc, S-adenosylmethionine and garlic may have potential beneficial effects in animal models of ALD; however,the number of clinical studies is very limited. In addition, supplementation should be accompanied with alcohol cessation. CONCLUSIONS: Since oxidative stress and inflammation are involved in the pathogenesis of ALD, dietary supplements that can modulate these pathologies could be useful in the treatment of ALD. In addition to alcohol cessation, these supplements have shown beneficial effects on animal models of ALD. Clinical trials are needed to validate the beneficiary role of these supplements in patients with ALD.

    (Hepatobiliary Pancreat Dis Int 2016;15:348-360)KEY WORDS: alcoholic liver disease;

    fatty liver;

    dietary supplements;

    antioxidants;

    nutrition;

    diet

    Introduction

    T oo much alcohol consumption is related to several chronic disorders such as alcoholic liver disease (ALD), cancers, and cardiovascular diseases[1]so that it is known as a main cause of morbidity and mortality worldwide.[2-6]The drinkers have a lot of histological abnormalities in their livers due to alcohol toxic effects including steatosis, steatohepatitis, fibrosis, cirrhosis,and hepatocellular carcinoma.[3-7]It has been shown that there is a positive correlation between cumulative alcohol intake and severity of liver fibrosis.[4]Approximately 3.8% of total deaths and 4.6% of disability-adjusted life-years in the world are associated with alcohol consumption. Burden of disease for every unit of alcohol consumption is higher in poor communities and low-income nations than in the middle-income communities and wealthy countries.[8]

    Not only too much alcohol intake can result in severe damage in the liver, but also in the heart, kidney, nervous system and pancreas.[4, 7]In addition, excessive alcohol consumption increases the progression of other liverdiseases, such as chronic viral hepatitis (hepatitis B and C) and other metabolic liver diseases, including Wilson disease, hemochromatosis, and fatty liver in relation to the metabolic syndrome.[4, 5]

    Previous studies[4, 9, 10]indicated that acetaldehyde,an intermediate alcohol metabolite, is a highly reactive compound and highly toxic to hepatocytes; it depletes glutathione, enhances lipid peroxidation, and mitochondrial damage, which leads to oxidative stress. Furthermore, alcohol-derived reactive oxygen species (ROS) may directly trigger the systemic inflammatory response. ROS could activate nuclear factor kappa B (NF-κB), which results in production of inflammatory cytokines such as TNF-α and IL-6. Alcohol-derived ROS may initiate a vicious cycle via the hepatocyte damage mechanism with additional inflammatory cytokines and ROS production.[3, 11-14]Moreover, alcohol consumption increases the small intestinal bacterial overgrowth and intestinal permeability of endotoxins. The endotoxin mediated inflammatory signaling plays a major role in alcoholic liver fibrosis.[11, 15]

    Although alcohol intake is the major risk factor for ALD, interactions between behavioral, environmental,and genetic factors are also involved in its pathogenesis. The other known risk factors include age, gender, obesity and a higher BMI, dietary factors, drinking patterns, cigarette smoking, and non-gender-linked genes; however,the mechanism of their affects has not yet elucidated.[4]A recent study[2]showed that some metabolic factors, such as metabolic syndrome, insulin resistance and type 2 diabetes are related to the development and progression of ALD. Several epidemiological studies[3-6]suggested that some genetic factors are involved in the severity of steatosis and oxidative stress. The previous studies on genome-wide association found that the patatin-like phospholipase-3 (PNPLA3) rs738409 variant may act as the first genetic risk factor for increased activity of aminotransferase, development of steatohepatitis, fibrosis and cirrhosis, and ultimate progression of ALD in the subjects who consumed alcohol.[16-18]Thus, the PNPLA3 (also known as adiponutrin) rs738409 genotype can be used as a genetic marker for detection of hereditary susceptibility of an individual to develop ALD.[17]

    No treatment has yet been approved for patients with ALD and the only recognized management strategies include alcohol cessation;[4, 6, 7]therefore, development of novel pathophysiological-targeted adjuvant therapies is urgently needed.[19]Dietary supplements are suitable therapeutic options due to their antioxidant, and antiinflammatory properties. Thus we reviewed the publications available so as to evaluate the effects of dietary supplements in ALD management.

    Dietary supplementation in ALD management

    Vitamins

    Patients with ALD have low intakes of various nutrients including vitamins. Moreover, chronic alcohol abuse can impair gastrointestinal mucosal absorption of micronutrients such as folate, vitamin B12, zinc, vitamin A,thiamine, and pyridoxine.[20]Pyridoxine deficiency occurs because acetaldehyde causes a competitive decline in albumin binding and leaves the unbound vitamin to be lost in urine.[20]McClain et al[9]reported that plasma concentrations of zinc, carotene, and selenium are significantly decreased in patients with ALD. Thus, it seems that patients with ALD benefit from supplementation of vitamins and minerals.

    Vitamin A and carotenoids

    ALD is related to low levels of hepatic vitamin A,and the reduction of hepatic retinoid content is correlated with disease severity.[21-24]Supplementation with β-carotene may revive the vitamin A status to a normal range, resulting in protection against alcohol-related liver injury.[20, 24]Lutein has a protective role in combating liver damage caused by hepatotoxins. This hepatoprotective action may be due to lutein's ability to scavenge ROS.[25]Moreover, lutein prevented alcohol-induced lipid accumulation through increasing lipogenic genes expression.[26]A low dose of β-carotene supplementation decreased oxidative stress through reducing CYP2E1 gene expression, inhibiting lipid peroxidation and glutathione peroxidase concentrations in erythrocytes and the liver. Therefore, β-carotene prevents ethanol-induced liver damage;[27, 28]but the beneficial effect of the high dose of β-carotene has not been confirmed.[28, 29]It has been shown that the level of plasma β-carotene was increased in heavy alcohol consumers and decreased in patients with alcoholic cirrhosis. Thus, supplementation should be accompanied with alcohol cessation.[30]Clinical trials considering the amount of alcohol consumption are recommended.

    Vitamin C

    Vitamin C is known as an independent antioxidant,which can protect against ALD progression to liver fibrosis[31]through decreasing oxidative stress, hepatic stellate cells activation, cytotoxicity and fibrotic genes expression in liver tissues.[32]Moreover, vitamin C reduced the endotoxin level by mitigation of small intestinal bacterial overgrowth, and concomitant endotoxemia. The reduction of endotoxin decreased nuclear translocation of NF-κB and thereby reduced the signal cascade, thus leading to the suppression of hepatic stellate cells activation andcollagen deposition and finally liver fibrosis.[15]Furthermore, vitamin C ameliorates the progression of ALD by regulating the expression of iron metabolism-related genes.[33]There is no clinical trial evaluating the effects of vitamin C supplementation on ALD.

    Vitamin E

    Vitamin E supplementation can be a potential therapeutic substance for alcohol-induced hepatotoxicity as well as oxidative damages in the liver;[10, 34, 35]however, the beneficial effects of vitamin E in human ALD subjects have not yet been confirmed. Altavilla et al[36]reported that raxofelast, an analog of vitamin E, can protect mice from ALD and ameliorate liver damage by inhibiting the inflammatory cascade during chronic ethanol exposure. Mezey et al[37]demonstrated that 1000 IU/day of vitamin E in three months decreased serum hyaluronic acid, an indicator of fibrosis but did not result in significant improvements in serum bilirubin and serum albumin as measures of liver function and had no benefit in decreasing serum aminotransferases, indicators of hepatocyte necrosis and inflammation, or on parameters reflecting evidence of oxidative stress or lipid peroxidation. However, the effect of vitamin E on ALD is inconclusive. A meta-analysis[38]demonstrated that consuming more than 400 IU/day (high dosage) of this supplement may increase the rate of mortality. Further clinical trials with different dosages and longer duration are needed.

    Vitamin D

    Chronic alcoholism results in deficiency of osteocalcin, vitamin D and insulin growth factor-1 and thus endocrine dysfunction and bone mass reduction.[39-41]Malnutrition, malabsorption, decreased production of vitamin D binding protein in the liver, weakened hepatic hydroxylation of vitamin D, as well as insufficient exposure to sunlight and consequently reduced dermal production of vitamin D are the known causes of vitamin D deficiency in ALD.[42]It has been reported that reduced serum level of 25(OH)D may aggregate liver injury and result in elevated mortality rates in ALD. Therefore, it has been proposed that vitamin D level can be a valuable indicator of ALD progression and can be used as a potential agent in the treatment of ALD.[43, 44]A clinical trial showed that vitamin D3 provides greater efficacy in improving the symptoms of vitamin D deficiency compared with vitamin D2.[45]

    Vitamin B3

    Only one experimental study has evaluated the effects of nicotinic acid supplementation in ALD, which has shown that nicotinic acid can protect against ALD through increasing hepatic fatty acid oxidation and reducing de novo lipogenesis in the liver.[46]

    Antioxidant and anti-inflammatory agents

    Silymarin

    Silymarin is a mixture of antioxidant flavonolignans (silybin and silibinin) extracted from the medicinal plant Silybum marianum. Experimental studies[47-49]have shown that silymarin protects against liver damage via its antioxidant and anti-fibrotic effects; moreover, it is an excellent immune modulator and cell membrane stabilizer, as well as inducer of liver tissue regeneration. It demonstrates positive effects on ALD by retarding the development of fibrosis and inhibiting hepatic NF-κB activation and pro-collagen-α1 gene expression.[48-51]Furthermore, it has been shown that silymarin increases the expression of antioxidant enzymes, normalizes liver enzymes, and improves insulin activity.[47, 52-55]However,it did not effectively prevent the carcinogenesis in animal models of ethanol-dependent hepatocellular carcinoma.[56]A retrospective study[57]has shown the beneficial effects of a silymarin product on liver enzymes and serum liver function. However, randomized, placebo controlled,clinical trials are needed to confirm these effects. The safety for silymarin as well as its excellent pharmacokinetics and antioxidant activity has made this agent as a perfect dietary supplement for people who are suffering from ALD. Furthermore, the consumption of this supplement during pregnancy and lactation is safe due to its feto-protective and prolactin stimulatory effects.[58, 59]

    Curcumin

    Curcumin is a polyphenol constantly approved as an antioxidant and an anti-inflammatory substance.[60]It has great protective impact on acute alcoholic liver damages in mice, and can improve the antioxidant activity of mice after acute administration of alcohol. It can increase the activity of antioxidant enzymes in liver tissues.[61]Curcumin prevented ethanol-induced liver damage by inhibiting oxidative stress and lipid accumulation;[62]however, there is no clinical trial to assess its effects in patients with ALD.

    Resveratrol

    Resveratrol is a polyphenolic compound with antioxidant properties, which has beneficial effects on downregulation of inflammatory mediators and metabolic disorders.[63]Resveratrol can inhibit the ethanol-induced lipid peroxidation, reduce lipid synthesis and increase rates of fatty acid oxidation. It has protective effect against alcohol-induced cell apoptosis as well as oxidative damage and alcoholic liver steatosis.[64-68]Our previ-ous studies[63, 69]have shown its beneficial effects in patients with nonalcoholic fatty liver disease in a clinical trial although there is no clinical trial on patients with ALD.

    Citrus flavonoids

    Limited studies have shown that citrus flavonoids such as hesperidin and narirutin could reduce the accumulation of hepatic lipid through modulation of the antioxidant status, and thereby inhibiting hepatic inflammation and necrosis.[70, 71]Further studies, especially clinical trials, are needed.

    Tea polyphenols

    Tea polyphenols are able to inhibit the intestinal alcohol absorption; moreover, they inhibit the progression of ALD via reduction of oxidative stress and inflammatory reactions through regulation of antioxidative pathways. They also inhibit NF-κB activation and gene expression of hepatic inflammatory cell cytokines.[72-76]There are no adequate data showing the optimal dosage and type of tea consumption for the management of ALD. Clinical trials using different dosages and types of tea can help to find the optimum dose and type of tea for the management of ALD.

    Probiotics

    Alcohol and its metabolites disturb the intestinal microflora, and its epithelial barrier function. When the pathogenic bacteria increase in the gut, the intestinal permeability is disturbed so that more microflora derived lipopolysaccharide can pass the intestinal epithelial tight junctions, resulting in more inflammation and oxidative stress.[11, 77]Thus, the modulation of gut microflora to reduce the lipopolysaccharide load might play a pivotal role in ALD management. Consumption of probiotics and/or prebiotics is one of the best ways for modulation of gut microbiota.[78, 79]Probiotics modulate the production of intestinal microbiota and endotoxin and enhance intestinal barrier function, thus leading to the reduction of bacterial translocation and the decrease of hepatic inflammation.[77, 78, 80-85]We have revealed the beneficial effects of probiotics on nonalcoholic fatty liver disease characteristics.[86]Moreover, it has been shown that probiotic supplementation improves neutrophil function in patients with alcoholic cirrhosis, although it does not affect the mortality.[87]More randomized, placebo controlled, clinical trials are needed to confirm these results.

    Zinc

    Since ethanol consumption increases zinc excretion in the urine and decreases zinc absorption from the intestine,[88, 89]zinc depletion has been well documented in alcoholic patients as well as in animal models of ethanolinduced liver injury. Zinc depletion is exacerbated by the increasing severity of ALD.[90-93]Zinc deficiency disturbs the integrity of the intestinal epithelium leading to bacterial translocation and hepatic inflammation at last.[11, 94]In experimental models of ALD, zinc supplementation suppressed hepatic TNF-α production in association with decreased circulating endotoxin levels and a significant protection of the structure of the small intestine,[95, 96]and significantly inhibited acute ethanol-induced liver injury.[95-100]Zinc inhibits the generation of ROS, and enhances the activity of antioxidant pathways.[97, 99, 100]It has been proposed that zinc is a potent inhibitor of liver apoptosis induced by acute ethanol administration. Zinc interferes with the Fas ligand pathway and the suppresses caspase-3.[101]No clinical trial has yet evaluated the effects of zinc supplementation on ALD characteristics.

    S-adenosylmethionine (SAM)

    Alcohol interferes with methionine metabolism through inhibition of methionine adenosyltransferase activity, which reduces the levels of SAM and glutathione,increases oxidative stress, and exacerbates ALD.[19, 102, 103]Depletion of SAM impairs antioxidant defense, changes the genes expression, promotes fibrogenesis and even hepatocarcinogenesis.[13, 19, 102-105]In vitro and in vivo studies[102, 106, 107]showed that SAM and betaine (precursor to SAM) potentially alleviate ALD via the restoration of transmethylation and transsulfuration pathways of methionine metabolism and improve liver steatosis and oxidative liver injury. In clinical trials,[108-110]SAM increases cellular antioxidant glutathione in patients with ALD and improves the survival of patients with less advanced liver cirrhosis; however, its effectiveness has not been confirmed in patients with ALD. These controversial results might be due to the role of other nutrients, that are involved in methionine adenosyltransferase activity such as folate, vitamin B6 and B12. Thus, other nutritional factors involved in SAM metabolism should be considered in larger and longer clinical trials.[12, 105, 111]

    Garlic

    Chemical constituents of garlic are enzymes (e.g. alliinase) and organosulfur compounds (e.g. alliin and its derived agent allicin). Garlic effect on different medical conditions (such as hypertension, hyperlipidemia, diabetes mellitus, rheumatic disease, common cold, and arteriosclerosis and cancer) has been widely investigated. Garlic is generally safe and well tolerated and has no adverse effects on allergic patients.[112]Garlic is known as a hypolipidemic agent because of its role in increasing the hydrolysis of triacylglycerols due to increased lipaseactivity. Moreover, garlic reduces the biosynthesis of triacylglycerols via blocking nicotinamide adenine dinucleotide phosphate. On the other hand, garlic contains abundant antioxidants, and can induce antioxidant enzymes. Thus, garlic is a potential hepatoprotective agent against liver disorders such as ALD.[113, 114]Experimental studies have shown that garlic and its organosulfur compounds might reduce the alcohol-related liver enzymes, glutathione reductase, alkaline phosphatase, lactate dehydrogenase and alcohol dehydrogenase, enhance liver antioxidant enzymes, and alleviate hepatic fat accumulation.[14, 113-120]However, there is no clinical trial on patients with ALD.

    Soy protein

    Soybean contains many bioactive components such as soy protein and soy isoflavones. It has been demonstrated that soy protein has hepatoprotective effects on alcohol-induced lipid accumulation, oxidative stress and inflammation.[121, 122]Clinical trials are necessary to examine the effects of soy protein and its substitution with animal protein intake on ALD characteristics.

    Table presents each of the selected studies for this review, showing study description, supplementation protocol, dose and duration, and the proposed mechanism of action of the intervention.

    Nutritional therapies

    Based on the severity of ALD, providing an adequate diet can strongly slow the disease progression, reduce serious complications, delay liver transplantation, and decrease mortality rate. Nutritional therapies in patients with ALD should aim at preventing alcohol-induced malnutrition, providing adequate daily requirements and reducing hypermetabolism. Dietary supplementation may be required for ALD patients who cannot eat adequately.[20, 123]Because of the disturbed glucose homeostasis in the liver as a result of chronic alcohol consumption,starvation or long-term fasting should be avoided in the patients with ALD. Thus, intake of frequent meals is necessary to prevent alcohol-induced hypoglycemia. Administration of 2-3 mg/kg intravenous glucose per day may be required in case of fasting for ≥12 hours.[20]According to the guidelines of European Society for Clinical Nutrition and Metabolism (ESPEN), the daily requirements of protein and energy in cirrhotic patients are about 1.2-1.5 g/kg and 35-40 kcal/kg per day, respectively. Enteral nutrition support is recommended in the patients with inadequate oral nutritional intake.[124]In spite of the previous belief, protein restriction in cirrhotic patients is not recommended because it may result in muscle wasting, exacerbation of hepatic encephalopathy, and rise in blood ammonia.[125]

    Table. Dietary supplementation in ALD management

    (To be continued)

    S t u d i e s  S t u d y d e s c r i p t i o n , d o s e , d u r a t i o n  S u p p l e m e n t p r o p o s e d m e c h a n i s m o f a c t i o n / o v e r a l l c o n c l u s i o n P e n g e t a l[28] M a l e W i s t a r r a t s β -c a r o t e n e 0 . 5 2 -2 . 6 m g / k g 1 2 w e e k s R e d u c e d o x i d a t i v e s t r e s s v i a :-R e d u c i n g C Y P 2 E 1 g e n e e x p r e s s i o n -P r e v e n t i n g l i p i d p e r o x i d a t i o n -I n c r e a s i n g G P x c o n c e n t r a t i o n s i n e r y t h r o c y t e s I n h i b i t e d e t h a n o l -i n d u c e d l i v e r d a m a g e P o r t a r i e t a l[29] M a l e W i s t a r r a t s D i e t c o n t a i n i n g 0 . 5 g % β -c a r o t e n e 2 8 d a y s N o b e n e f i c i a l a n t i o x i d a n t e f f e c t A h m e d e t a l[30] 3 0 -6 0 m g / d β -c a r o t e n e 5 a l c o h o l i c s w i t h o u t c i r r h o s i s , a n d 7 p a t i e n t s w i t h c i r r h o s i s , 5 c o n t r o l s u b j e c t s 3 d a y s D u e t o p r o b a b l e h e p a t o t o x i c i n t e r a c t i o n s b e t w e e n a l c o h o l a n d β -c a r o t e n e ,β -c a r o t e n e s u p p l e m e n t a t i o n , i n c o m b i n a t i o n w i t h c o n t r o l o f d r i n k i n g c a n b e b e n e f i c i a l e s p e c i a l l y i n c i r r h o t i c p a t i e n t s G u o e t a l[33] M a l e K u n -M i n g m i c e V i t a m i n C 5 0 -1 0 0 m g / k g d a i l y 7 d a y s L o w e r e d A L T a c t i v i t y a n d i r o n o v e r l o a d i n t h e l i v e r I n c r e a s e d t h e e x p r e s s i o n o f h e p c i d i n a n d d e c r e a s e d t r a n s f e r r i n r e c e p t o r 1 (T f R 1 ) e x p r e s s i o n i n t h e l i v e r S t i m u l a t e d f e r r o p o r t i n 1 (F p n 1 ) e x p r e s s i o n i n t h e i n t e s t i n e a n d d i m i n i s h e d i r o n r e l e a s e t o b l o o d P i r o z h k o v e t a l[34]M a l e C 5 7 B L / m i c e V i t a m i n E 2 0 -1 7 0 I U / L T h e d i e t c o n t a i n i n g 1 7 0 I U / L v i t a m i n E i m p r o v e d t h e h e p a t o t o x i c i t y I m p r o v e d c o l l a g e n a c c u m u l a t i o n D a s e t a l[35] M a l e B a l b / c m i c e B o t h r e s v e r a t r o l 5 m g / k g p e r d a y a n d v i t a m i n E 8 0 m g / k g p e r d a y A t t e n u a t e d t h e a c t i v i t i e s o f A S T , A L T , G S T , I L -1 0 , T N F -α , I F N -g a m m a ,V E G F -A a n d T G F -β 1 a n d T B A R S a n d n i t r i t e l e v e l s I m p r o v e d S O D , C A T , G R a n d G P x a c t i v i t i e s , a l b u m i n c o n t e n t , a n d G S H l e v e l A l t a v i l l a e t a l[36] F e m a l e C 5 7 B L / 6 m i c e A n a n a l o g o f v i t a m i n E (r a x o f e l a s t ) 2 0 m g / k g p e r d a y P r e v e n t e d N F -k a p p a B a c t i v i t y D i m i n i s h e d t h e l e v e l s o f A L T , t r i a c y l g l y c e r o l s , h e p a t i c M D A l e v e l s , p r e v e n t e d l i v e r G S H d e p l e t i o n a n d d e c r e a s e d T L R -4 , T N F -α , I L -6 a n d I C A M -1 h e p a t i c g e n e e x p r e s s i o n A m e l i o r a t e d l i v e r d a m a g e B l u n t e d t h e i n f l a m m a t o r y c a s c a d e a n d o r g a n d a m a g e d u r i n g c h r o n i c e t h a n o l e x p o s u r e M e z e y e t a l[37] 2 5 p a t i e n t s , 2 6 c o n t r o l s V i t a m i n E 1 0 0 0 I U / d 3 m o n t h s L o w e r e d s e r u m h y a l u r o n i c a c i d M a l h a m e t a l[45] 3 0 0 0 0 0 I U e r g o c a l c i f e r o l (D2g r o u p , n = 2 3 ) o r c h o l e c a l c i f e r o l (D3g r o u p , n = 1 3 )A s i n g l e o r a l m e g a d o s e o f c h o l e c a l c i f e r o l h a s m o r e t h e r a p e u t i c e f f e c t s o n A L D p a t i e n t s w i t h v i t a m i n D d e f i c i e n c y c o m p a r e d t o e r g o c a l c i f e r o l L i e t a l[46] M a l e S p r a g u e -D a w l e y r a t s N i c o t i n i c a c i d (N A ) 7 5 0 m g / L 8 w e e k s I m p r o v e d h e p a t i c f a t a c c u m u l a t i o n t h r o u g h l o w e r i n g t h e e x p r e s s i o n o f h e -p a t i c f a t t y a c i d s y n t h a s e I n c r e a s e d s e r u m β -h y d r o x y b u t y r a t e a n d a d i p o n e c t i n I n c r e a s e d t h e c o n t e n t o f t o t a l N A D , N A D (+), a n d N A D H i n t h e l i v e r E l e v a t e d c y t o c h r o m e P 4 5 0 4 A 1 (C Y P 4 A 1 ) a n d a c y l -c o e n z y m e A o x i d a s e 1 i n t h e l i v e r D i m i n i s h e d t h e u b i q u i t i n a t i o n l e v e l o f C Y P 4 A 1 J i a e t a l[48] F e m a l e W i s t a r r a t s S i l y m a r i n 5 0 m g / k g p e r d a y I n h i b i t e d e x p r e s s i o n o f p r o f i b r o g e n i c p r o c o l l a g e n a l p h a 1 (I ) a n d T I M P -1 p o s -s i b l y b y s u p p r e s s i n g t h e T G F -β 1 m R N A e x p r e s s i o n L o w e r e d t h e s e r u m p r o c o l l a g e n t y p e I I I p r o p e p t i d e l e v e l w h i c h i s a n i n d i c a t o r o f t h e h e p a t i c p r o f i b r o g e n i c m R N A e x p r e s s i o n L i e b e r e t a l[49] T w e l v e b a b o o n s S i l y m a r i n 3 9 . 8 1 m g / k g 3 y e a r s R e d u c e d a l c o h o l -i n d u c e d o x i d a t i v e s t r e s s I m p r o v e d t h e r i s e i n l i v e r l i p i d s a n d s e r u m A L T a c t i v i t y I n h i b i t e d t h e e l e v a t i o n o f h e p a t i c c o l l a g e n t y p e I a n d a l p h a 1 (I ) p r o c o l l a g e n m R N A R e s t o r e d t h e e x p a n s i o n o f l i v e r f i b r o s i s F e h é r e t a l[52] I n v i t r o i n c u b a t i o n w i t h t h e u s u a l t h e r a p e u t i c d o s a g e o f s i l y m a r i n a s w e l l a s i n v i v o s t u d y I n v i t r o i n c u b a t i o n w i t h t h e u s u a l t h e r a p e u t i c d o s a g e o f s i l y m a r i n : e l e v a t e d t h e S O D e x p r e s s i o n o f l y m p h o c y t e s a n d e r y t h r o c y t e a n d l y m p h o c y t e S O D a c t i v i t i e s . I n v i v o t r e a t m e n t : e n h a n c e d t h e a c t i v i t y a n d e x p r e s s i o n o f S O D i n l y m p h o -c y t e s a n d e r y t h r o c y t e s

    (To be continued)

    Studies  Study description, dose, duration Supplement proposed mechanism of action/overall conclusion Müzes et al[53] 420 mg/d silymarin administration in patients with ALD 6 months Elevated the serum level of ree--SH groups and the activity of GPx Reduced serum MDA Improved the initially low SOD activity of erythrocytes and lymphocytes Fehér et al[54] Silymarin administration on 36 ALD patients 6 months Normalized serum level of AST and ALT Lowered the activity of GGT and procollagen III peptid level Ameliorated the histological changes in the liver Lirussi et al[55] 42 outpatients 135 mg/d silybin per os 6 months Reduced plasma levels of glucose and triglyceride Brandon-Warner et al[56]In vivo and in vitro Male and female B6C3 mice 0.5% (w/w) silibinin 9 weeks Did not effectively prevent the development of hepatic tumor Nanda et al[57] A retrospective study of 602 patients who received water soluble silymarin (Liverubin?)treatment 11 months Improved hepatic enzymes and serum liver function tests It was safe, effective and well-tolerated in the doses of 140 mg three times a day Zeng et al[61] Male Kun-Ming mice Curcumin 50, 100 and 200 mg/kg 14 days Enhanced serum AST and ALT activity at high-dose group Increased the hepatic activity of SOD, GSH-Px and antioxidative capacity Diminished the content of MDA Rong et al[62] Balb/c mice Curcumin 75 mg/kg per day 6 weeks Exerted hepatoprotective effects through preventing oxidative stress and lipid accumulation Bujanda et al[64] Male Balb/c mice 10 mg/mL water resveratrol 6 weeks Decreased mortality and liver by its antioxidant, anti-inflammatory and antiinfectious actions Kasdallah-Grissa et al[65]Wistar rats 5 g/kg resveratrol 6 weeks Suppressed hepatic lipid peroxidation and inhibited the oxidative damage by ameliorating SOD, GPx and CAT activities in the liver Ajmo et al[66] C57BL/6J mice 200-400 mg/kg resveratrol per day 4 weeks Prevented alcoholic liver steatosis by ameliorating lipid synthesis and rates of fatty acid oxidation Up-regulated SIRT1 expression levels and increased hepatic AMPK activity by suppression of SREBP-1 and activation of PGC-1alpha Raal et al[68] Male Balb/c 20 mg/kg trans-resveratrol per day 35 days Prevented of oxidation of polyunsaturated fatty acids Park et al[70] Male ICR mice 325 mg citrus flavonoids (CFs)/kg (60% hesperidin and 40% narirutin)8 weeks Suppressed increases in prognostic parameters of a hepatocellular injury and proinflammatory cytokines such as IκB-α, TNF-α, IL-1β and IL-6 Inhibited excessive lipid formation Improved the antioxidant defense Park et al[71] Male ICR mice Citrus narirutin fraction (CNF) 150-300 mg CNF/kg 8 weeks Lowered serum ALT and AST activity Suppressed excessive liver triglyceride and total cholesterol accumulations Normalized SOD activity, GSH and MDA levels Inhibited hepatic production of NF-κB, TNF-α and IL-1β in a dose-dependent manner Zhang et al[73] Male Sprague-Dawley rats Tea polyphenols (250 mg/kg per day)12 weeks Stimulated the gene expressions of IL-3, IL-4, IL-1R2, IL-6R, IL-7R2 Suppressed the gene expressions of IL-3Ra, IL-1R1 Improved alcohol-induced liver damage Zhang et al[74] Male Sprague-Dawley rats 0.25 g/kg tea polyphenols 24 weeks Lowered serum ALT and AST activities Ameliorated the pathological changes Li et al[76] Sprague-Dawley rats Tea polyphenols (0.05, 0.125, 0.25 g/kg)24 weeks Attenuated liver fibrosis by the antioxidative pathway and decreasing endotoxin level

    (To be continued)

    Studies  Study description, dose, duration Supplement proposed mechanism of action/overall conclusion Kirpich et al[78] 66 males patients /24 healthy control Decreased AST and ALT, GGT, LDH, and total bilirubin Bifidobacterium bifidum and Lactobacillus plantarum 5 days Bang et al[82] C57BL/6 mice 1 mg/mL per day of L. rhamnosus R0011 and L. acidophilus R0052 10 weeks Down-regulated the expression of TLR-4 Reduced hepatic IL-1β levels Segawa et al[84] C57BL/6 mice Heat-killed L. brevis 100-500 mg/kg per day 35 days Suppressed the overexpression of TNF-α, SREBP-1, and SREBP-2 mRNA in the liver Stimulated the expression of Hsp25 mRNA in the small intestine Zhao et al[85] Male C57BL/6N mice Lactobacillus rhamnosus GG (LGG) 109 CFU/ d/mouse 4 weeks Inhibited ethanol-induced liver damage by - Suppressing the expression of miR122a - Stimulating the expression of epithelial tight junction protein occludin - Lowering endotoxemia - Promoting intestinal barrier function Stadlbauer et al[87]12 patients with alcoholic cirrhosis, 21 control subjects Lactobacillus casei Shirota (6.5×109): 3 times daily 4 weeks Normalized neutrophil phagocytic capacity in cirrhosis, through ameliorating IL-10 secretion and TLR-4 expression Lambert et al[95] Metallothionein knockout (MT-KO) mice 2.5 mg zinc ion/kg Promoted intestinal structural integrity through inhibition of endotoxemia and liver damage in an MT-independent manner Lambert et al[96] Male 129 SvPCJ mice 5 mg of zinc ion/kg Prevented alcohol-induced intestinal hyperpermeability which lead to ameliorating liver injury Zhou et al[97] Metallothionein-knockout and wild-type 129/Sv mice 75 mg zinc element/L 12 weeks Ameliorated alcohol-induced liver damage independent of MT via preventing the generation of reactive oxygen species (P450 2E1) and enhancing the antioxidant activity Zhou et al[98] MT I/II-knockout (MT-KO) mice 5 mg/kg zinc per day 3 days Improved alcohol-induced liver damage by enhancing the activity of antioxidant defense Xiao et al[99] C57BL/6 mice 75 mg/L zinc sulfate 6 months Elevated HNF-4α which lead to restoration of the liver damage Kang et al[100] Male 129S mice 75 mg elemental zinc/L zinc sulfate in liquid diet 4 weeks Restored alcohol-reduced white adipose tissue mass which lead to decreased hepatic fat accumulation Stimulated HNF-4α and PPAR-α Improved alcoholic steatosis via ameliorating fatty acid β-oxidation and VLDL secretion Lambert et al[101]Male 129/Sv(PC)J mice 5 mg of zinc ion/kg In 12-hour intervals for 36 hours Prevented alcohol-induced liver apoptosis via suppression of Fas ligand activation and inhibition of caspase-3 and caspase-8 Jung et al[107] Male Wistar rats 1% (w/v) betaine 6 weeks Enhanced liver steatosis and oxidative liver damage through enhancing sulfur amino acid metabolism Increased SAM level which resulted in the suppression of Kupffer cell activation and improvement of liver antioxidant capacity Elevated cysteine synthesis suppressed its catabolism to taurine, which result in promoting GSH generation and antioxidant defense Restored the alcohol-induced liver damage Vendemiale et al[108]9 patients with ALD/23 control subjects 1.2 g/day SAM 6 months Promoted hepatic GSH levels Mato et al[109] 123 patients 1200 mg/d SAM 2 years Enhanced survival and delayed liver transplantation especially in the earlier stages of the liver disease

    (To be continued)

    Conclusion

    There is currently no satisfying treatment available for patients with ALD; dietary supplements have shown beneficial effects in animal models of ALD and might be useful in clinical practice. Dietary supplements have antioxidative and anti-inflammatory effects and therefore,potentially alleviate liver injury in patients with ALD. However, further clinical trials are needed to validate the role of dietary supplements in patients with ALD.

    Funding: This study was supported in part by a grant from the National Nutrition and Food Technology Institute.

    Ethical approval: Not needed.

    Competing interest: The authors do not choose to declare any conflict of interest related directly or indirectly to the subject of this article.

    References

    Contributors: GZ and HA proposed the study and wrote the first draft. All authors contributed to the design and interpretation of the study and to further drafts. HA is the guarantor.

    1 Toshikuni N, Tsutsumi M, Arisawa T. Clinical differences between alcoholic liver disease and nonalcoholic fatty liver disease. World J Gastroenterol 2014;20:8393-8406.

    2 Chiang DJ, McCullough AJ. The impact of obesity and metabolic syndrome on alcoholic liver disease. Clin Liver Dis 2014;18:157-163.

    3 Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease:role of oxidative metabolism. World J Gastroenterol 2014;20:17756-17772.

    4 Altamirano J, Bataller R. Alcoholic liver disease: pathogenesis and new targets for therapy. Nat Rev Gastroenterol Hepatol 2011;8:491-501.

    5 Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 2011;141:1572-1585.

    6 Orman ES, Odena G, Bataller R. Alcoholic liver disease: pathogenesis, management, and novel targets for therapy. J Gastroenterol Hepatol 2013;28:77-84.

    7 Schwartz JM, Reinus JF. Prevalence and natural history of alcoholic liver disease. Clin Liver Dis 2012;16:659-666.

    8 Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y, Patra J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 2009;373:2223-2233.

    9 McClain CJ, Barve SS, Barve A, Marsano L. Alcoholic liver disease and malnutrition. Alcohol Clin Exp Res 2011;35:815-820.

    10 Kaur J, Shalini S, Bansal MP. Influence of vitamin E on alcoholinduced changes in antioxidant defenses in mice liver. Toxicol Mech Methods 2010;20:82-89.

    11 Park BJ, Lee YJ, Lee HR. Chronic liver inflammation: clinical implications beyond alcoholic liver disease. World J Gastroenterol 2014;20:2168-2175.

    12 Rambaldi A, Gluud C. S-adenosyl-L-methionine for alcoholic liver diseases. Cochrane Database Syst Rev 2006:CD002235.

    13 Lu SC, Martínez-Chantar ML, Mato JM. Methionine adenosyltransferase and S-adenosylmethionine in alcoholic liver disease. J Gastroenterol Hepatol 2006;21:S61-S64.

    14 Ki SH, Choi JH, Kim CW, Kim SG. Combined metadoxine and garlic oil treatment efficaciously abrogates alcoholic steatosis and CYP2E1 induction in rat liver with restoration of AMPK activity. Chem Biol Interact 2007;169:80-90.

    15 Abhilash PA, Harikrishnan R, Indira M. Ascorbic acid suppresses endotoxemia and NF-κB signaling cascade in alcoholic liver fibrosis in guinea pigs: a mechanistic approach. Toxicol Appl Pharmacol 2014;274:215-224.

    16 Trépo E, Gustot T, Degré D, Lemmers A, Verset L, Demetter P, et al. Common polymorphism in the PNPLA3/adiponutrin gene confers higher risk of cirrhosis and liver damage in alcoholic liver disease. J Hepatol 2011;55:906-912.

    17 Tian C, Stokowski RP, Kershenobich D, Ballinger DG, Hinds DA. Variant in PNPLA3 is associated with alcoholic liver disease. Nat Genet 2010;42:21-23.

    18 Stickel F, Buch S, Lau K, Meyer zu Schwabedissen H, Berg T,Ridinger M, et al. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in caucasians. Hepatology 2011;53:86-95.

    19 Williams JA, Manley S, Ding WX. New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases. World J Gastroenterol 2014;20:12908-12933.

    20 Singal AK, Charlton MR. Nutrition in alcoholic liver disease. Clin Liver Dis 2012;16:805-826.

    21 Leo MA, Rosman AS, Lieber CS. Differential depletion of carotenoids and tocopherol in liver disease. Hepatology 1993;17:977-986.

    22 Van de Casteele M, Zaman Z, Zeegers M, Servaes R, Fevery J,Nevens F. Blood antioxidant levels in patients with alcoholic liver disease correlate with the degree of liver impairment and are not specific to alcoholic liver injury itself. Aliment Pharmacol Ther 2002;16:985-992.

    23 Ward RJ, Peters TJ. The antioxidant status of patients with either alcohol-induced liver damage or myopathy. Alcohol Alcohol 1992;27:359-365.

    24 Stice CP, Wang XD. Carotenoids and alcoholic liver disease. Hepatobiliary Surg Nutr 2013;2:244-247.

    25 Sindhu ER, Firdous AP, Preethi KC, Kuttan R. Carotenoid lutein protects rats from paracetamol-, carbon tetrachlorideand ethanol-induced hepatic damage. J Pharm Pharmacol 2010;62:1054-1060.

    26 Liu G, Zhang Y, Liu C, Xu D, Zhang R, Cheng Y, et al. Luteolin alleviates alcoholic liver disease induced by chronic and binge ethanol feeding in mice. J Nutr 2014;144:1009-1015.

    27 Lin WT, Huang CC, Lin TJ, Chen JR, Shieh MJ, Peng HC, et al. Effects of beta-carotene on antioxidant status in rats with chronic alcohol consumption. Cell Biochem Funct 2009;27:344-350.

    28 Peng HC, Chen YL, Yang SY, Ho PY, Yang SS, Hu JT, et al. The antiapoptotic effects of different doses of β-carotene in chronic ethanol-fed rats. Hepatobiliary Surg Nutr 2013;2:132-141.

    29 Portari GV, Jord?o Júnior AA, Meirelles MS, Marchini JS, Vannucchi H. Effect of beta-carotene supplementation on rats submitted to chronic ethanol ingestion. Drug Chem Toxicol 2003;26:191-198.

    30 Ahmed S, Leo MA, Lieber CS. Interactions between alcohol and beta-carotene in patients with alcoholic liver disease. Am J Clin Nutr 1994;60:430-436.

    31 Glascott PA Jr, Gilfor E, Serroni A, Farber JL. Independent antioxidant action of vitamins E and C in cultured rat hepatocytes intoxicated with allyl alcohol. Biochem Pharmacol 1996;52:1245-1252.

    32 Abhilash PA, Harikrishnan R, Indira M. Ascorbic acid supplementation down-regulates the alcohol induced oxidative stress, hepatic stellate cell activation, cytotoxicity and mRNA levels of selected fibrotic genes in guinea pigs. Free Radic Res 2012;46:204-213.

    33 Guo X, Li W, Xin Q, Ding H, Zhang C, Chang Y, et al. Vitamin C protective role for alcoholic liver disease in mice through regulating iron metabolism. Toxicol Ind Health 2011;27:341-348.

    34 Pirozhkov SV, Eskelson CD, Watson RR. Chronic ethanol and cocaine-induced hepatotoxicity: effects of vitamin E supplementation. Alcohol Clin Exp Res 1992;16:904-909.

    35 Das SK, Mukherjee S, Gupta G, Rao DN, Vasudevan DM. Protective effect of resveratrol and vitamin E against ethanolinduced oxidative damage in mice: biochemical and immunological basis. Indian J Biochem Biophys 2010;47:32-37.

    36 Altavilla D, Marini H, Seminara P, Squadrito G, Minutoli L, Passaniti M, et al. Protective effects of antioxidant raxofelast in alcohol-induced liver disease in mice. Pharmacology 2005;74:6-14.

    37 Mezey E, Potter JJ, Rennie-Tankersley L, Caballeria J, Pares A. A randomized placebo controlled trial of vitamin E for alcoholic hepatitis. J Hepatol 2004;40:40-46.

    38 Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 2005;142:37-46.

    39 Savic Z, Damjanov D, Curic N, Kovacev-Zavisic B, Hadnadjev L, Novakovic-Paro J, et al. Vitamin D status, bone metabolism and bone mass in patients with alcoholic liver cirrhosis. BratislLek Listy 2014;115:573-578.

    40 González-Reimers E, Quintero-Platt G, Rodríguez-Rodríguez E, Martínez-Riera A, Alvisa-Negrín J, Santolaria-Fernández F. Bone changes in alcoholic liver disease. World J Hepatol 2015;7:1258-1264.

    41 López-Larramona G, Lucendo AJ, González-Delgado L. Alcoholic liver disease and changes in bone mineral density. Rev Esp Enferm Dig 2013;105:609-621.

    42 Malham M, J?rgensen SP, Ott P, Agnholt J, Vilstrup H, Borre M,et al. Vitamin D deficiency in cirrhosis relates to liver dysfunction rather than aetiology. World J Gastroenterol 2011;17:922-925.

    43 Trépo E, Ouziel R, Pradat P, Momozawa Y, Quertinmont E,Gervy C, et al. Marked 25-hydroxyvitamin D deficiency is associated with poor prognosis in patients with alcoholic liver disease. J Hepatol 2013;59:344-350.

    44 Anty R, Canivet CM, Patouraux S, Ferrari-Panaia P, Saint-Paul MC, Huet PM, et al. Severe vitamin D deficiency may be an additional cofactor for the occurrence of alcoholic steatohepatitis. Alcohol Clin Exp Res 2015;39:1027-1033.

    45 Malham M, Peter J?rgensen S, Lauridsen AL, Ott P, Glerup H,Dahlerup JF. The effect of a single oral megadose of vitamin D provided as either ergocalciferol (D2) or cholecalciferol (D3) in alcoholic liver cirrhosis. Eur J Gastroenterol Hepatol 2012;24:172-178.

    46 Li Q, Xie G, Zhang W, Zhong W, Sun X, Tan X, et al. Dietary nicotinic acid supplementation ameliorates chronic alcohol-induced fatty liver in rats. Alcohol Clin Exp Res 2014;38:1982-1992.

    47 Pradhan SC, Girish C. Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J Med Res 2006;124:491-504.

    48 Jia JD, Bauer M, Cho JJ, Ruehl M, Milani S, Boigk G, et al. Antifibrotic effect of silymarin in rat secondary biliary fibrosis is mediated by downregulation of procollagen alpha1(I) and TIMP-1. J Hepatol 2001;35:392-398.

    49 Lieber CS, Leo MA, Cao Q, Ren C, DeCarli LM. Silymarin retards the progression of alcohol-induced hepatic fibrosis in baboons. J Clin Gastroenterol 2003;37:336-339.

    50 Galicia-Moreno M, Gutiérrez-Reyes G. The role of oxidative stress in the development of alcoholic liver disease. Rev Gastroenterol Mex 2014;79:135-144.

    51 Soto CP, Perez BL, Favari LP, Reyes JL. Prevention of alloxan-induced diabetes mellitus in the rat by silymarin. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1998;119:125-129.

    52 Fehér J, Láng I, Nékám K, Müzes G, Deák G. Effect of free radical scavengers on superoxide dismutase (SOD) enzyme in patients with alcoholic cirrhosis. Acta Med Hung 1988;45:265-276.

    53 Müzes G, Deák G, Láng I, Nékám K, Niederland V, Fehér J. Effect of silimarin (Legalon) therapy on the antioxidant defense mechanism and lipid peroxidation in alcoholic liver disease (double blind protocol). Orv Hetil 1990;131:863-866.

    54 Fehér J, Deák G, Müzes G, Láng I, Niederland V, Nékám K, et al. Liver-protective action of silymarin therapy in chronic alcoholic liver diseases. Orv Hetil 1989;130:2723-2727.

    55 Lirussi F, Beccarello A, Zanette G, De Monte A, Donadon V,Velussi M, et al. Silybin-beta-cyclodextrin in the treatment of patients with diabetes mellitus and alcoholic liver disease. Efficacy study of a new preparation of an anti-oxidant agent. Diabetes Nutr Metab 2002;15:222-231.

    56 Brandon-Warner E, Eheim AL, Foureau DM, Walling TL, Schrum LW, McKillop IH. Silibinin (Milk Thistle) potentiates ethanol-dependent hepatocellular carcinoma progression in male mice. Cancer Lett 2012;326:88-95.

    57 Nanda V, Gupta V, Sharma SN, Pasricha A, Karmakar AK, Patel A, et al. Effect of Liverubin? on hepatic biochemical profile in patients of alcoholic liver disease: a retrospective study. Minerva Med 2014;105:1-8.

    58 Mili? N, Milosevi? N, Suvajdzi? L, Zarkov M, Abenavoli L. New therapeutic potentials of milk thistle (Silybum marianum). Nat Prod Commun 2013;8:1801-1810.

    59 Saller R, Brignoli R, Melzer J, Meier R. An updated systematic review with meta-analysis for the clinical evidence of silymarin. Forsch Komplementmed 2008;15:9-20.

    60 Ghorbani Z, Hekmatdoost A, Mirmiran P. Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. Int J Endocrinol Metab 2014;12:e18081.

    61 Zeng Y, Liu J, Huang Z, Pan X, Zhang L. Effect of curcumin on antioxidant function in the mice with acute alcoholic liver injury. Wei Sheng Yan Jiu 2014;43:282-285.

    62 Rong S, Zhao Y, Bao W, Xiao X, Wang D, Nussler AK, et al. Curcumin prevents chronic alcohol-induced liver disease involving decreasing ROS generation and enhancing antioxidative capacity. Phytomedicine 2012;19:545-550.

    63 Faghihzadeh F, Adibi P, Rafiei R, Hekmatdoost A. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr Res 2014;34:837-843.

    64 Bujanda L, García-Barcina M, Gutiérrez-de Juan V, Bidaurrazaga J, de Luco MF, Gutiérrez-Stampa M, et al. Effect of resveratrol on alcohol-induced mortality and liver lesions in mice. BMC Gastroenterol 2006;6:35.

    65 Kasdallah-Grissa A, Mornagui B, Aouani E, Hammami M, El May M, Gharbi N, et al. Resveratrol, a red wine polyphenol,attenuates ethanol-induced oxidative stress in rat liver. Life Sci 2007;80:1033-1039.

    66 Ajmo JM, Liang X, Rogers CQ, Pennock B, You M. Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 2008;295:G833-842.

    67 Liu LQ, Fan ZQ, Tang YF, Ke ZJ. The resveratrol attenuates ethanol-induced hepatocyte apoptosis via inhibiting ER-related caspase-12 activation and PDE activity in vitro. Alcohol Clin Exp Res 2014;38:683-693.

    68 Raal A, Pokk P, Arend A, Aunapuu M, J?gi J, Okva K, et al. Trans-resveratrol alone and hydroxystilbenes of rhubarb (Rheum rhaponticum L.) root reduce liver damage induced by chronic ethanol administration: a comparative study in mice. Phytother Res 2009;23:525-532.

    69 Faghihzadeh F, Adibi P, Hekmatdoost A. The effects of resveratrol supplementation on cardiovascular risk factors in patients with non-alcoholic fatty liver disease: a randomised, doubleblind, placebo-controlled study. Br J Nutr 2015;114:796-803.

    70 Park HY, Choi HD, Eom H, Choi I. Enzymatic modification enhances the protective activity of citrus flavonoids against alcohol-induced liver disease. Food Chem 2013;139:231-240.

    71 Park HY, Ha SK, Eom H, Choi I. Narirutin fraction from citrus peels attenuates alcoholic liver disease in mice. Food Chem Toxicol 2013;55:637-644.

    72 Tang YT, Guan XQ, Liu L, Liu L, Wang LJ. Effect of tea polyphenols on expression of nuclear factor kappa B. Zhonghua Gan Zang Bing Za Zhi 2009;17:301-305.

    73 Zhang XG, Xu P, Liu Q, Yu CH, Zhang Y, Chen SH, et al. Effectof tea polyphenol on cytokine gene expression in rats with alcoholic liver disease. Hepatobiliary Pancreat Dis Int 2006;5:268-272.

    74 Zhang Y, Chen SH, Zhang XG, Ren GP, Sa XY, Yu CH, et al. Effect of tea polyphenols on alcoholic liver injury. Zhonghua Gan Zang Bing Za Zhi 2005;13:125-127.

    75 Zhang XG, Yu CH, Qing YE, Zhang Y, Chen SH, Li YM. Effect of tea polyphenol on liver fibrosis in rats and related mechanism. Zhongguo Zhong Yao Za Zhi 2003;28:1070-1072.

    76 Li YM, Zhang XG, Zhou HL, Chen SH, Zhang Y, Yu CH. Effects of tea polyphenols on hepatic fibrosis in rats with alcoholic liver disease. Hepatobiliary Pancreat Dis Int 2004;3:577-579.

    77 Malaguarnera G, Giordano M, Nunnari G, Bertino G,Malaguarnera M. Gut microbiota in alcoholic liver disease:pathogenetic role and therapeutic perspectives. World J Gastroenterol 2014;20:16639-16648.

    78 Kirpich IA, Solovieva NV, Leikhter SN, Shidakova NA, Lebedeva OV, Sidorov PI, et al. Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury:a pilot study. Alcohol 2008;42:675-682.

    79 Hong M, Kim SW, Han SH, Kim DJ, Suk KT, Kim YS, et al. Probiotics (Lactobacillus rhamnosus R0011 and acidophilus R0052) reduce the expression of toll-like receptor 4 in mice with alcoholic liver disease. PLoS One 2015;10:e0117451.

    80 Eslamparast T, Eghtesad S, Poustchi H, Hekmatdoost A. Recent advances in dietary supplementation, in treating non-alcoholic fatty liver disease. World J Hepatol 2015;7:204-212.

    81 Eslamparast T, Eghtesad S, Hekmatdoost A, Poustchi H. Probiotics and nonalcoholic fatty liver disease. Middle East J Dig Dis 2013;5:129-136.

    82 Bang CS, Hong SH, Suk KT, Kim JB, Han SH, Sung H, et al. Effects of Korean Red Ginseng (Panax ginseng), urushiol (Rhus vernicifera Stokes), and probiotics (Lactobacillus rhamnosus R0011 and Lactobacillus acidophilus R0052) on the gut-liver axis of alcoholic liver disease. J Ginseng Res 2014;38:167-172.

    83 Arora S, Kaur IP, Chopra K, Rishi P. Efficiency of double layered microencapsulated probiotic to modulate proinflammatory molecular markers for the management of alcoholic liver disease. Mediators Inflamm 2014;2014:715130.

    84 Segawa S, Wakita Y, Hirata H, Watari J. Oral administration of heat-killed Lactobacillus brevis SBC8803 ameliorates alcoholic liver disease in ethanol-containing diet-fed C57BL/6N mice. Int J Food Microbiol 2008;128:371-377.

    85 Zhao H, Zhao C, Dong Y, Zhang M, Wang Y, Li F, et al. Inhibition of miR122a by Lactobacillus rhamnosus GG culture supernatant increases intestinal occludin expression and protects mice from alcoholic liver disease. Toxicol Lett 2015;234:194-200.

    86 Eslamparast T, Poustchi H, Zamani F, Sharafkhah M, Malekzadeh R, Hekmatdoost A. Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebocontrolled pilot study. Am J Clin Nutr 2014;99:535-542.

    87 Stadlbauer V, Mookerjee RP, Hodges S, Wright GA, Davies NA,Jalan R. Effect of probiotic treatment on deranged neutrophil function and cytokine responses in patients with compensated alcoholic cirrhosis. J Hepatol 2008;48:945-951.

    88 Dinsmore W, Callender ME, McMaster D, Todd SJ, Love AH. Zinc absorption in alcoholics using zinc-65. Digestion 1985;32:238-242.

    89 Valberg LS, Flanagan PR, Ghent CN, Chamberlain MJ. Zinc absorption and leukocyte zinc in alcoholic and nonalcoholic cirrhosis. Dig Dis Sci 1985;30:329-333.

    90 Bode JC, Hanisch P, Henning H, Koenig W, Richter FW, Bode C. Hepatic zinc content in patients with various stages of alcoholic liver disease and in patients with chronic active and chronic persistent hepatitis. Hepatology 1988;8:1605-1609.

    91 Kiilerich S, Dietrichson O, Loud FB, Naestoft J, Christoffersen P, Juhl E, et al. Zinc depletion in alcoholic liver diseases. Scand J Gastroenterol 1980;15:363-367.

    92 McClain CJ, Antonow DR, Cohen DA, Shedlofsky SI. Zinc metabolism in alcoholic liver disease. Alcohol Clin Exp Res 1986;10:582-589.

    93 Rodríguez-Moreno F, González-Reimers E, Santolaria-Fernández F, Galindo-Martín L, Hernandez-Torres O, Batista-López N, et al. Zinc, copper, manganese, and iron in chronic alcoholic liver disease. Alcohol 1997;14:39-44.

    94 Zhong W, Zhao Y, Sun X, Song Z, McClain CJ, Zhou Z. Dietary zinc deficiency exaggerates ethanol-induced liver injury in mice: involvement of intrahepatic and extrahepatic factors. PLoS One 2013;8:e76522.

    95 Lambert JC, Zhou Z, Wang L, Song Z, McClain CJ, Kang YJ. Preservation of intestinal structural integrity by zinc is independent of metallothionein in alcohol-intoxicated mice. Am J Pathol 2004;164:1959-1966.

    96 Lambert JC, Zhou Z, Wang L, Song Z, McClain CJ, Kang YJ. Prevention of alterations in intestinal permeability is involved in zinc inhibition of acute ethanol-induced liver damage in mice. J Pharmacol Exp Ther 2003;305:880-886.

    97 Zhou Z, Wang L, Song Z, Saari JT, McClain CJ, Kang YJ. Zinc supplementation prevents alcoholic liver injury in mice through attenuation of oxidative stress. Am J Pathol 2005;166:1681-1690.

    98 Zhou Z, Sun X, Lambert JC, Saari JT, Kang YJ. Metallothionein-independent zinc protection from alcoholic liver injury. Am J Pathol 2002;160:2267-2274.

    99 Xiao M, Liu CB, Sun W, Dong MW, Hu GX, Li JW. Zinc supplementation effects on alcoholic liver disease and the molecular mechanism. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2012;28:84-88.

    100 Kang X, Zhong W, Liu J, Song Z, McClain CJ, Kang YJ, et al. Zinc supplementation reverses alcohol-induced steatosis in mice through reactivating hepatocyte nuclear factor-4alpha and peroxisome proliferator-activated receptor-alpha. Hepatology 2009;50:1241-1250.

    101 Lambert JC, Zhou Z, Kang YJ. Suppression of Fas-mediated signaling pathway is involved in zinc inhibition of ethanolinduced liver apoptosis. Exp Biol Med (Maywood) 2003;228:406-412.

    102 Purohit V, Russo D. Role of S-adenosyl-L-methionine in the treatment of alcoholic liver disease: introduction and summary of the symposium. Alcohol 2002;27:151-154.

    103 Halsted CH, Villanueva JA, Devlin AM. Folate deficiency,methionine metabolism, and alcoholic liver disease. Alcohol 2002;27:169-172.

    104 Lu SC, Tsukamoto H, Mato JM. Role of abnormal methionine metabolism in alcoholic liver injury. Alcohol 2002;27:155-162.

    105 Halsted CH, Medici V. Vitamin-dependent methionine metabolism and alcoholic liver disease. Adv Nutr 2011;2:421-427.

    106 Purohit V, Abdelmalek MF, Barve S, Benevenga NJ, Halsted CH, Kaplowitz N, et al. Role of S-adenosylmethionine, folate,and betaine in the treatment of alcoholic liver disease: summary of a symposium. Am J Clin Nutr 2007;86:14-24.

    107 Jung YS, Kim SJ, Kwon do Y, Ahn CW, Kim YS, Choi DW, etal. Alleviation of alcoholic liver injury by betaine involves an enhancement of antioxidant defense via regulation of sulfur amino acid metabolism. Food Chem Toxicol 2013;62:292-298.

    108 Vendemiale G, Altomare E, Trizio T, Le Grazie C, Di Padova C, Salerno MT, et al. Effects of oral S-adenosyl-L-methionine on hepatic glutathione in patients with liver disease. Scand J Gastroenterol 1989;24:407-415.

    109 Mato JM, Cámara J, Fernández de Paz J, Caballería L, Coll S, Caballero A, et al. S-adenosylmethionine in alcoholic liver cirrhosis: a randomized, placebo-controlled, double-blind,multicenter clinical trial. J Hepatol 1999;30:1081-1089.

    110 Medici V, Virata MC, Peerson JM, Stabler SP, French SW,Gregory JF 3rd, et al. S-adenosyl-L-methionine treatment for alcoholic liver disease: a double-blinded, randomized, placebo-controlled trial. Alcohol Clin Exp Res 2011;35:1960-1965.

    111 Halsted CH. B-Vitamin dependent methionine metabolism and alcoholic liver disease. Clin Chem Lab Med 2013;51:457-465.

    112 Aviello G, Abenavoli L, Borrelli F, Capasso R, Izzo AA, Lembo F, et al. Garlic: empiricism or science? Nat Prod Commun 2009;4:1785-1796.

    113 Raghu R, Liu CT, Tsai MH, Tang X, Kalari KR, Subramanian S,et al. Transcriptome analysis of garlic-induced hepatoprotection against alcoholic fatty liver. J Agric Food Chem 2012;60:11104-11119.

    114 Adoga GI. The mechanism of the hypolipidemic effect of garlic oil extract in rats fed on high sucrose and alcohol diets. Biochem Biophys Res Commun 1987;142:1046-1052.

    115 Zeng T, Zhang CL, Song FY, Zhao XL, Xie KQ. Garlic oil alleviated ethanol-induced fat accumulation via modulation of SREBP-1, PPAR-α, and CYP2E1. Food Chem Toxicol 2012;50:485-491.

    116 Zeng T, Xie KQ. Could garlic partially-counteract excess alcohol consumption? A postulated role of garlic oil in prevention of ethanol-induced hepatotoxicity. Med Hypotheses 2008;71:984-985.

    117 Zeng T, Guo FF, Zhang CL, Zhao S, Dou DD, Gao XC, et al. The anti-fatty liver effects of garlic oil on acute ethanolexposed mice. Chem Biol Interact 2008;176:234-242.

    118 Adoga GI, Osuji J. Effect of garlic oil extract on serum, liver and kidney enzymes of rats fed on high sucrose and alcohol diets. Biochem Int 1986;13:615-624.

    119 Adoga GI. Effect of garlic oil extract on glutathione reductase levels in rats fed on high sucrose and alcohol diets: a possible mechanism of the activity of the oil. Biosci Rep 1986;6:909-912.

    120 Kim MH, Kim MJ, Lee JH, Han JI, Kim JH, Sok DE, et al. Hepatoprotective effect of aged black garlic on chronic alcohol-induced liver injury in rats. J Med Food 2011;14:732-738.

    121 Park KJ, Kim HY, Chang BJ, Lee HH. Ameliorative effects of soy 11S protein on liver damage and hyperlipidemia in alcohol-fed rats. Biol Pharm Bull 2004;27:1636-1641.

    122 Yang HY, Lin HS, Chao JC, Chien YW, Peng HC, Chen JR. Effects of soy protein on alcoholic liver disease in rats undergoing ethanol withdrawal. J Nutr Biochem 2012;23:679-684.

    123 Fialla AD, Israelsen M, Hamberg O, Krag A, Gluud LL. Nutritional therapy in cirrhosis or alcoholic hepatitis: a systematic review and meta-analysis. Liver Int 2015;35:2072-2078.

    124 Plauth M, Cabré E, Riggio O, Assis-Camilo M, Pirlich M,Kondrup J, et al. ESPEN Guidelines on Enteral Nutrition:Liver disease. Clin Nutr 2006;25:285-294.

    125 Córdoba J, López-Hellín J, Planas M, Sabín P, Sanpedro F, Castro F, et al. Normal protein diet for episodic hepatic encephalopathy: results of a randomized study. J Hepatol 2004;41:38-43.

    Accepted after revision January 11, 2016

    Author Affiliations: Department of Clinical Nutrition and Dietetics,F(xiàn)aculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences, Tehran, Iran (Ghorbani Z, Hajizadeh M and Hekmatdoost A)

    Azita Hekmatdoost, MD, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences, Tehran, Iran (Tel: +604-875-2345ext5960;Email: a_hekmat2000@yahoo.com)
    ? 2016, Hepatobiliary Pancreat Dis Int. All rights reserved.

    10.1016/S1499-3872(16)60096-6
    Published online May 13, 2016.

    June 2, 2015

    伊人久久大香线蕉亚洲五| 亚洲欧美成人综合另类久久久| 国产免费又黄又爽又色| kizo精华| 久久久国产精品麻豆| 国产在线视频一区二区| 人成视频在线观看免费观看| 久久性视频一级片| 七月丁香在线播放| 久久久久精品国产欧美久久久 | 久久精品国产a三级三级三级| 午夜福利视频在线观看免费| 久久天堂一区二区三区四区| 蜜桃在线观看..| 国产精品二区激情视频| 波野结衣二区三区在线| 久久精品亚洲av国产电影网| 中文字幕色久视频| 日本av手机在线免费观看| 亚洲国产欧美网| 亚洲国产精品成人久久小说| 久热爱精品视频在线9| 久久久久久久大尺度免费视频| 极品少妇高潮喷水抽搐| 日韩精品免费视频一区二区三区| 91麻豆精品激情在线观看国产 | 高清不卡的av网站| 国产老妇伦熟女老妇高清| 性色av一级| 国产深夜福利视频在线观看| 午夜免费男女啪啪视频观看| 美女脱内裤让男人舔精品视频| 美女大奶头黄色视频| 免费人妻精品一区二区三区视频| 国产精品亚洲av一区麻豆| 少妇人妻 视频| 国产精品三级大全| 91九色精品人成在线观看| 黄色视频在线播放观看不卡| 黄色 视频免费看| 精品人妻一区二区三区麻豆| 亚洲,欧美,日韩| 黑丝袜美女国产一区| 日韩人妻精品一区2区三区| 精品久久久久久久毛片微露脸 | av有码第一页| 亚洲一区二区三区欧美精品| 日韩一卡2卡3卡4卡2021年| 成年女人毛片免费观看观看9 | 色婷婷久久久亚洲欧美| 免费看av在线观看网站| 午夜免费男女啪啪视频观看| 国产女主播在线喷水免费视频网站| 成人黄色视频免费在线看| 在线av久久热| 中文字幕高清在线视频| 免费黄频网站在线观看国产| 90打野战视频偷拍视频| 制服诱惑二区| 国产成人啪精品午夜网站| 老司机影院成人| 亚洲精品国产av蜜桃| av欧美777| 女人久久www免费人成看片| 欧美精品一区二区大全| 久久久久视频综合| 国产亚洲欧美精品永久| 国产老妇伦熟女老妇高清| 天天躁夜夜躁狠狠躁躁| 日本黄色日本黄色录像| 欧美亚洲 丝袜 人妻 在线| 国产成人免费观看mmmm| 色视频在线一区二区三区| 最近手机中文字幕大全| 美女视频免费永久观看网站| 丝袜喷水一区| 久久女婷五月综合色啪小说| 只有这里有精品99| 国产成人精品久久二区二区免费| 亚洲精品国产av蜜桃| 另类亚洲欧美激情| 狠狠婷婷综合久久久久久88av| 男女下面插进去视频免费观看| 国产精品偷伦视频观看了| 亚洲国产精品一区三区| 一级a爱视频在线免费观看| 亚洲专区中文字幕在线| 乱人伦中国视频| 1024香蕉在线观看| 99国产精品一区二区蜜桃av | 久久午夜综合久久蜜桃| 一级毛片女人18水好多 | 亚洲第一青青草原| 日韩一本色道免费dvd| 国产麻豆69| 国产日韩一区二区三区精品不卡| 欧美 亚洲 国产 日韩一| 一边摸一边做爽爽视频免费| 日韩 欧美 亚洲 中文字幕| 久久女婷五月综合色啪小说| 满18在线观看网站| xxx大片免费视频| 丁香六月欧美| 午夜精品国产一区二区电影| 99国产精品免费福利视频| 天天操日日干夜夜撸| 桃花免费在线播放| 久久国产亚洲av麻豆专区| 亚洲五月色婷婷综合| 91成人精品电影| 欧美人与善性xxx| 男女国产视频网站| 热re99久久国产66热| 欧美亚洲日本最大视频资源| 亚洲男人天堂网一区| 伊人亚洲综合成人网| 亚洲av男天堂| 久久精品久久精品一区二区三区| 亚洲三区欧美一区| 国产亚洲av片在线观看秒播厂| 99re6热这里在线精品视频| 精品福利永久在线观看| 亚洲免费av在线视频| 高潮久久久久久久久久久不卡| 亚洲精品日本国产第一区| 亚洲国产成人一精品久久久| 欧美精品高潮呻吟av久久| 免费在线观看完整版高清| 免费女性裸体啪啪无遮挡网站| 免费在线观看黄色视频的| av一本久久久久| 一本大道久久a久久精品| 欧美成人精品欧美一级黄| 国产欧美日韩一区二区三区在线| 免费在线观看完整版高清| 大话2 男鬼变身卡| 日韩大码丰满熟妇| 欧美精品av麻豆av| 狂野欧美激情性bbbbbb| 国产av一区二区精品久久| 视频区欧美日本亚洲| 成人手机av| 亚洲精品国产一区二区精华液| av电影中文网址| 婷婷色av中文字幕| 两个人免费观看高清视频| 中文字幕人妻丝袜制服| 婷婷色综合大香蕉| 91精品国产国语对白视频| 美女视频免费永久观看网站| 国产亚洲av片在线观看秒播厂| 美女大奶头黄色视频| 国产男人的电影天堂91| 女性被躁到高潮视频| 成年动漫av网址| 大话2 男鬼变身卡| 午夜久久久在线观看| 伦理电影免费视频| 飞空精品影院首页| 波野结衣二区三区在线| av片东京热男人的天堂| 国产在视频线精品| 婷婷色av中文字幕| 大陆偷拍与自拍| 亚洲av成人精品一二三区| 色视频在线一区二区三区| 一区二区三区激情视频| 午夜福利,免费看| 交换朋友夫妻互换小说| 免费一级毛片在线播放高清视频 | 欧美变态另类bdsm刘玥| 天天操日日干夜夜撸| 国产成人欧美在线观看 | 女人被躁到高潮嗷嗷叫费观| 亚洲男人天堂网一区| 老鸭窝网址在线观看| 亚洲精品国产一区二区精华液| 婷婷色综合www| 国产亚洲一区二区精品| 久热这里只有精品99| 美女脱内裤让男人舔精品视频| 两性夫妻黄色片| 亚洲欧洲国产日韩| 精品卡一卡二卡四卡免费| 亚洲国产欧美日韩在线播放| 啦啦啦 在线观看视频| 超色免费av| 亚洲国产精品一区三区| 精品国产超薄肉色丝袜足j| 女人被躁到高潮嗷嗷叫费观| 成人亚洲精品一区在线观看| 国产精品秋霞免费鲁丝片| 国产精品熟女久久久久浪| 97在线人人人人妻| 男的添女的下面高潮视频| 精品久久蜜臀av无| av不卡在线播放| 国产精品久久久av美女十八| 国产女主播在线喷水免费视频网站| 欧美大码av| 亚洲精品在线美女| 亚洲中文av在线| 欧美日韩福利视频一区二区| 国产精品欧美亚洲77777| 女人被躁到高潮嗷嗷叫费观| 人妻 亚洲 视频| 大型av网站在线播放| 国产精品免费大片| 亚洲欧美激情在线| 99国产精品免费福利视频| 国产熟女午夜一区二区三区| 亚洲av片天天在线观看| 精品国产一区二区三区四区第35| 亚洲av日韩在线播放| 亚洲情色 制服丝袜| 一级黄片播放器| 国产一区二区激情短视频 | 日本av免费视频播放| 国产精品一区二区在线不卡| 女人被躁到高潮嗷嗷叫费观| 久久中文字幕一级| 啦啦啦在线观看免费高清www| 欧美性长视频在线观看| 天天影视国产精品| 国产成人精品久久二区二区91| 免费久久久久久久精品成人欧美视频| 手机成人av网站| 国产xxxxx性猛交| 一二三四社区在线视频社区8| 制服诱惑二区| 丝袜美足系列| 日本91视频免费播放| 欧美激情高清一区二区三区| 精品久久蜜臀av无| 麻豆av在线久日| 99久久综合免费| 精品亚洲乱码少妇综合久久| 叶爱在线成人免费视频播放| 2018国产大陆天天弄谢| 水蜜桃什么品种好| a级片在线免费高清观看视频| 伊人亚洲综合成人网| 欧美国产精品一级二级三级| 欧美日韩黄片免| 久久鲁丝午夜福利片| 亚洲熟女精品中文字幕| av电影中文网址| 国产野战对白在线观看| 国产在线视频一区二区| 各种免费的搞黄视频| 手机成人av网站| 考比视频在线观看| 欧美成狂野欧美在线观看| 亚洲伊人久久精品综合| 伦理电影免费视频| 亚洲三区欧美一区| 国产成人精品在线电影| 在线av久久热| 老司机在亚洲福利影院| 人妻一区二区av| 如日韩欧美国产精品一区二区三区| 欧美黄色淫秽网站| 欧美日韩精品网址| 欧美老熟妇乱子伦牲交| 久久精品久久久久久噜噜老黄| 99久久99久久久精品蜜桃| av在线app专区| 亚洲av日韩在线播放| 七月丁香在线播放| 99国产精品99久久久久| 精品国产一区二区三区四区第35| 婷婷色麻豆天堂久久| 男女高潮啪啪啪动态图| 五月天丁香电影| 亚洲精品美女久久av网站| 黑人猛操日本美女一级片| 97在线人人人人妻| 视频在线观看一区二区三区| 美女国产高潮福利片在线看| 两个人免费观看高清视频| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品成人久久小说| 久久鲁丝午夜福利片| 七月丁香在线播放| 狂野欧美激情性bbbbbb| cao死你这个sao货| 一级毛片女人18水好多 | 国产男女超爽视频在线观看| 免费一级毛片在线播放高清视频 | 婷婷色综合www| 一区二区三区激情视频| 国产成人精品久久二区二区91| 国产高清国产精品国产三级| 乱人伦中国视频| 永久免费av网站大全| 亚洲国产中文字幕在线视频| 国产亚洲一区二区精品| 人妻 亚洲 视频| 久久精品成人免费网站| 午夜免费鲁丝| 老司机靠b影院| 夫妻性生交免费视频一级片| 婷婷丁香在线五月| 久久久久久免费高清国产稀缺| 亚洲av电影在线进入| 日韩av免费高清视频| 建设人人有责人人尽责人人享有的| 国产又色又爽无遮挡免| 亚洲欧洲国产日韩| 亚洲国产最新在线播放| 日本欧美视频一区| 亚洲黑人精品在线| 精品一区二区三区av网在线观看 | av福利片在线| 一级毛片 在线播放| 亚洲精品久久午夜乱码| 久久精品亚洲熟妇少妇任你| 侵犯人妻中文字幕一二三四区| 一个人免费看片子| 色94色欧美一区二区| 汤姆久久久久久久影院中文字幕| 七月丁香在线播放| 黄色怎么调成土黄色| 在现免费观看毛片| 亚洲精品在线美女| 亚洲精品国产区一区二| 久久亚洲精品不卡| 黑丝袜美女国产一区| 国产色视频综合| 黄色a级毛片大全视频| 下体分泌物呈黄色| 国产在线免费精品| 国产成人av激情在线播放| 亚洲国产毛片av蜜桃av| 国产精品国产三级专区第一集| xxxhd国产人妻xxx| 久久精品国产a三级三级三级| 亚洲人成电影免费在线| 亚洲欧美中文字幕日韩二区| 日韩,欧美,国产一区二区三区| av又黄又爽大尺度在线免费看| 精品少妇一区二区三区视频日本电影| 人人妻人人澡人人爽人人夜夜| 99久久精品国产亚洲精品| 老司机靠b影院| 精品国产一区二区三区久久久樱花| 欧美日韩视频精品一区| 视频区图区小说| 一级片'在线观看视频| 精品卡一卡二卡四卡免费| 国产一级毛片在线| 99国产精品免费福利视频| 色精品久久人妻99蜜桃| 午夜久久久在线观看| 免费在线观看视频国产中文字幕亚洲 | 老司机在亚洲福利影院| 久久精品熟女亚洲av麻豆精品| 狠狠婷婷综合久久久久久88av| 日本vs欧美在线观看视频| 国产成人免费无遮挡视频| 99久久人妻综合| 纯流量卡能插随身wifi吗| 青春草视频在线免费观看| 99re6热这里在线精品视频| 最新的欧美精品一区二区| 国产99久久九九免费精品| 在线观看一区二区三区激情| 如日韩欧美国产精品一区二区三区| 亚洲欧美清纯卡通| 人人妻人人爽人人添夜夜欢视频| 女人精品久久久久毛片| 久久精品久久久久久久性| 亚洲九九香蕉| 成人18禁高潮啪啪吃奶动态图| 国产野战对白在线观看| 亚洲美女黄色视频免费看| 无限看片的www在线观看| 亚洲精品美女久久久久99蜜臀 | 狠狠精品人妻久久久久久综合| 亚洲七黄色美女视频| 高清不卡的av网站| 人妻一区二区av| 青青草视频在线视频观看| 蜜桃在线观看..| 青春草亚洲视频在线观看| 蜜桃在线观看..| 久久国产精品人妻蜜桃| 欧美黄色片欧美黄色片| 91老司机精品| 日本欧美视频一区| 国产精品成人在线| 久久久久网色| 日韩熟女老妇一区二区性免费视频| 国产精品三级大全| 午夜福利视频在线观看免费| 精品免费久久久久久久清纯 | 亚洲国产精品一区三区| 午夜影院在线不卡| 精品一区二区三区四区五区乱码 | 深夜精品福利| 熟女少妇亚洲综合色aaa.| 老司机影院成人| www.av在线官网国产| 男女高潮啪啪啪动态图| 免费少妇av软件| 黄色片一级片一级黄色片| 手机成人av网站| 久久精品人人爽人人爽视色| 日韩一卡2卡3卡4卡2021年| 欧美日韩黄片免| 国产精品久久久久久人妻精品电影 | 久久人人爽av亚洲精品天堂| 欧美黑人欧美精品刺激| 国产成人av激情在线播放| 飞空精品影院首页| 色婷婷av一区二区三区视频| 日本五十路高清| 欧美日韩视频精品一区| 日韩一区二区三区影片| 电影成人av| 99九九在线精品视频| 久久久久精品人妻al黑| www.熟女人妻精品国产| 无遮挡黄片免费观看| 观看av在线不卡| 国产老妇伦熟女老妇高清| 一区二区日韩欧美中文字幕| 99久久精品国产亚洲精品| 黄色 视频免费看| 黄色一级大片看看| 精品久久蜜臀av无| 亚洲av成人不卡在线观看播放网 | 校园人妻丝袜中文字幕| 成年动漫av网址| bbb黄色大片| 国产精品久久久久久精品电影小说| 天天添夜夜摸| 一区二区三区四区激情视频| 欧美激情 高清一区二区三区| 日本vs欧美在线观看视频| 狠狠精品人妻久久久久久综合| 免费看十八禁软件| 热99国产精品久久久久久7| 在线观看一区二区三区激情| 国产成人av教育| 国产视频一区二区在线看| 国产福利在线免费观看视频| 精品卡一卡二卡四卡免费| 国产一区二区三区综合在线观看| 国产精品人妻久久久影院| 伊人久久大香线蕉亚洲五| 汤姆久久久久久久影院中文字幕| 欧美国产精品va在线观看不卡| 久久久国产精品麻豆| 久久影院123| 男女无遮挡免费网站观看| 热re99久久精品国产66热6| 色网站视频免费| 亚洲,一卡二卡三卡| 国产一卡二卡三卡精品| 亚洲天堂av无毛| 丝袜在线中文字幕| 成人黄色视频免费在线看| 亚洲欧美激情在线| 麻豆av在线久日| 精品久久久精品久久久| 人妻一区二区av| 国产视频首页在线观看| 在线观看免费视频网站a站| 久久影院123| 精品国产一区二区三区四区第35| 久久精品人人爽人人爽视色| 亚洲国产精品一区三区| 97在线人人人人妻| 只有这里有精品99| 色婷婷久久久亚洲欧美| 日本a在线网址| 精品国产国语对白av| 国产在线视频一区二区| 国产成人免费观看mmmm| 丰满饥渴人妻一区二区三| 精品国产乱码久久久久久小说| 国产精品久久久久久精品古装| 十八禁人妻一区二区| a 毛片基地| 欧美日韩亚洲综合一区二区三区_| 少妇的丰满在线观看| 曰老女人黄片| 天天操日日干夜夜撸| 一级毛片女人18水好多 | 亚洲精品美女久久久久99蜜臀 | 欧美日韩国产mv在线观看视频| 亚洲图色成人| 欧美日韩视频精品一区| a级毛片黄视频| 国产免费福利视频在线观看| 国语对白做爰xxxⅹ性视频网站| 天天添夜夜摸| 国产成人a∨麻豆精品| 亚洲,欧美,日韩| 高潮久久久久久久久久久不卡| 欧美变态另类bdsm刘玥| 伦理电影免费视频| 久久毛片免费看一区二区三区| 一边亲一边摸免费视频| 一个人免费看片子| 黄色片一级片一级黄色片| 久久精品亚洲熟妇少妇任你| 精品国产乱码久久久久久男人| 欧美乱码精品一区二区三区| 久久狼人影院| 国产成人欧美在线观看 | 国产成人免费观看mmmm| 国产一卡二卡三卡精品| 91九色精品人成在线观看| 视频在线观看一区二区三区| 久久精品国产a三级三级三级| 国产精品欧美亚洲77777| 大香蕉久久网| 老司机在亚洲福利影院| bbb黄色大片| 亚洲精品久久成人aⅴ小说| 日日爽夜夜爽网站| 亚洲黑人精品在线| 999久久久国产精品视频| 国产男女内射视频| 久久鲁丝午夜福利片| www日本在线高清视频| 久久性视频一级片| 无遮挡黄片免费观看| 亚洲情色 制服丝袜| 香蕉丝袜av| 精品国产超薄肉色丝袜足j| 国产精品亚洲av一区麻豆| 免费在线观看完整版高清| 人妻人人澡人人爽人人| 国产黄频视频在线观看| 91成人精品电影| 两个人看的免费小视频| 国产精品av久久久久免费| 建设人人有责人人尽责人人享有的| 一级毛片 在线播放| 欧美黄色片欧美黄色片| 超碰成人久久| 婷婷色综合大香蕉| h视频一区二区三区| av国产精品久久久久影院| 亚洲av日韩在线播放| 晚上一个人看的免费电影| 熟女少妇亚洲综合色aaa.| 女人久久www免费人成看片| 日韩 亚洲 欧美在线| 精品一区二区三区四区五区乱码 | 久久久国产一区二区| 黄色一级大片看看| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品欧美亚洲77777| 90打野战视频偷拍视频| 欧美成人午夜精品| 18禁裸乳无遮挡动漫免费视频| 99re6热这里在线精品视频| 免费在线观看完整版高清| 亚洲欧美清纯卡通| 男人操女人黄网站| 巨乳人妻的诱惑在线观看| 精品少妇久久久久久888优播| 国产伦人伦偷精品视频| 女人被躁到高潮嗷嗷叫费观| 夫妻午夜视频| 久久女婷五月综合色啪小说| 亚洲中文字幕日韩| 女人精品久久久久毛片| 一二三四社区在线视频社区8| 亚洲一区中文字幕在线| 日本wwww免费看| 免费少妇av软件| 久久 成人 亚洲| 婷婷色麻豆天堂久久| 日本91视频免费播放| 亚洲精品久久午夜乱码| 一级片免费观看大全| 女人高潮潮喷娇喘18禁视频| 欧美日韩视频高清一区二区三区二| 中文字幕另类日韩欧美亚洲嫩草| 老汉色∧v一级毛片| www.精华液| 色网站视频免费| 999精品在线视频| av网站在线播放免费| 五月开心婷婷网| 国产日韩欧美视频二区| 首页视频小说图片口味搜索 | 欧美精品啪啪一区二区三区 | 亚洲欧洲日产国产| 国产av精品麻豆| 免费在线观看影片大全网站 | 搡老岳熟女国产| 少妇猛男粗大的猛烈进出视频| 日韩一本色道免费dvd| 在线观看人妻少妇| 亚洲 欧美一区二区三区| 欧美精品人与动牲交sv欧美| 99久久人妻综合| 亚洲欧美日韩高清在线视频 | 日本a在线网址| 欧美+亚洲+日韩+国产| 久久ye,这里只有精品| 久久精品国产亚洲av高清一级| 嫩草影视91久久| 精品一区二区三区av网在线观看 | 亚洲视频免费观看视频| 欧美国产精品va在线观看不卡| 国产国语露脸激情在线看| kizo精华| 美女国产高潮福利片在线看|