孫俊波, 趙 璐, 史素琴, 寇振媛, 劉愛娟, 付婷婷
(1河南中醫(yī)藥大學(xué)第二附屬醫(yī)院,河南省中醫(yī)院,河南鄭州450002;2河南中醫(yī)藥大學(xué)第三附屬醫(yī)院,河南鄭州450008;3河南中醫(yī)藥大學(xué)第一附屬醫(yī)院,河南鄭州450000)
青蒿素減輕LPS誘導(dǎo)的腸上皮細(xì)胞屏障功能損傷的實驗研究
孫俊波1, 趙 璐2△, 史素琴3, 寇振媛1, 劉愛娟2, 付婷婷2
(1河南中醫(yī)藥大學(xué)第二附屬醫(yī)院,河南省中醫(yī)院,河南鄭州450002;2河南中醫(yī)藥大學(xué)第三附屬醫(yī)院,河南鄭州450008;3河南中醫(yī)藥大學(xué)第一附屬醫(yī)院,河南鄭州450000)
目的:探究青蒿素對脂多糖(lipopolysaccharide,LPS)誘導(dǎo)的大鼠腸上皮IEC-6細(xì)胞屏障功能損傷的影響。方法:體外培養(yǎng)IEC-6細(xì)胞,隨機(jī)分為5組:對照組、LPS(100 mg/L)組和LPS+青蒿素(30、50和100 μmol/L)組,MTT法檢測各組細(xì)胞毒性變化,ELISA檢測各組細(xì)胞分泌炎性因子TNF-α、IL-1β和IL-6水平的變化,電阻儀檢測腸上皮細(xì)胞跨上皮電阻(TER),酶標(biāo)儀檢測單層細(xì)胞對辣根過氧化物酶(HRP)的通透性,RT-qPCR和Western blot檢測各組細(xì)胞緊密連接蛋白(ZO-1、claudin-1和occludin)以及TLR4/MyD88/NF-κB mRNA和蛋白表達(dá)的變化。結(jié)果:LPS與青蒿素在本實驗濃度范圍對IEC-6細(xì)胞均無毒性。與對照組相比,LPS處理下,細(xì)胞分泌TNF-α、IL-1β和IL-6水平以及TLR4/MyD88/NF-κB的mRNA和蛋白表達(dá)明顯增加,ZO-1、claudin-1和occludin的mRNA和蛋白表達(dá)降低。而青蒿素干預(yù)下,細(xì)胞分泌TNF-α、IL-1β和IL-6水平以及TLR4/MyD88/NF-κB mRNA和蛋白表達(dá)明顯降低,ZO-1、claudin-1和occludin的mRNA和蛋白表達(dá)升高(P<0.05),均呈現(xiàn)濃度依賴性。結(jié)論:青蒿素可能通過抑制TLR4/MyD88/NF-κB通路減輕LPS誘導(dǎo)的腸上皮細(xì)胞屏障功能損傷。
青蒿素;脂多糖;腸上皮細(xì)胞
腸道屏障是機(jī)體最重要的免疫防御屏障,它能夠阻止腸道感染并預(yù)防炎癥的發(fā)生。腸黏膜上皮屏障功能受到損害時,腸腔內(nèi)細(xì)菌等致病性抗原通過受損的腸上皮細(xì)胞侵入腸道[1-2],從而引發(fā)全身炎性反應(yīng)綜合征(systemic inflammatory response syndrome,SIRS)以及多器官功能障礙[3]。腸上皮屏障具有的選擇性通透性,是上皮對腸腔內(nèi)物質(zhì)通過跨細(xì)胞或旁細(xì)胞途徑跨過的能力,其中緊密連接(tight junction,TJ)蛋白的結(jié)構(gòu)和功能,與旁細(xì)胞的通透性密切相關(guān),而腫瘤壞死因子α(tumor necrosis factorα,TNF-α)等細(xì)胞因子可誘導(dǎo)上皮屏障功能損傷[4]。青蒿素(artemisinin,Art)是從菊科植物黃花蒿(Artemisia annua)葉中提取分離出的主要藥用成分,有研究表明,青蒿素除了具有抗瘧作用外,還有免疫調(diào)節(jié)、抗炎等作用[5]。因此,本文應(yīng)用細(xì)菌脂多糖(lipopolysaccharide,LPS)誘導(dǎo)IEC-6細(xì)胞建立體外腸上皮細(xì)胞功能損傷模型,觀察青蒿素對腸上皮細(xì)胞屏障通透性、細(xì)胞炎性因子的水平以及緊密連接蛋白表達(dá)的影響,并探討青蒿素對腸上皮細(xì)胞功能保護(hù)作用的機(jī)制。
1 材料
青蒿素(河南中醫(yī)藥大學(xué)提供);大鼠小腸上皮IEC-6細(xì)胞(ATCC CRL-1592TM),DMEM培養(yǎng)基,雙抗(含1×105U/L青霉素和100 mg/L鏈霉素),胎牛血清(Gemini);MTT,二甲基亞砜(DMSO),鼠抗ZO-1、claudin-1、occludin、MyD88和NF-κB p65多克隆抗體,β-actin鼠抗單克隆抗體(Abcam);羊抗鼠II抗,測定TNF-α、IL-1β和IL-6的ELISA試劑盒,BCA試劑盒(北京中杉生物有限公司)。
2 實驗方法
2.1 細(xì)胞培養(yǎng)與單層上皮模型的建立 IEC-6細(xì)胞用pH 7.4的DMEM培養(yǎng)液(含雙抗、10%胎牛血清)培養(yǎng),當(dāng)細(xì)胞生長至約80%融合時,用0.25%胰蛋白酶、0.53 mmol/L EDTA液消化細(xì)胞,按1∶3的比例傳代。參照文獻(xiàn)[6]方法建立單層上皮模型,將IEC-6細(xì)胞以5×104/L接種于24孔板Transwell聚碳酸酯膜上常規(guī)培養(yǎng),每2 d更換培養(yǎng)基,并用Millicell ERS電阻測定儀測定跨上皮細(xì)胞電阻(transepithelial electrical resistance,TER)以監(jiān)測細(xì)胞單層形成情況,待TER穩(wěn)定后,說明體外腸上皮單層細(xì)胞模型建立成功。
2.2 MTT法檢測細(xì)胞活性 將IEC-6細(xì)胞以1× 104/L接種于96孔板,分為對照組、LPS(100 mg/L)組、青蒿素(100 μmol/L)組和LPS+不同濃度(30、50和100 μmol/L)青蒿素組,按分組處理細(xì)胞。培養(yǎng)24 h,每孔加入20 μL MTT溶液孵育4 h,棄上清液,加入100 μL DMSO,振蕩后用酶標(biāo)儀檢測490 nm處吸光度值(A490)。
2.3 ELISA檢測細(xì)胞炎性因子水平 將IEC-6細(xì)胞以5×105/L接種于12孔板,分為對照組、LPS(100 mg/L)組和LPS+不同濃度(30、50和100 μmol/L)青蒿素組,按分組處理細(xì)胞。培養(yǎng)24 h,收集上清液,按照試劑盒說明書檢測各組TNF-α、IL-1β和IL-6的水平。
2.4 腸上皮細(xì)胞TER的測定 將IEC-6細(xì)胞以5× 105/L接種于Transwell小室,Millicell ERS電阻測定儀測定TER值,待數(shù)值穩(wěn)定后,按上述分組方法處理細(xì)胞。培養(yǎng)24 h,分別檢測處理前后的TER值,測得TER值減去空白對照后記錄為每組電阻值。每組做3復(fù)孔,實驗重復(fù)3次。
2.5 單層細(xì)胞通透性的測定 測量大分子物質(zhì)辣根過氧化物酶(horseradish peroxidase,HRP)通過單層細(xì)胞的速率,以觀察細(xì)胞通透性的改變。IEC-6細(xì)胞以5×105/L接種于Transwell小室,將HRP(終濃度3.4×10-6mol/L)加入Transwell小室的上室培養(yǎng)液中,按上述分組處理細(xì)胞培養(yǎng)24 h,于上室和下室各取2 μL培養(yǎng)基,置于96孔板內(nèi),加入TMB顯色液,酶標(biāo)儀370 nm處檢測吸光度值,根據(jù)標(biāo)準(zhǔn)曲線計算HRP濃度。
2.6 Western blot檢測蛋白的表達(dá) 將IEC-6細(xì)胞按上述分組處理,培養(yǎng)24 h后,提取細(xì)胞總蛋白,BCA法測定蛋白濃度,煮沸5 min變性后,進(jìn)行SDSPAGE電泳,上樣量為80 μg。然后以150 mA 3 h轉(zhuǎn)PVDF膜。3%脫脂奶粉封閉抗原1 h后,加入ZO-1 (1∶500)、claudin-1(1∶500)、occludin(1∶500)、TLR4 (1∶1 000)、MyD88(1∶1 000)、NF-κB p65(1∶1 000) 和β-actin(1∶1 000)等I抗孵育,4℃過夜,用TBST洗膜,每次5 min,共3次。加入II抗室溫孵育1 h,TBST洗膜,每次5 min,共3次,加入ECL顯色液曝光顯影。
2.7 RT-qPCR檢測mRNA表達(dá) 將IEC-6細(xì)胞按上述分組處理,培養(yǎng)24 h后,TRIzol法提取細(xì)胞總RNA,并檢測其純度以及完整性。反轉(zhuǎn)錄合成cDNA,以cDNA為模板,進(jìn)行PCR擴(kuò)增,依據(jù)2-ΔΔCt法計算各組mRNA的相對表達(dá)量。引物由上海生工生物工程公司合成,序列如表1。
表1 引物序列Table 1.Sequences of the primers
3 統(tǒng)計學(xué)處理
統(tǒng)計學(xué)處理計量資料結(jié)果用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,應(yīng)用SPSS 17.0統(tǒng)計軟件進(jìn)行統(tǒng)計學(xué)分析,多組間比較用單因素方差分析,各組均數(shù)間兩兩比較采用SNK-q檢驗,以P<0.05為差異有統(tǒng)計學(xué)意義。
1 青蒿素與LPS對IEC-6細(xì)胞均無毒性作用
MTT結(jié)果顯示,與對照組相比,LPS和青蒿素單獨處理的IEC-6細(xì)胞活性無明顯變化,青蒿素對LPS誘導(dǎo)的細(xì)胞活性無顯著影響(圖1)。這表明LPS與青蒿素處理(在本實驗濃度范圍)對IEC-6細(xì)胞活性均無明顯抑制作用。
Figure 1.The viability of IEC-6 cells after treatment with LPS and artemisinin(Art).Mean±SD.n=3.圖1 LPS和不同濃度青蒿素作用對細(xì)胞活力的影響
2 青蒿素降低LPS誘導(dǎo)的IEC-6細(xì)胞炎性因子水平
ELISA結(jié)果顯示,LPS誘導(dǎo)IEC-6細(xì)胞TNF-α、IL-1β和IL-6水平明顯升高,而青蒿素降低了LPS誘導(dǎo)的IEC-6細(xì)胞TNF-α、IL-1β和IL-6的水平,并呈現(xiàn)一定的劑量依賴效應(yīng),見圖2。
Figure 2.The releases of inflammatory cytokines in the culture supernatant of IEC-6 cells after treatment with LPS and artemisinin(Art).Mean±SD.n=3.*P<0.05 vs control;#P<0.05 vs LPS.圖2 LPS和不同濃度青蒿素對炎性因子水平的影響
3 青蒿素降低LPS誘導(dǎo)的IEC-6細(xì)胞屏障通透性升高
與對照組相比,LPS誘導(dǎo)IEC-6細(xì)胞TER值明顯降低,而青蒿素顯著提高LPS誘導(dǎo)的IEC-6細(xì)胞TER值。另外,與對照組相比,LPS提高單層細(xì)胞對HRP的通透性,而青蒿素顯著降低LPS誘導(dǎo)的IEC-6細(xì)胞對HRP的通透性升高,并呈現(xiàn)劑量依賴效應(yīng),見圖3。
4 青蒿素降低LPS誘導(dǎo)的細(xì)胞緊密連接蛋白的水平
Western blot和 RT-qPCR結(jié)果表明,LPS降低IEC-6細(xì)胞ZO-1、claudin-1和occludin的表達(dá)水平,而青蒿素顯著上調(diào)LPS誘導(dǎo)的IEC-6細(xì)胞ZO-1、claudin-1和occludin的表達(dá)降低,并呈現(xiàn)劑量依賴效應(yīng),見圖4。
5 青蒿素下調(diào)LPS誘導(dǎo)的TLR4/MyD88/NF-κB表達(dá)
Western blot和 RT-PCR結(jié)果證明,LPS上調(diào)IEC-6細(xì)胞TLR4、MyD88和NF-κB p65的表達(dá),而青蒿素顯著降低LPS誘導(dǎo)的IEC-6細(xì)胞MyD88和NF-κB p65的表達(dá)升高,并呈現(xiàn)劑量依賴效應(yīng),見圖5。
Figure 3.The effects of LPS and artemisinin(Art)on the permeability of IEC-6 cells.Mean±SD.n=3.*P<0.05 vs control;#P<0.05 vs LPS.圖3 LPS和不同濃度青蒿素對細(xì)胞通透性的影響
腸黏膜屏障主要由腸黏膜基底膜、上皮細(xì)胞層及其表面的黏液層所構(gòu)成,腸上皮細(xì)胞是腸黏膜屏障的主要組織結(jié)構(gòu)基礎(chǔ)[7]。目前已有研究表明在炎性結(jié)腸炎、重癥胰腺炎、暴發(fā)性肝衰竭等疾病引起的腸黏膜屏障損傷中,均存在腸上皮細(xì)胞細(xì)胞功能的破壞[8-9]。LPS是革蘭氏陰性菌的致病因子,它直接接觸腸黏膜上皮細(xì)胞時,可通過阻斷緊密連接蛋白的磷酸化和去磷酸化過程,導(dǎo)致腸黏膜上皮的通透性增加和腸黏膜功能損傷[10]。本文采用青蒿素干預(yù)LPS誘導(dǎo)的IEC-6細(xì)胞功能損傷,討論青蒿素對腸上皮細(xì)胞通透性等功能的保護(hù)作用。實驗結(jié)果證明,LPS與青蒿素(在本實驗濃度范圍)對IEC-6細(xì)胞均無毒性,可進(jìn)行進(jìn)一步研究。
Figure 4.The expression of ZO-1,claudin-1 and occludin after treatment with LPS and artemisinin(Art).A:protein expression;B: mRNA expression.Mean±SD.n=3.*P<0.05 vs control;#P<0.05 vs LPS.圖4 LPS和不同濃度青蒿素對ZO-1、claudin-1和occludin表達(dá)的影響
青蒿素是從菊科植物黃花蒿葉中提取分離到的一種具有過氧化基團(tuán)結(jié)構(gòu)的倍半萜內(nèi)酯化合物,主要衍生物包括雙氫青蒿素、蒿甲醚、青蒿琥酯等。近年來,越來越多的研究表明,青蒿素及其衍生物具有調(diào)節(jié)免疫、抗腫瘤以及抗炎的活性[5]。蒿甲醚和青蒿琥酯均能抑制LPS誘導(dǎo)的小膠質(zhì)細(xì)胞炎性因子的水平[11-12]。本研究結(jié)果顯示,青蒿素能顯著下調(diào)LPS誘導(dǎo)IEC-6細(xì)胞中炎性因子TNF-α、IL-1β和IL-6的水平。
Figure 5.The expression of TLR4,MyD88 and NF-κB p65 after treatment with LPS and artemisinin(Art).A:protein expression; B:mRNA expression.Mean±SD.n=3.*P<0.05 vs control;#P<0.05 vs LPS.圖5 LPS和不同濃度青蒿素對TLR4、MyD88和NF-κB p65表達(dá)的影響
單層細(xì)胞的TER值是反映腸黏膜屏障通透性的主要指標(biāo)之一,與細(xì)胞單層通透性呈負(fù)相關(guān)。TER值的減小提示緊密連接結(jié)構(gòu)受到破壞,HRP通過受損的細(xì)胞間空隙漏入下室增多,腸道通透性增加[13]。本研究中,細(xì)胞TER值的減小與細(xì)胞對HRP通透性的增加都表明LPS破壞了腸上皮細(xì)胞通透性,而青蒿素顯著增加受損細(xì)胞的TER值并降低細(xì)胞對HRP通透性。緊密連接區(qū)域的特異性蛋白包括跨膜蛋白o(hù)ccludin、膜蛋白ZO-1以及claudin蛋白家族等,其中occludin蛋白是一種跨膜蛋白,位于細(xì)胞間緊密連接的縫隙處,在調(diào)控細(xì)胞間的通透性和信號傳導(dǎo)方面有重要意義。這些緊密連接蛋白表達(dá)下調(diào)時,緊密連接結(jié)構(gòu)會發(fā)生改變,造成細(xì)胞多種功能受損[14]。有研究證明,茶黃素、大黃素等中藥成分能夠上調(diào)Caco-2細(xì)胞中occludin、claudin-1和ZO-1蛋白的水平,減輕Caco-2細(xì)胞通透性等功能損傷[14-15]。本研究結(jié)果同樣證明,LPS誘導(dǎo)腸上皮細(xì)胞中occludin、claudin-1和ZO-1表達(dá)降低,而青蒿素上調(diào)這些蛋白的表達(dá),并呈現(xiàn)劑量依賴效應(yīng)。
Toll樣受體4(Toll-like receptor 4,TLR4)是模式識別受體的一種,在機(jī)體免疫與炎癥反應(yīng)中發(fā)揮關(guān)鍵作用。LPS通過TLR4通路誘導(dǎo)幼年動物的腸道屏障功能損傷[16],MyD88和NF-κB作為TLR4信號通路的下游因子,在炎癥損傷中均有重要作用。有研究證明,青蒿琥酯顯著降低LPS誘導(dǎo)的小膠質(zhì)細(xì)胞BV-2炎性因子水平,其中TLR4/MyD88/NF-κB通路發(fā)揮重要的作用[12]。本研究表明,青蒿素顯著下調(diào)LPS誘導(dǎo)的細(xì)胞TLR4/MyD88/NF-κB的激活,由此,青蒿素可能通過抑制TLR4/MyD88/NF-κB通路的激活,從而發(fā)揮對腸上皮細(xì)胞損傷的保護(hù)作用。
綜上所述,本文利用青蒿素干預(yù)LPS誘導(dǎo)的IEC-6細(xì)胞屏障功能損傷,發(fā)現(xiàn)青蒿素可能通過抑制TLR4/MyD88/NF-κB通路降低腸上皮細(xì)胞通透性,并上調(diào)細(xì)胞緊密連接蛋白的表達(dá)。這一發(fā)現(xiàn)為青蒿素治療細(xì)胞屏障功能損傷相關(guān)疾病提供了新的理論基礎(chǔ),但其具體分子機(jī)制有待進(jìn)一步研究。
[1] Tulic MK,Vivinus-Nébot M,Rekima A,et al.Presence of commensal house dust mite allergen in human gastrointestinal tract:a potential contributor to intestinal barrier dysfunction[J].Gut,2016,65(5):757-766.
[2] 任 翔,傅廷亮,馬明明,等.黃芩苷對腸上皮細(xì)胞缺氧復(fù)氧損傷后屏障功能的影響[J].中華實用兒科臨床雜志,2015,30(7):494-497.
[3] Lee SH.Intestinal permeability regulation by tight junction:implication on inflammatory bowel diseases[J].Intest Res,2015,13(1):11-18.
[4] Wang F,Graham WV,Wang Y,et al.Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression[J].Am J Pathol,2005,166(2):409-419.
[5] Shi C,Li H,Yang Y,et al.Anti-inflammatory and immunoregulatory functions of artemisinin and its derivatives [J].Mediators Inflamm,2015,2015:435713.
[6] Liu H,Li M,Wang P,et al.Blockade of hypoxia-inducible factor-1α by YC-1 attenuates interferon-γ and tumor necrosis factor-α-induced intestinal epithelial barrier dysfunction[J].Cytokine,2011,56(3):581-588.
[7] 陳振勇,代紅梅,涂志剛,等.阻塞性黃疸術(shù)后胰島素抵抗與腸黏膜屏障破壞間的相關(guān)性[J].中國病理生理雜志,2013,29(1):165-168,173.
[8] Fishman JE,Sheth SU,Levy G,et al.Intraluminal nonbacterial intestinal components control gut and lung injury after trauma hemorrhagic shock[J].Ann Surg,2014,260 (6):1112-1120.
[9] Liang HY,Chen T,Wang T,et al.Time course of intestinal barrier function injury in a sodium taurocholate-induced severe acute pancreatitis in rat model[J].J Dig Dis,2014,15(7):386-393.
[10]Mu X,Pan C,Zheng S,et al.Protective effects of carbon monoxide-releasing molecule-2 on the barrier function of intestinal epithelial cells[J].PLoS One,2014,9(8): e104032.
[11]Okorji UP,Velagapudi R,El-Bakoush A,et al.Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms[J].Mol Neurobiol,2015 Nov 25.[Epub ahead of print]
[12]Wang D,Shi J,Lv S,et al.Artesunate attenuates lipopolysaccharide-stimulated proinflammatory responses by suppressing TLR4,MyD88 expression,and NF-κB activation in microglial cells[J].Inflammation,2015,38(5):1925-1932.
[13]Hsieh CY,Osaka T,Moriyama E,et al.Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum[J].Physiol Rep,2015,3(3):e12327.
[14]Lei Q,Qiang F,Chao D,et al.Amelioration of hypoxia and LPS-induced intestinal epithelial barrier dysfunction by emodin through the suppression of the NF-κB and HIF-1α signaling pathways[J].Int J Mol Med,2014,34(6): 1629-1639.
[15]Park HY,Kunitake Y,Hirasaki N,et al.Theaflavins enhance intestinal barrier of Caco-2 cell monolayers through the expression of AMP-activated protein kinase-mediated occludin,claudin-1,and ZO-1[J].Biosci Biotechnol Biochem,2015,79(1):130-137.
[16]Zhu C,Wu Y,Jiang Z,et al.Dietary soy isoflavone attenuated growth performance and intestinal barrier functions in weaned piglets challenged with lipopolysaccharide [J].Int Immunopharmacol,2015,28(1):288-294.
(責(zé)任編輯:林白霜,羅 森)
Artemisinin attenuates intestinal epithelial barrier damage induced by LPS
SUN Jun-bo1,ZHAO Lu2,SHI Su-qin3,KOU Zhen-yuan1,LIU Ai-juan2,F(xiàn)U Ting-ting2
(1Henan Province Hospital of TCM,The Second Affiliated Hospital of Henan University of TCM,Zhengzhou 450002,China;2The Third Affiliated Hospital of Henan University of TCM,Zhengzhou 450008,China;3The First Affiliated Hospital of Henan University of TCM,Zhengzhou 450000,China.E-mail:junbosun@163.com)
AIM:To investigate the effect of artemisinin on lipopolysaccharide(LPS)-induced intestinal epithelial barrier damage in IEC-6 cells and its molecular mechanism.METHODS:Cultured IEC-6 cells were divided to 5 groups:control group,LPS(100 mg/L)group and LPS+Artemisinin(30,50 and 100 μmol/L)groups.The cytotoxicity was detected by MTT assay.The releases of TNF-α,IL-1β and IL-6 in the IEC-6 cells were measured by ELISA.The transepithelial electrical resistance(TER)was detected by electrical resistance tester,and the horseradish peroxidase (HRP)flux permeability were analyzed by a microplate reader.The expression of tight junction proteins,ZO-1,claudin-1 and occludin,and the expression of TLR4/MyD88/NF-κB at mRNA and protein levels were determined by RT-qPCR and Western blot.RESULTS:Artemisinin alone(up to 100 μmol/L)or in combination with LPS(100 mg/L)was not toxic to IEC-6 cells.Compared with control group,the releases of TNF-α,IL-1β and IL-6 in the culture supernatant of IEC-6 cells significantly increased after treatment with LPS.The expression of TLR4/MyD88/NF-κB was activated by LPS.LPS down-regulated the protein expression of ZO-1,claudin-1 and occludin.However,artemisinin treatment decreased the releases of TNF-α,IL-1β and IL-6 in the culture supernatant of IEC-6 cells.The expression of TLR4/MyD88/NF-κB at mRNA and protein levels was gradually reduced after treatment with artemisinin.In addition,artemisinin upregulated the protein expression of ZO-1,claudin-1 and occludin significantly(P<0.01)in a dose-dependent manner.CONCLUSION: Artemisinin attenuates LPS-induced intestinal epithelial barrier damage by inhibiting TLR4/MyD88/NF-κB activation in the IEC-6 cells.
Artemisinin;Lipopolysaccharides;Intestinal epithelial cells
R574;R363
A
10.3969/j.issn.1000-4718.2016.07.021
1000-4718(2016)07-1285-06
2016-02-19
2016-04-07
△Tel:0371-60908899;E-mail:junbosun@163.com